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ABSTRACT

Wind direction is an angular variable, as opposed to weather quantities such as temperature, quantitative

precipitation, or wind speed, which are linear variables. Consequently, traditional model output statistics and

ensemble postprocessing methods become ineffective, or do not apply at all. This paper proposes an effective

bias correction technique for wind direction forecasts from numerical weather prediction models, which is

based on a state-of-the-art circular–circular regression approach. To calibrate forecast ensembles, a Bayesian

model averaging scheme for directional variables is introduced, where the component distributions are von

Mises densities centered at the individually bias-corrected ensemble member forecasts. These techniques are

applied to 48-h forecasts of surface wind direction over the Pacific Northwest, using the University of

Washington mesoscale ensemble, where they yield consistent improvements in forecast performance.

1. Introduction

Forecasts of wind direction have varied and important

uses, ranging from air pollution management to aircraft

and ship routing and recreational boating. However,

wind direction is an angular variable that takes values on

the circle, as opposed to other weather quantities, such

as temperature, quantitative precipitation, or wind speed,

which are linear variables that take values on the real

line. As a result, traditional postprocessing techniques for

forecasts from numerical weather prediction models tend

to become ineffective or inapplicable. For example,

Engel and Ebert (2007, p. 1351) note that bias correction

was ‘‘found not to be beneficial to wind direction fore-

casts’’. The purpose of this paper is to develop effective

bias correction and ensemble calibration techniques that

are tailored to wind direction by taking the angular na-

ture of the variable into account.

The remainder of the paper is organized as follows. In

section 2 we describe our approach to bias correction and

ensemble calibration in detail. We adopt the circular–

circular regression approach of Downs and Mardia

(2002) and Kato et al. (2008), and develop a Bayesian

model-averaging scheme for directional variables, where

the component distributions are von Mises densities

centered at the individually bias-corrected ensemble

member forecasts. Section 3 provides a case study on

48-h forecasts of surface wind direction over the Pacific

Northwest in 2003 using the University of Washington

mesoscale ensemble (Grimit and Mass 2002; Eckel and
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Mass 2005). In these experiments, our methods turn out

to be effective and yield consistent improvement in

forecast performance. The paper closes with a discussion

in section 4.

2. Methods

Wind direction is an angular variable that takes values

on the circle, and as such can be represented in various

equivalent ways. We use degrees to describe predicted

and observed wind directions, with 08, 908, 1808, and 2708

denoting a northerly, easterly, southerly, and westerly

wind, respectively. The angular distance or circular ab-

solute error,

AE
circ

( f , y) 5 min(jy � f j, 360� jy � f j), (1)

between two directions 0 # f, y , 360 then is a non-

negative quantity with a maximum of 1808. Occasionally,

it will be useful to identify a direction, y, with the point

u(y) 5 eipy/180

on the unit circle in the complex plane. Under this one-

to-one mapping, directions of 08, 908, 1808, and 2708 cor-

respond to 1, the imaginary unit i, 21, and 2i, respectively

(i, 1) and (2i, 21).

a. Bias correction

Systematic biases are substantial in dynamic modeling

systems (Atger 2003; Mass 2003), and bias correction is

an essential and well-established step in weather fore-

casting. The predominant approach is based on regres-

sion, using model output statistics (MOS) schemes based

on multiple linear regression for linear variables, such as

temperature or pressure, and logistic regression for bi-

nary variables, such as precipitation occurrence or freez-

ing (Glahn and Lowry 1972; Wilks 2006a). For wind, the

traditional approach is to develop separate MOS equa-

tions for the zonal and meridional components, and derive

single-valued forecasts of wind speed and wind direction

from them. However, this does not take the dependencies

between the wind components into account and can lead

to biases (Carter 1975; Glahn and Unger 1986). Thus, we

take a different approach to predicting wind direction,

and propose the use of a state-of-the-art circular–circular

regression technique.

Specifically, let f and y denote the predicted and ob-

served wind direction, respectively. Let u( f) and u(y)

denote the associated points on the unit circle in the

complex plane, as described above. Downs and Mardia

(2002) and Kato et al. (2008) propose a regression equa-

tion of the form

u(y) 5 b
0

u( f )1 b
1

1 1 b
1
u( f )

, (2)

where b0 is a complex number with modulus jb0j5 1, b1

is any complex number and the bar denotes complex

conjugation. The mapping from u( f) to u(y) is a Möbius

transformation in the complex plane, which is one-to-

one, and maps the unit circle to itself. The regression

parameters b0 and b1 need to be estimated from training

data. While b0 is a rotation parameter, b1 can be inter-

preted as pulling a direction toward a fixed angle, namely

the point b1/jb1j on the unit circle, with the concentration

about this point increasing as jb1j increases, except that

the antipodal point remains fixed (Kato et al. 2008).

Figure 1 provides an illustration. Figure 1a shows twelve

equally spaced nontransformed angles. Figure 1b illus-

trates the Möbius transformation (2) when b0 5 1 (i.e., no

rotation) and b1 5 0.3i (i.e., a contraction toward the

imaginary unit in the complex plane, which corresponds

to a direction of 908). In Fig. 1c, the parameter values are

b0 5 1 and b1 5 0.6i, resulting in a stronger contraction.

Figure 1d uses b0 5 2i and b1 5 0.6i, thereby compos-

iting the contraction with a counterclockwise rotation

by 908.

In our circular–circular regression approach to bias

correction for wind direction, we estimate the Möbius

transformation (2) from training data by numerically

minimizing the sum of the circular distances between the

fitted bias-corrected forecasts and the respective verify-

ing directions as a function of the regression parameters.

For comparison, we consider two reference techniques.

The first is median-angle correction, which arises as the

special case of circular–circular regression in which the

parameter b1 5 0 is fixed. Then the Möbius transfor-

mation (2) is simply a rotation. In our minimum circular

distance approach to estimation, the rotation parameter

b0 becomes the circular median of the directional errors

in the training data. The second reference technique is

mean-angle correction; that is, a rotation by the circular

mean of the directional errors in the training data.

Recall here that if the training data comprises the

pairs ( f1, y1), . . . , ( fn, yn) of predicted and observed

directions, the median of the directional errors is the

angle m that minimizes

�
n

k51
AE

circ
(y

k
� f

k
, m),

which is equivalent to the definition in Eq. (2.32) of

Fisher (1993, p. 36). The circular mean is obtained by

forming the vector sum of the directional errors, each of

which is represented as a unit vector in the complex

plane, and rescaling to the unit circle, or equivalently, by
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applying Eq. (2.9) of Fisher (1993, p. 31). Lund (1999)

proposes a fitting criterion of this latter type in the

context of circular regression.

b. Von Mises distribution for angular data

The von Mises distribution is a natural baseline for

modeling angular data, such as wind directions, and it

may be viewed as a circular analog of the Gaussian

distribution (Fisher 1993, p. 49). Specifically, an angular

variable is said to have a von Mises distribution with

mean direction m and concentration parameter k $ 0 if it

has density

g(yjm, k) 5
1

360

expfk cos[(y � m)p/180]g
I

0
(k)

on the circle, where I0 is a modified Bessel function of

the first kind and order zero. As the concentration pa-

rameter k gets close to zero, the von Mises distribution

becomes a uniform distribution on the circle. In the ap-

pendix, we review maximum likelihood (ML) estimation

for the concentration parameter of the von Mises distri-

bution, which can be viewed as a limiting case of Bayes

estimation under weak prior information (Guttorp and

Lockhart 1988).

FIG. 1. Illustration of the Möbius transformation (2) in the original unit of degrees. The

parameter b0 prescribes a rotation, while b1 can be interpreted as pulling a direction toward

a fixed angle, corresponding to the point b1/jb1j on the unit circle, with the concentration about

this point increasing as jb1j increases, except that the antipodal point remains fixed. (a) Twelve

equally spaced nontransformed angles, (b) Möbius transformation with parameters b0 5 1 and

b1 5 0.3i, corresponding to a weak contraction toward the imaginary unit; i.e., a direction of 90

degrees. (c) Möbius transformation with parameters b0 5 1 and b1 5 0.6i, resulting in a stronger

contraction. (d) Möbius transformation with parameters b0 5 2i and b1 5 0.6i, now com-

positing the contraction with a counterclockwise rotation by 908.
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c. Bayesian model averaging

During the past decade, the ability of ensemble systems

to improve deterministic-style forecasts and to predict

forecast skill has been convincingly established (Palmer

2002; Gneiting and Raftery 2005). However, forecast

ensembles are typically biased and underdispersive

(Hamill and Colucci 1997; Eckel and Walters 1998), and

thus some form of statistical postprocessing is required.

Wilks (2006b), Wilks and Hamill (2007), and Bröcker

and Smith (2008) review and compare techniques for

doing this.

Bayesian model averaging (BMA) was introduced by

Raftery et al. (2005) as a statistical postprocessing method

that generates calibrated and sharp predictive probability

density functions (PDFs) from ensemble forecasts. The

BMA predictive PDF of any future weather quantity of

interest is a weighted average of PDFs associated with the

member forecasts, where the weights reflect the mem-

bers’ predictive skill over a training period. The initial

development was for linear weather quantities, such as

surface temperature, quantitative precipitation, and wind

speed (Raftery et al. 2005; Sloughter et al. 2007; Wilson

et al. 2007; Sloughter et al. 2009), for which the compo-

nent PDFs are probability distributions on the real line.

For all variables considered and on both the synoptic

scale and the mesoscale, the BMA postprocessed PDFs

outperformed the unprocessed ensemble forecast and

were calibrated and sharp.

Here we extend the BMA approach to accommodate

wind direction, which is an angular variable and thus

requires component PDFs that are probability distri-

butions on the circle. Let f1, . . . , fm denote an ensemble

of bias-corrected forecasts. We then take the BMA

predictive PDF to be a mixture of the form

p(yj f
1
, . . . , f

m
) 5 �

m

j51
w

j
g(yjf

j
, k

j
),

where the components are von Mises distributions with

mean direction fj and concentration parameter kj. The

BMA weights w1, . . . , wm are probabilities and so they

are nonnegative and add up to 1; that is, �m

j51wj 5 1.

Our standard BMA specification uses a common con-

centration parameter, so that

p(yj f
1
, . . . , f

m
) 5 �

m

j51
w

j
g(yj f

j
, k). (3)

The common concentration parameter simplifies and

stabilizes estimation and, in our experience with the

University of Washington Mesoscale Ensemble over the

Pacific Northwest, does not deteriorate the predictive

performance appreciably. However, in other types of

situations the more general formulation with distinct

concentration parameters might be more adequate.

The BMA weights, w1, . . . , wm, and the common

concentration parameter k of the component PDFs are

estimated by maximum likelihood from training data.

Typically, the training set comprises a temporally and/or

spatially composited collection of past, bias-corrected

ensemble member forecasts, f1k, . . . , fmk, and the corre-

sponding verifying direction, yk, where k 5 1, . . . , n, with

n the number of cases in the training set. The likelihood

function ‘ is then defined as the probability of the training

data, viewed as a function of the wj’s and k; that is,

‘(w
1
, . . . , w

m
; k) 5 P

n

k51
�
m

j51
w

j
g(y

k
j f

jk
, k),

where the product extends over all instances in the

training set. The ML estimates are those values of the

wj’s and k that maximize the likelihood function; that is,

the values under which the verifying directions were

most likely to materialize.

The likelihood function typically cannot be maxi-

mized analytically, and so it is maximized using the

expectation-maximization (EM) algorithm (Dempster

et al. 1977; McLachlan and Krishnan 1997). The EM

algorithm is iterative and alternates between two steps,

the E (or expectation) step, and the M (or maximiza-

tion) step. It uses unobserved quantities zjk, which can

be interpreted informally as the probability of ensemble

member j being the most skillful forecast for verification

yk. The z1k, . . . , zmk are nonnegative and sum to 1 for

each instance k in the training set.

In the E step, the zjk are estimated given the current

values of the BMA weights and component PDFs.

Specifically,

z
(l11)
jk 5

w
(l)
j g(y

k
j f

jk
, k(l))

�
m

q51
w

(l)
q g(y

k
j f

qk
, k(l))

, (4)

where the superscript l refers to the lth iteration of the

EM algorithm, and thus w(l)
q and k(l ) refer to the esti-

mates at the lth iteration. In the M step we obtain up-

dated estimates

w
(l11)
j 5

1

n
�

n

k51
z

(l11)
jk (5)

of the BMA weights. Furthermore, an updated estimate,

k(l11), of the common concentration parameter is ob-

tained by optimizing the expected complete-data log

likelihood given the latent variables; that is, by maximizing
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�
n

k51
�
m

j51
z

(l11)
jk log g(y

k
jf

jk
, k) (6)

over k $ 0. For implementation details, see the appendix.

An ensemble forecast can occasionally be poor, in the

sense that all member forecasts turn out to be substan-

tially different from the verifying direction. This possi-

bility motivates a BMA specification with a uniform

mixture component. Under this more general specifica-

tion, to which we refer as BMA1, the predictive density

becomes

p(yjf
1
, . . . , f

m
) 5 �

m

j51
w

j
g(yj f

j
, k)1 w

m11
u(y), (7)

where u is the density of a uniform distribution on the

circle; that is, a von Mises distribution with concentration

parameter k 5 0, and where the BMA weights are non-

negative and add up to 1, so that �m11

j51 wj 5 1. The in-

tention here is similar to that of the addition of a

climatological mixture component, as proposed and

implemented for linear variables by Rajagopalan et al.

(2002) and Bröcker and Smith (2008). The adaption

of the EM estimation algorithm from the BMA to the

BMA1 specification is straightforward.

d. Forecast verification

Wind direction is an angular variable, and standard

scoring rules for linear variables do not apply. Instead,

we use circular analogs of the absolute error and the

continuous ranked probability score, as introduced by

Grimit et al. (2006).

From a probabilistic forecast for an angular quantity,

we can create a single-valued forecast by determining

the circular median of the predictive distribution, as

described above and by Fisher (1993, pp. 35–36). To

assess the quality of this forecast, we use the mean cir-

cular distance or circular absolute error, AEcirc( f, y),

between the single-valued forecast f and the verifying

direction, y, as given by (1) in the unit of degrees.

To assess probabilistic forecasts for an angular quan-

tity, we use the angular or circular continuous ranked

probability score, which is defined by

CRPS
circ

(P, y) 5E
P

AE
circ

(V, y)
� �

� 1

2
E

P
AE

circ
(V, V*)

� �
, (8)

where P is a forecast distribution on the circle, y is the

verifying direction, V and V* are independent copies of

an angular random variable with distribution P, and Ef�g
denotes the expectation operator. Note that when P is

a uniform distribution on the circle, then CRPScirc(P, y)

equals 458, independently of the verifying direction. The

circular continuous ranked probability score is proper

and reduces to the circular absolute error when the

forecast is single-valued, just as the linear continuous

ranked probability score generalizes the absolute error

(Grimit et al. 2006). It takes the unit of degrees and

allows for the direct comparison of deterministic (single-

valued) forecasts, discrete ensemble forecasts, and post-

processed ensemble forecasts that can take the form of a

predictive density.

The general goal in probabilistic forecasting is to

maximize the sharpness of the forecast distributions

subject to calibration (Gneiting et al. 2007). For proba-

bilistic forecasts of a linear variable, it is straightforward

to assess calibration via rank or probability integral

transform (PIT) histograms, and sharpness via the mean

width of the corresponding prediction intervals. For an

angular variable, such as wind direction, there are no

established ways of assessing calibration and sharpness.

For example, there is no direct analog of the verification

rank or PIT histogram; because there is no natural or-

dering on the circle if a forecast distribution is uniform

or multimodal. Similarly, there is no generally accepted

measure of dispersion for circular distributions (Fisher

and Lee 1992, p. 666).

To address these challenges, we introduce a novel

measure of sharpness for a circular distribution P, namely

S(P) 5
1

2
E

P
AE

circ
(V, V*)

� �

5E
P

CRPS
circ

(P, V)
� �

, (9)

where V and V* are independent copies of an angular

random variable with distribution P. The quantity S(P)

has two complementary interpretations. By the first

equality in (9), it equals one-half times the expected cir-

cular distance between two directions drawn indepen-

dently and at random from the forecast distribution.

Thus, S(P) is a natural measure of sharpness on the circle,

attaining a value of zero for a point measure, and a value

of 458 for a uniform distribution. The smaller S(P), the

sharper the forecast distribution, and the sharper, the

better, subject to calibration.

The second equality in the defining (9) is immediate

from (8) and shows that S(P) equals the expected value

of the circular continuous ranked probability score when

the forecast distribution is P, and the verifying wind

direction is drawn at random from this distribution.

Thus, if a forecasting method is calibrated, we expect the

mean sharpness measure (9) and the mean circular

continuous ranked probability score to be roughly equal.
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Approximate equality can be checked informally or via

significance tests, as proposed by Held et al. (2010).

For some predictive distributions, such as mixtures of

von Mises densities, the circular continuous ranked

probability score cannot be computed analytically. In

such cases, we approximate it by simulating a Monte

Carlo sample y1, . . . , yN from the predictive distribution,

and computing

CRPS
circ

(P, y) 5
1

N
�
N

i51
AE

circ
(y

i
, y)

� 1

2N2
�
N

i51
�
N

j51
AE

circ
(y

i
, y

j
), (10)

which agrees with (8) when the predictive distribution,

P, assigns mass 1/N to each of y1, . . . , yN. Similarly, the

sharpness measure (9) can be approximated by the

rightmost term in (10). In order for the approximation to

be accurate, the sample size N needs to be large, and we

generally use N 5 1 000.

3. Results for the University of Washington
ensemble over the Pacific Northwest

a. The University of Washington mesoscale ensemble

The University of Washington ensemble system is

a mesoscale, short-range ensemble based on the fifth-

generation Pennsylvania State University–National Cen-

ter for Atmospheric Research (PSU–NCAR) mesoscale

model (MM5; Grell et al. 1995). It forms an integral part

of the Pacific Northwest regional environmental predic-

tion effort (Mass et al. 2003). The original five-member

mesoscale ensemble was designed as a single-model,

multianalysis system that uses MM5 with a nested, limited-

area grid configuration focusing on the states of Wash-

ington and Oregon (Grimit and Mass 2002). Beginning

in the autumn of 2002, the size of the mesoscale ensemble

was increased to eight members, using additional global

analyses and forecasts, and named the University of

Washington Mesoscale Ensemble (UWME; Eckel and

Mass 2005). Table 1 shows acronyms and the sources

of the initial and lateral boundary conditions for the

member forecasts.

The evaluation period of this study begins 1 January

2003 and extends through 31 December 2003, in which

the UWME system provided 48-h forecasts beginning at

0000 UTC each day, with the verifying wind directions

being recorded 48 h later. Model 10-m wind component

forecasts at the four grid-box centers surrounding each

station were bilinearly interpolated to the observation

location and then rotated from grid-relative to north-

relative. No adjustment was made for any vertical dis-

placement of the model surface level from the real terrain.

Station-based observations of near-surface wind were

acquired in real time from 54 surface airway observation

(SAO) stations in the United States and Canada. Our

verification results include forecast–observation cases

only when the verifying wind speed was at least 5 kt

(2.57 m s21), since wind direction observations are un-

reliable at lower wind speeds. In view of this constraint,

forecast–observation cases at the individual stations

were available for a minimum of 201, median of 219, and

maximum of 264 days in calendar year 2003.

TABLE 1. Composition of the eight-member UWME (Eckel and

Mass 2005), with member acronyms, and organizational and syn-

optic model sources for the initial and lateral boundary conditions.

The organizational sources are the United States National Centers

for Environmental Prediction (NCEP), the Canadian Meteoro-

logical Centre (CMC), the Australian Bureau of Meteorology

(ABM), the Japanese Meteorological Agency (JMA), the Fleet

Numerical Meteorology and Oceanography Center (FNMOC), the

Taiwan Central Weather Bureau (TCWB), and the Met Office

(UKMO).

Member Source Driving synoptic model

GFS NCEP Global forecast system

ETA NCEP Limited-area mesoscale model

CMCG CMC Global-environment multiscale model

GASP ABM Global analysis and prediction model

JMA JMA Global spectral model

NGPS FNMOC Navy operational global atmospheric

prediction system

TCWB TCWB Global forecast system

UKMO UKMO Unified model

TABLE 2. Raw and bias-corrected UWME ensemble forecasts of wind direction (8) at Castlegar Airport, BC, valid 0000 UTC 26 Aug

2003. The member-specific circular–circular regression schemes for the bias correction and the BMA and BMA1 parameters were fit on

a 28-day training period immediately preceding the initialization date. For this site and particular training period, the concentration

parameter k was estimated at 2.984 for BMA and 4.112 for BMA1.

GFS ETA CMCG GASP JMA NGPS TCWB UKMO Unified

UWME (raw) 325.0 321.3 332.4 330.1 319.4 254.3 327.7 324.7 —

UWME (bias-corrected) 323.2 315.7 320.6 326.5 310.7 246.8 323.1 318.4 —

BMA weight 0.113 0.124 0.109 0.134 0.114 0.132 0.117 0.157 —

BMA1 weight 0.098 0.110 0.099 0.119 0.105 0.115 0.110 0.147 0.097
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Before showing composite verification results, we give

a specific example of 48-h BMA and BMA1 forecasts of

wind direction at Castlegar Airport, British Columbia

(station code CYCG), valid 0000 UTC 26 August 2003.

The member-specific circular–circular regression schemes

for bias correction and the BMA parameters were esti-

mated on a 28-day training period immediately pre-

ceding the initialization date, using data at Castlegar

only. Table 2 shows the eight raw and bias-corrected

UWME member forecasts and the respective BMA and

BMA1 weights for this site and particular training period.

The bias correction technique results in member-specific

counterclockwise rotations, which range from 28 to 128.

The UKMO member received the highest BMA and

BMA1 weights, but the weights do not differ much be-

tween the ensemble members.

Figure 2 illustrates the raw and bias-corrected UWME

ensemble forecasts and the BMA and BMA1 density

forecasts at Castlegar along with two reference forecasts,

to which we refer as climatology and median error cli-

matology (MEC), respectively. The climatology forecast

uses the 28 observed wind directions during the sliding

training period, giving them equal weights in a discrete

probability mass function. This is a short-term clima-

tology, which can adapt to seasonal changes as well as to

changes in atmospheric regimes. The MEC technique

takes the form of a von Mises density that is centered on

the circular median of the bias-corrected ensemble mem-

bers, with a concentration parameter that is estimated

(using ML) on the same 28-day training period as the

other methods. This resembles the mean error clima-

tology method of Grimit et al. (2006), but the density is

centered on the circular ensemble median, rather than

the circular mean, and the estimation method is differ-

ent. Each panel shows the respective forecast distribu-

tion, taking the form of either a discrete probability mass

function or a continuous probability density function,

along with the verifying wind direction, which was west-

erly at 280 degrees. The circular continuous ranked

probability score (CRPS) is smallest (i.e., best) for the

BMA1 forecast distribution, at 17.58, followed by the

BMA, MEC, bias-corrected UWME, raw UWME, and

climatology forecasts.

b. Bias correction

We turn to composite verification results for bias cor-

rection. In section 2a we proposed three methods for bias

correcting angular variables, namely circular–circular re-

gression, which employs a state of the art regression ap-

proach tailored to circular data, and two benchmarks,

median-angle correction and mean-angle correction. As

FIG. 2. Circular diagrams of forecast distributions for wind direction at Castlegar Airport, BC, valid 0000 UTC

26 Aug 2003; (top) the corresponding discrete forecast probability mass function (climatology, UWME raw, and

UWME bias-corrected) or (bottom) continuous forecast probability density function (MEC, BMA, and BMA1).

The blue lines and graphs represent the forecast distributions; the solid red line represents the verifying observation,

at 2808. The circular continuous ranked probability score is also shown, in degrees.
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noted before, we fit the bias correction schemes for each

ensemble member individually.

There are two choices to be made here, namely about

the method used and the length of the sliding training

period. Table 3 shows the mean circular absolute error

for each method, averaged over the eight UWME mem-

ber forecasts, calendar year 2003, and the 54 stations we

consider, for sliding training periods that range from 7 to

42 days. In choosing the length of the training period,

there is a trade-off, and no automatic way of making it.

Both weather patterns and model specifications change

over time, so that there is an advantage in using a short

training period to adapt to such changes. On the other

hand, the longer the training period is, the less the es-

timation variance. The training sets are constrained to

cases at the location at hand, and the periods are ex-

tended if there are missing data. For example, the 7-day

training period always uses the seven most recent avail-

able forecast cases.

At a 7-day training period the simpler methods out-

perform the more complex method, namely circular–

circular regression. However, as the training period

grows, circular–circular regression becomes the method

of choice. This is not surprising, and can readily be ex-

plained by the bias–variance trade-off, in that more com-

plex statistical methods require larger training sets, to

avoid overfitting. Overall, circular–circular regression with

training periods of 28 days or more performs the best.

On average, it reduces the circular absolute error by

28 or 38, as compared to the raw forecast. In the sub-

sequent ensemble postprocessing experiments, we thus

use circular–circular regression to bias-correct the UWME

member forecasts, where the regression parameters in (2)

are fit on a member- and location-specific 28-day sliding

training period.

c. Bayesian model averaging

With an effective bias-correction technique now at hand,

we proceed to discuss ensemble postprocessing tech-

niques for wind direction. All results below are based

on the same 28-day sliding training period that we use

for bias-correction via circular–circular regression, and

are insensitive to changes in the length of the training

period. We compare the various methods using the mean

circular continuous ranked probability score. Further-

more, we reduce the forecast distributions to the cor-

responding circular medians, and compute the mean

circular absolute error for these single-valued forecasts.

Specifically, Table 4 shows the verification statistics for

the discrete UWME (raw) and UWME (bias-corrected)

forecast distributions, with the bias correction using

circular–circular regression, the BMA and BMA1 fore-

casts (based on the bias-corrected UWME), and the two

reference forecasts introduced and described in section 2a,

namely climatology and MEC, where the latter is also

based on the bias-corrected UWME. The results are

averaged over calendar year 2003 and the 54 stations

we consider. Bias-correction via circular–circular re-

gression yields a reduction of the circular absolute error

for the ensemble median forecast of 38 to 48 on average.

As expected, ensemble calibration does not result in any

further reduction of the circular absolute error, because

MEC, BMA, and BMA1 address calibration errors only.

However, the latter methods result in a much decreased

mean circular continuous ranked probability score, with

BMA1 performing the best, while BMA is a close com-

petitor. Indeed, the BMA and BMA1 forecast distribu-

tions are sharper than those for MEC or climatology, and

they are calibrated, because the corresponding mean

sharpness measure (9) equals roughly the mean circular

continuous ranked probability score.

TABLE 3. Mean circular absolute error for raw and bias-corrected 48-h forecasts of wind direction (8) over the Pacific Northwest. The

results are averaged over the eight UWME member forecasts, the calendar year 2003, and the 54 stations we consider, for sliding training

periods of length 7, 14, 21, 28, 35, and 42 days, using local data at the given station only.

Training period 7 days 14 days 21 days 28 days 35 days 42 days

UWME (raw) 45.14 45.14 45.14 45.14 45.14 45.14

Mean-angle correction 46.62 44.60 43.76 43.36 43.18 43.21

Median-angle correction 47.10 44.58 43.63 43.18 43.02 43.08

Circular–circular regression 49.42 45.37 43.60 42.88 42.69 42.80

TABLE 4. Mean circular absolute error, mean circular continuous

ranked probability score, and the mean sharpness measure (9) for

48-h forecasts of wind direction (8) over the Pacific Northwest, in

degrees. The results are averaged over the calendar year 2003 and

the 54 stations we consider. A 28-day sliding training period is

applied, using local data at the given station only.

AEcirc CRPScirc Sharpness

Climatology 56.9 35.9 32.0

UWME (raw) 42.8 35.0 11.7

UWME (bias-corrected) 39.3 31.2 10.5

MEC 39.3 28.8 27.5

BMA 39.4 27.8 26.5

BMA1 39.3 27.6 26.6
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If the forecasts are stratified by verifying wind speeds

(results not shown), we see differing error characteristics,

in that the mean circular absolute error and the mean

circular continuous ranked probability score are lower at

the stronger winds when the wind direction observations

tend to be more stable. However, the relative ranking of

the forecast methods remains unchanged from that in

Table 4.

When averaged over calendar year 2003 and the 54

stations, the mean BMA and BMA1 weights for the

UWME members show little difference. For BMA, the

smallest mean weight is 0.122 and the highest is 0.129;

for BMA1 the corresponding range is from 0.108 to

0.116, with the uniform component contributing a weight

of 0.108 on average. The individual weight estimates are

quite stable, with a median absolute change in a weight

from one training period to the next of 0.002.

Turning now to results at individual stations, Fig. 3

shows the Pacific Northwest domain for the UWME

system, along with the locations of the 54 SAO stations

considered in this study. The color at each station loca-

tion indicates what forecast method had the lowest mean

circular continuous ranked probability score in calendar

year 2003. At 46 of these stations the BMA1 method

performed best, and at six stations the BMA forecasts

showed the lowest score. MEC and climatology per-

formed best at one station each.

4. Discussion

We have shown how to perform bias correction and

ensemble calibration for wind direction, which is an an-

gular variable. For bias correction, we use the state of

the art circular–circular regression approach of Downs

and Mardia (2002) and Kato et al. (2008), which employs

a Möbius transformation to regress the verifying wind

direction on the model wind direction. A possible exten-

sion is via the regression model of Lund (1999), which

allows for additional linear predictor variables, such as the

model wind speed. To estimate the regression parame-

ters, we use a minimum circular absolute error criterion.

Bayesian estimation methods, such as those proposed

by George and Ghosh (2006) and Bhattacharya and

Sengupta (2009), offer attractive alternatives.

For ensemble calibration, our preferred choice is the

BMA1 technique, which applies Bayesian model aver-

aging, where the von Mises components are centered on

the bias-corrected ensemble member forecasts. When

compared to the standard BMA approach, the BMA1

specification uses an additional uniform component,

which can protect against gross forecast errors. A po-

tential extension might replace the uniform component

by a seasonally adaptive climatological component, which

could be estimated from multiyear records of wind ob-

servations. In the semiparametric Bayes framework of

Bhattacharya and Sengupta (2009), data-driven decisions

regarding the equality of the concentration parameters

for the von Mises components could be implemented in

Dirichlet process settings.

Our methods have been developed for the UWME

system (Grimit and Mass 2002; Eckel and Mass 2005),

which has eight individually distinguishable members.

They can easily be adapted to accommodate situations

in which the ensemble member forecasts are exchange-

able (i.e., statistically indistinguishable), as in most bred,

singular vector or ensemble Kalman filter systems (Buizza

et al. 2005; Torn and Hakim 2008). In these cases, the

circular–circular regression approach to bias correction

continues to apply, but the regression (2) uses a single set

of parameters across ensemble members. Similarly, the

BMA or BMA1 weights for the von Mises components

in (3) and (7) need to be constrained to be equal. These

modifications result in physically principled bias cor-

rection and BMA specifications, while simplifying the

postprocessing. Similar adaptations allow for bias cor-

rection and ensemble calibration in multimodel systems

with groups of exchangeable and/or missing members, in

ways analogous to those described by Fraley et al. (2010)

FIG. 3. Pacific Northwest domain for the UWME system, with

the locations of the SAO stations considered in this study. The

color at each station location indicates which of the forecast

methods in Table 4 performed best in terms of mean CRPScirc over

calendar year 2003: green stands for BMA1, blue for BMA, purple

for MEC, and red for climatology. The station at Castlegar Airport,

BC, is marked by an arrow.
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for linear variables. For example, The Observing System

Research and Predictability Experiment (THORPEX)

Interactive Grand Global Ensemble (TIGGE) system

comprises ten groups, with 11 to 51 members each, which

typically are exchangeable (Park et al. 2008; Bougeault

et al. 2010), and thus will share common bias correction

parameters as well as common BMA or BMA1 weights.

Our work should not be viewed as an endorsement of

vector wind calibration techniques in which wind speed

and wind direction are treated independently. Rather,

vector wind postprocessing ought to proceed jointly on

the zonal and meridional wind components. In this light,

new work is underway, in which we develop bias cor-

rection and Bayesian model averaging techniques for

vector wind. If the focus is on wind direction by itself, it

remains to be determined whether or not vector wind

postprocessing with a subsequent reduction to the di-

rectional part, is preferable to direct postprocessing of

the wind direction forecasts, as proposed and studied in

this paper, or separate postprocessing of the zonal and

meridional components and a subsequent reduction to

wind direction. Future work is called for in which these

approaches are to be compared and an authoritative rec-

ommendation for an operational implementation be made.
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APPENDIX

Details for the EM Algorithm

Before discussing the details of our EM implementa-

tion, we review maximum likelihood (ML) estimation

for the concentration parameter of a von Mises pop-

ulation. Suppose that we have a sample, y1, . . . , yn, from

von Mises distributions with known mean directions,

m1, . . . , mn, and unknown common concentration pa-

rameter, k. The corresponding log-likelihood function is

�n logI
0
(k)1 k �

n

k51
cos(y

k
� m

k
), (A1)

up to an additive constant. Therefore, the ML estimate

for k equals the unique root, k̂, of the equation

I9
0
(k)

I
0
(k)

5 C where C 5
1

n
�

n

k51
cos(y

k
� m

k
). (A2)

This equation can be solved numerically or using the

tables in Mardia (1972). Furthermore, there are accurate

analytic approximations, in that

k̂
.

5
n 1 2

2n(1� C)
(A3)

if C is small, and

1

k̂

.
5 2(1� C) 1

1

C
(1� C)2

3(0.48794� 0.82905C � 1.3915C
2
) (A4)

if C is large, by Eqs. (2.8) and (2.10) of Lenth (1981),

where the symbol ¼: denotes an approximate equality.

Turning now to the EM algorithm for estimating the

BMA model (3) of section 2c, the M step requires an

updated estimate k(l11) of the common concentration

parameter. The update is obtained by optimizing the

expected complete-data log likelihood given the latent

variables; that is, by maximizing

�
n

k51
�
m

j51
z

(l11)
jk logg(y

k
j f

jk
, k) (A5)

over k $ 0, where g(� j fjk, k) is a von Mises density with

mean fjk and concentration parameter k. It is easily seen

that (A5) takes essentially the same form as the log-

likelihood function (A1), and thus we can apply the above

methods and approximations. Specifically, putting now

C 5
1

n
�

n

k51
�
m

j51
z

(l11)
jk cos(y

k
� f

jk
),

we find k(l11) 5 k̂ from the approximation (A3) if C # 0.1,

and from the approximation (A4) if C $ 0.9. Otherwise

we solve (A2) numerically.
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