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ABSTRACT
Background Every 2 years, the Joint United Nations
Programme on HIV/AIDS (UNAIDS) produces
probabilistic estimates and projections of HIV
prevalence rates for countries with generalised HIV/AIDS
epidemics. To do this they use a simple epidemiological
model and data from antenatal clinics and household
surveys. The estimates are made using the Bayesian
melding method, implemented by the incremental
mixture importance sampling technique. This
methodology is referred to as the ‘estimation and
projection package (EPP) model’. This has worked well
for estimating and projecting prevalence in most
countries. However, there has recently been an ‘uptick’
in prevalence in Uganda after a long sustained decline,
which the EPP model does not predict.
Methods To address this problem, a modification of the
EPP model, called the ‘r stochastic model’ is proposed,
in which the infection rate is allowed to vary randomly
in time and is applied to the entire non-infected
population.
Results The resulting method yielded similar estimates
of past prevalence to the EPP model for four countries
and also similar median (‘best’) projections, but produced
prediction intervals whose widths increased over time
and that allowed for the possibility of an uptick after
a decline. This seems more realistic given the recent
Ugandan experience.

Every 2 years, the Joint United Nations Programme
on HIV/AIDS (UNAIDS) publishes updated esti-
mates and projections of the number of people
living with HIV/AIDS in the countries with
generalised epidemics. Generalised epidemics are
defined by the overall prevalence being above 1%,
and the epidemic not being confined to particular
subgroups; there are approximately 38 such coun-
tries.1 The quality of the data available varies
widely from country to country. As a result,
UNAIDS bases its estimates on a relatively simple
method that can be supported by the data in all the
countries, and so can give estimates that are
comparable between countries. This is based on
a simple standard epidemiological model with four
adjustable parameters. The data used consist of the
proportions of clients of antenatal clinics (ANC)
that test positive for HIV in successive years. In
some countries these are supplemented by the
proportions testing positive for HIV in a nationally
representative household survey at one or two time
points.
As part of this, statements of uncertainty are also

provided. The uncertainty analysis is done using
a Bayesian melding method that combines the

epidemiological model with a hierarchical random
effects model for sampling the variability of the
data.2 3 This method was incorporated into the
estimation and projection package (EPP) produced
by UNAIDS and available for download from
http://www.unaids.org. This is used by the
UNAIDS Secretariat and also by national officials
producing their own estimates and projections. It
was used to produce the 2007 update of the
UNAIDS estimates and projections.4 5

For most countries, out-of-sample predictive
assessments of the type described by Alkema et al2

indicated that the 5-year probabilistic projections
produced by the method agreed well with the
actual observations. However, the method has had
some difficulty in predicting recent data in Uganda,
where the epidemic had been declining for a long
time. Prevalence increased again in 2006, but the
EPP model effectively excludes the possibility of an
‘uptick’ or even a stall in prevalence after
a sustained decline.
Here we propose a modification of the EPP model

to address this issue. Upticks or stalls in prevalence
may be due to changes in the rate of infection,
while the infection rate parameter in the EPP
model, r, is assumed to be constant over time. We
modified the model by allowing the infection rate
parameter to vary stochastically over time; we refer
to this as the r stochastic model. We applied the
new model to the data from Uganda, and show
that when used to generate predictions for the
period 2003e7 based on data up to 2002, it does
allow for the possibility of an uptick in prevalence
after 2002, unlike the EPP model.
The article is organised as follows. In the

Methods section we review the EPP model, describe
the new r stochastic model, and outline the
Bayesian estimation method we use. In the Results
section, we give the results for Uganda, and also for
Kenya, Rwanda and Gabon.

METHODS
The estimation and projection package
The EPP model uses a simple susceptiblee
infectederemoved epidemiological model that
incorporates population change over time by fitting
the four adjustable input parameters r, t0, f0, and 4,
where r is the rate of infection, t0 is the start year of
the epidemic, f0 is the initial fraction of the adult
population at risk of infection, and 4 is a behaviour
change parameter. The output r is a sequence of
yearly HIV prevalence rates.
The EPP model divides the population at time t

into three groups: a not-at-risk group, X(t), an at-
risk group, Z(t) and an infected group, Y(t). The
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model assumes a constant non-AIDS mortality rate m and
a constant fertility rate, and does not represent migration or age
structure. The rates at which the sizes of the groups change are
described by three differential equations:

dXðtÞ
dt ¼

�
1� f

�
XðtÞ
NðtÞ; f0;f

��
EðtÞ � mXðtÞ;

dZðtÞ
dt ¼ f

�
XðtÞ
NðtÞ; f0;f

�
EðtÞ �

�
m þ rYðtÞNðtÞ þ lðtÞ

�
ZðtÞ;

dYðtÞ
dt ¼

�
rYðtÞNðtÞ þ lðtÞ

�
ZðtÞ � R t

0

�
rYðsÞNðsÞ þ lðsÞ

�
ZðsÞgðt� sÞds;

(1)

where N(t)¼X(t)+Z(t)+Y(t) is the total population, and g(s) is
the HIV death rate s years after infection.

Survival after infection is assumed to have a Weibull (2.4,
12.8) distribution, which implies that the median survival time
is 11 years.6 In the start year t0 of the epidemic, a fraction l(t0)¼
0.1% of the at-risk group Z moves to the infected group Y. The
population being modelled is aged over 15 years. The number of
new members at time t, E(t), depends on the population size
15 years ago, the birth rate and the survival rate from birth to
age 15 years. When individuals survive to age 15 years, they are
assigned to either the not-at-risk group, X(t), or the at-risk
group, Z(t). The fraction of the new 15-year-old members
entering the at-risk group, Z(t), is f ðXðtÞNðtÞ; f0;fÞ. The incidence at
time t is defined as dYðtÞ

XðtÞþZðtÞ.
The Bayesian melding approach7 was applied to the EPP

model by Alkema et al.2 It proceeds as follows. A prior distri-
bution is specified for q¼(r, t0, f0, 4). The UNAIDS reference
group on estimates, modelling and projections agreed on
a default prior distribution, but users can specify their own. The
observed ANC and national population-based survey data give
the likelihood L(r) for the model output, using a hierarchical
random effects model. A prior on the model output r can also be
specified; in the current software this is restricted to being
uniform between specified bounds for specific years.

In the 2007 version of the EPP software, the Bayesian melding
procedure computed the posterior distributions using the
samplingeimportanceeresampling algorithm of Rubin,8 9 with
the prior distribution as importance sampling distribution.
Raftery and Bao10 proposed a more efficient sampling strategy
called incremental mixture importance sampling (IMIS), which
was implemented in the 2009 version of the EPP software.11 It is
generic, relatively simple to implement and explain, and works
well for countries for which the samplingeimportanceeresam-
pling algorithm is inefficient.

The r stochastic model
The EPP model has worked well for estimating and projecting
HIV prevalence in most countries. However, prevalence in
Uganda has recently gone back up after a long decline, and the
EPP model cannot represent this. Also, its probabilistic
projections for other countries that have had a sustained
decline essentially exclude the possibility of an uptick or even
a stall, which seems unrealistic given the recent experience in
Uganda.

To allow the EPP model to represent an uptick in prevalence
after a sustained decline, as was observed in Uganda, we propose
a modification called the r stochastic model, which allows the
rate of infection to vary in time. It also drops the distinction
between individuals at risk and those not at risk of infection,
treating all HIV-negative persons as being at risk. It thus divides
the population at time t into two groups rather than three:
a non-infected group, Z(t), and an infected group, Y(t). The rates
at which the sizes of the groups change are described by two
differential equations:

dZðtÞ
dt ¼ EðtÞ �

�
m þ rYðtÞNðtÞ þ lðtÞ

�
ZðtÞ;

dYðtÞ
dt ¼

�
rYðtÞNðtÞ þ lðtÞ

�
ZðtÞ � R t

0

�
rYðsÞNðsÞ þ lðsÞ

�
ZðsÞgðt� sÞds;

(2)

where N(t)¼Z(t)+Y(t) is the total population.
The infection rate, r(t), is the average number of persons

infected by one HIV-positive person in year t. We model r(t) as
a random walk on the log scale, as follows. We model the first
differences of the log r(t) process as independent and identically
distributed normal random variables with mean zero and SD s:
Δ(t)¼log r(t)�log r(t�1)wN(0, s2). All the other parameters are
defined in the same way as in the standard EPP model. The
incidence is defined as dYðtÞ

ZðtÞ . For the projection period, we
continue the random walk of log r(t) by drawing Δ(t) from N (0,
s2) for each posterior sample.

Estimation
We carry out Bayesian estimation of the input parameters t0, s2

and r(t) with the following prior distributions:

t0 w Unif ½1970;1971;.;1990�;
logrðt0Þ w Unif ½logð0:1Þ; logð10Þ�;
1=d2 w Gamma

�n0
2
;
n0b
2

�
;

(3)

We chose n0¼20 and b¼0.005, so that the prior SD, s, has
median 0.072, 2.5th percentile 0.054 and 97.5th percentile 0.102.
This is wide enough to accommodate the observed changes in all
the countries we have considered. To implement the Bayesian
estimation, we use the IMIS algorithm of Raftery and Bao.10

To apply IMIS to the r stochastic model, we need to modify it.
This is because IMIS is designed for continuous parameters, and
the start year t0 of the epidemic is a discrete parameter, as it can
take only integer values. To deal with this, for each value of t0
(1970, 1971. 1990), we created a sample from the posterior
distribution of the other parameters using IMIS, which can be
done because the other parameters are continuous. For each fixed
t0, we chose N0¼10 000 initial samples, B¼1000 new samples at
each iteration, and J¼1000 resampled values.
To improve sampling efficiency, we used the IMIS-opt version

of the IMIS algorithm with a single optimiser inserted after the
initial stage. We further improved efficiency by integrating out
s2 analytically, so that it is not included in the sampling algo-
rithm. When this is done, the joint prior distribution of the Δ(t)
values is a multivariate t distribution with n0 degrees of freedom,
mean vector 0, and matrix parameter bI.
The posterior samples under different t0 values are then

combined as follows. For each t0 a subsample of the posterior
sample is drawn, with a sample size proportional to the poste-
rior probability of t0. This is in turn proportional to the inte-
grated likelihood

PðDjt0Þ ¼
Z

PðDjq; t0ÞpðqÞdq;

where D denotes the data, q denotes all the parameters except t0,
p(D|q) is the likelihood function defined by Alkema et al,2 and p
(q) is the prior density of q. IMIS yields a simple estimator of the
integrated likelihood.10

RESULTS
HIV prevalence estimation and projection based on ANC data
UNAIDS provides 5-year projections of prevalence, and figure 1
shows the estimates and projections from the EPP model and the
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r stochastic model up to 2015 for illustrative data for the urban
areas of Uganda, Kenya, Rwanda and Gabon. These countries are
at different stages of the epidemic and have very different
amounts of data. Note that the results are based on illustrative
HIV prevalence data from ANC in these countries, which may
not be complete or accurate. These results should therefore also

not be seen as replacing or competing with official estimates as
regularly published by countries and UNAIDS. This is HIV
prevalence data from ANC but for all urban areas.
For Uganda, ANC data on HIV prevalence were first collected

in 1989. Prevalence peaked around that time and then declined
steadily through the 1990s, and then stabilised before increasing

Figure 1 Estimation and projection:
(A) Uganda estimation and projection
package (EPP) prevalence; (B) Uganda r
stochastic prevalence; (C) Kenya EPP
prevalence; (D) Kenya r stochastic
prevalence; (E) Rwanda EPP prevalence;
(F) Rwanda r stochastic prevalence; (G)
Gabon EPP prevalence; (H) Gabon r
stochastic prevalence. The black solid
line is the posterior median, the grey
and black dashed lines show the 95%
and 80% posterior intervals,
respectively.
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again in 2006. The EPP model cannot capture the uptick in 2006,
but the r stochastic model does allow for this possibility.

In Kenya, prevalence peaked in the mid-1990s, and since then
has been declining. The EPP model projects that the epidemic
will disappear by 2015 with near certainty, which seems overly
optimistic, particularly in light of the Ugandan experience. The r

stochastic model gives similar estimates to the EPP model, but
its probabilistic projection allows for the possibility of stabili-
sation or even an uptick by 2015, which seems more realistic.
For Rwanda, the probabilistic projection from the EPP model

implies that there will be neither a further decline nor an
increase before 2015. The r stochastic model gives similar

Figure 2 Out-of-sample projection: (A)
Uganda estimation and projection
package (EPP) prevalence; (B) Uganda r
stochastic prevalence; (C) Kenya EPP
prevalence; (D) Kenya r stochastic
prevalence; (E) Rwanda EPP prevalence;
(F) Rwanda r stochastic prevalence; (E)
Gabon EPP prevalence; (F) Gabon r
stochastic prevalence. The data to the
right of the vertical line are used only to
validate the projection but not for
estimating the model parameters. The
black solid line is the posterior median,
the grey and black dashed lines show
the 95% and 80% posterior intervals,
respectively.
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estimates to the EPP model for 1990e2007, but its probabilistic
projection interval is wider and increases with time, allowing for
either a continued modest decline or an uptick.

Gabon is an example of a country with few ANC data, but
where the EPP model works well nevertheless. The r stochastic
model gives similar results to the EPP model, with a slightly
wider prediction interval for 2015. This reflects the fact that it
allows for the possibility of an uptick, unlike the EPP model.
This indicates that the r stochastic model can work well in spite
of the fact that it makes fewer assumptions than the EPP model,
even when prevalence data are sparse.

Out-of-sample projection results
To assess the predictions of the EPP and r stochastic models, we
removed the last 5 years of data, re-estimated the models, and
compared their projections with what was subsequently
observed. We did this for Uganda, Kenya, Rwanda and Gabon.
The results are shown in figure 2.

For Uganda, the probabilistic projection intervals from the
EPP model clearly missed the increase in prevalence in 2006. The

posterior median projection from the r stochastic model did
decline after 2002, as for the EPP model, but it produced
prediction intervals whose widths increased over time and that
did encompass the observed prevalence increase.
For Kenya, the EPP model projected a flat trend and excluded

a substantial decline by 2007, although a decline did occur (see
figure 1). The r stochastic model projected a decline of the kind
that actually occurred (compare figure 2(D) with figures 1C, D).
More importantly, the r stochastic model captured the uncer-
tainty in the projection more fully, allowing for the possibility of
either a decline (which did happen) or an uptick (which did not
happen in Kenya but did in Uganda).
For Rwanda, the out-of-sample projections from the two

models are similar, although the intervals from the r stochastic
model are wider. Both capture the subsequent outcomes fairly
well.
For Gabon, the out-of-sample projection is based on very few

data points up to 2002. Both the EPP model and the r stochastic
model missed projecting the downturn in prevalence from 2003
to 2007. The projections for Gabon from 2007 based on all the

Figure 3 Results from the estimation
and projection package (EPP) and r
stochastic models calibrated by
population-based surveys: (A) Uganda
EPP prevalence; (B) Uganda r stochastic
prevalence; (C) Kenya EPP prevalence;
(D) Kenya r stochastic prevalence; (E)
Rwanda EPP prevalence; (F) Rwanda r
stochastic prevalence. The red dots are
estimated from the population-based
surveys. The black solid line is the
posterior median, the grey and black
dashed lines show the 95% and 80%
posterior intervals, respectively.
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available data are similar for EPP and the r stochastic model, and
both seem reasonable. This suggests that caution should be
exercised in making projections based on very sparse past data.

Results calibrated to national population-based surveys
The results we have shown so far are based only on the ANC
data, which tend to be biased upwards. Several of the countries
with generalised HIV/AIDS epidemics have also had nationally
representative household-based demographic and health surveys
that have included HIV tests and so provide roughly unbiased
estimates of HIV prevalence.

Alkema et al3 have developed a method for probabilistic esti-
mation and projection of the epidemic that takes account of
both the national population-based survey and the ANC data;
this is now incorporated in the EPP software. Essentially, trends
are based on the ANC data, but estimates are adjusted to match
the national population-based survey results, taken to be unbi-
ased. The national population-based survey estimates are also
more precise than the ANC estimates, ie, they tend to have
a lower variance, and so incorporating the national population-
based survey data reduces both bias and uncertainty.

Calibrated estimates and projections of prevalence from the
EPP and r stochastic models for the three countries with national
population-based surveys are shown in figure 3.

Estimating incidence
Incidence at time t, I(t), can be estimated from the calibrated
prevalence estimates using the following equations:

Yðt þ 1Þ ¼ YðtÞ þ IðtÞ � +
t

s¼ t0

IðsÞgðt� sÞ (4)

Nðt þ 1Þ ¼ NðtÞ þ bl15½Nðt� 15Þ �Yðt� 15Þ
þð1� vÞ3Yðt� 15Þ�
�ð1� e�mÞ½Nðt� 15Þ �Yðt� 15Þ�
� +

t

s¼ t0

IðsÞgðt� sÞ
(5)

In equation (5), b is the country-specific birth rate, ll5 is the
survival rate from birth to age 15 years, and m is the non-AIDS
death rate. The parameters n and 3 represent the transmission

Figure 4 Estimates of HIV incidence
from the estimation and projection
package (EPP) and r stochastic models
calibrated by population-based surveys:
(A) Uganda EPP incidence; (B) Uganda r
stochastic incidence; (C) Kenya EPP
incidence; (D) Kenya r stochastic
incidence; (E) Rwanda EPP incidence;
(F) Rwanda r stochastic incidence. The
vertical line indicates the end year of
observed antenatal clinic data. The
black solid line is the posterior median,
the grey and black dashed lines show
the 95% and 80% posterior intervals,
respectively.
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of HIV from mother to child and the HIV-related fertility
reduction, respectively. We define I(t)¼0 for t<t0 and N(t0)¼
1000. Given the calibrated HIV prevalence r(t)¼Y(t)/N(t), we
calculate N(t) and I(t) sequentially from t0 to the end of the
projection period.

The estimated incidence for the three countries with national
population-based surveys from both models is shown in figure 4.
For all three countries, the projection intervals for future inci-
dence from the r stochastic model are much wider than those
from the EPP model.

DISCUSSION
The current EPP model has had some difficulty in projecting
HIV prevalence in countries that have had a substantial decline.
In particular, in Uganda prevalence has gone up again after
a long decline, and the EPP model cannot represent this. For
other countries that have had declines, EPP projects a continuing
decline, with essentially no probability assigned to an uptick,
which seems unrealistic in light of Uganda’s experience. To
address this issue, EPP 2009 has the 4-shift feature, which
handles upticks in prevalence, but for which the theoretical
framework is not well developed and for which the performance
with different datasets has not been rigorously investigated.11

In this article, we have proposed the r stochastic model in
which the rate of infection is allowed to vary randomly over
time, and is applied to the entire non-infected population; the
separate at-risk category in the EPP model is removed. For esti-
mation of past prevalence this gives similar results to EPP, and it
also gives similar median (‘best’) projections. However, it yields
prediction intervals whose widths increase with time into the
future, and that allow for the possibility of upticks in prevalence
after a decline. This seems realistic, especially in view of the
recent experience of Uganda. It also allows the incorporation of
national population-based surveys, similarly to the EPP model.

To estimate the model we have used Bayesian melding
implemented with the IMIS method. IMIS has been applied
with success to the four-parameter EPP model and also to
Heuveline’s age-specific demographic model for HIV/AIDS,
which has approximately 30 parameters.12 In our experience, the
computing time needed to estimate the r stochastic model with
a fixed t0 is similar to that needed to run the EPP model.

As implemented in this article, the method takes no specific
account of future antiretroviral therapy use. The EPP model does

allow one to take account of future antiretroviral therapy use,
using assumptions specified by the user. This could be incorpo-
rated in the r stochastic model in a similar way.

Acknowledgements The authors are grateful to Tim Brown, Dan Hogan, Peter
Ghys, John Stover and Joshua Salomon for helpful discussions and for sharing data,
and to the Editor and two referees for helpful comments.

Funding This research was supported by NICHD grant HD054511.

Competing interests None.

Contributors AER proposed the original idea of the r stochastic model. LB modified
and implemented the model. The two authors contributed equally to drafting the
paper. They also serve as members of the UNAIDS Reference Group on HIV Estimates,
Modelling and Projections, which advises UNAIDS on the techniques to be used in EPP
and Spectrum.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Ghys PD, Brown T, Grassly NC, et al. The UNAIDS estimation and projection

package: a software package to estimate and project national HIV epidemics. Sex
Transm Infect 2004;80:i5e9.

2. Alkema L, Raftery AE, Clark SJ. Probabilistic projections of HIV prevalence using
Bayesian melding. Ann Appl Stat 2007;1:229e48.

3. Alkema L, Raftery AE, Brown T. Bayesian melding for estimating uncertainty in
national HIV prevalence estimates. Sex Transm Infect 2008;84:i11e16.

4. UNAIDS & WHO (2007). AIDS epidemic update: December 2007. UNAIDS, Geneva
2007. UNAIDS/07.27E/JC1322E. ISBN: 97892 9176218.

5. Ghys PD, Walker N, McFarland W, et al. Improved data, methods and tools for
the 2007 HIV and AIDS estimates and projections. Sex Transm Infect 2008;84:i1e4.

6. Stover J, Johnson P, Zaba B, et al. The Spectrum projection package: improvements
in estimating mortality, ART needs, PMTCT impact and uncertainty bounds. Sex
Transm Infect 2008;84:i24e30.

7. Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian
melding approach. J Am Stat Assoc 2000;95:1244e55.

8. Rubin DB. The calculation of posterior distributions by data augmentation.
Comment: A noniterative sampling/importance resampling alternative to the data
augmentation algorithm for creating a few imputations when fractions of
missing information are modest: The SIR algorithm. J Am Stat Assoc
1987;82:543e6.

9. Rubin DB. Using the SIR algorithm to simulate posterior distributions. In: Bernardo
MH, Degroot KM, Lindley DV, et al, eds. Bayesian statistics 3. Oxford: Oxford
University Press, 1988.

10. Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized
epidemics using incremental mixture importance sampling. Biometrics 2010.
Published Online First: 2 March 2010. doi:10.1111/j.1541e0420.2010.01399.x.

11. Brown T, Bao L, Raftery AE, et al. Modeling HIV epidemics in the antiretroviral era:
the UNAIDS estimation and projection package 2009. Sex Transm Infect 2010;86
(Suppl 2):ii3eii10.

12. Clark SJ, Thomas JR, Bao L. Probabilistic projections of HIV prevalence: a Bayesian
melding approach. Working paper 105. Seattle, Washington: Center for Statistics
and the Social Sciences: University of Washington, 2010.

Sex Transm Infect 2010;86(Suppl 2):ii93eii99. doi:10.1136/sti.2010.044529 ii99

Supplement

 group.bmj.com on May 24, 2011 - Published by sti.bmj.comDownloaded from 

http://sti.bmj.com/
http://group.bmj.com/


doi: 10.1136/sti.2010.044529
 2010 86: ii93-ii99Sex Transm Infect

 
Le Bao and Adrian E Raftery
 
prevalence rates
estimating and projecting national HIV 
A stochastic infection rate model for

 http://sti.bmj.com/content/86/Suppl_2/ii93.full.html
Updated information and services can be found at: 

These include:

References

 http://sti.bmj.com/content/86/Suppl_2/ii93.full.html#related-urls
Article cited in: 
 

 http://sti.bmj.com/content/86/Suppl_2/ii93.full.html#ref-list-1
This article cites 8 articles, 5 of which can be accessed free at:

Open Access

http://creativecommons.org/licenses/by-nc/2.0/legalcode.
http://creativecommons.org/licenses/by-nc/2.0/ and 
compliance with the license. See:
work is properly cited, the use is non commercial and is otherwise in 
use, distribution, and reproduction in any medium, provided the original
Creative Commons Attribution Non-commercial License, which permits 
This is an open-access article distributed under the terms of the

service
Email alerting

the box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in

Notes

 http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

 http://journals.bmj.com/cgi/reprintform
To order reprints go to:

 http://group.bmj.com/subscribe/
To subscribe to BMJ go to:

 group.bmj.com on May 24, 2011 - Published by sti.bmj.comDownloaded from 

http://sti.bmj.com/content/86/Suppl_2/ii93.full.html
http://sti.bmj.com/content/86/Suppl_2/ii93.full.html#ref-list-1
http://sti.bmj.com/content/86/Suppl_2/ii93.full.html#related-urls
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://group.bmj.com/subscribe/
http://sti.bmj.com/
http://group.bmj.com/

