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ABSTRACT

Forecast ensembles typically show a spread–skill relationship, but they are also often underdispersive,
and therefore uncalibrated. Bayesian model averaging (BMA) is a statistical postprocessing method for
forecast ensembles that generates calibrated probabilistic forecast products for weather quantities at indi-
vidual sites. This paper introduces the spatial BMA technique, which combines BMA and the geostatistical
output perturbation (GOP) method, and extends BMA to generate calibrated probabilistic forecasts of
whole weather fields simultaneously, rather than just weather events at individual locations. At any site
individually, spatial BMA reduces to the original BMA technique. The spatial BMA method provides
statistical ensembles of weather field forecasts that take the spatial structure of observed fields into account
and honor the flow-dependent information contained in the dynamical ensemble. The members of the
spatial BMA ensemble are obtained by dressing the weather field forecasts from the dynamical ensemble
with simulated spatially correlated error fields, in proportions that correspond to the BMA weights for the
member models in the dynamical ensemble. Statistical ensembles of any size can be generated at minimal
computational cost. The spatial BMA technique was applied to 48-h forecasts of surface temperature over
the Pacific Northwest in 2004, using the University of Washington mesoscale ensemble. The spatial BMA
ensemble generally outperformed the BMA and GOP ensembles and showed much better verification
results than the raw ensemble, both at individual sites, for weather field forecasts, and for forecasts of
composite quantities, such as average temperature in National Weather Service forecast zones and mini-
mum temperature along the Interstate 90 Mountains to Sound Greenway.

1. Introduction

Ensemble prediction systems have been developed to
generate probabilistic forecasts of weather quantities
that address the two major sources of forecast uncer-
tainty in numerical weather prediction: uncertainty in
initial conditions, and uncertainty in model formula-
tion. Originally suggested by Epstein (1969) and Leith
(1974), ensemble forecasts have been operationally
implemented on the synoptic scale (Toth and Kalnay
1993; Houtekamer et al. 1996; Molteni et al. 1996) and
are under development on the mesoscale (Stensrud et
al. 1999; Wandishin et al. 2001; Grimit and Mass 2002;
Eckel and Mass 2005). In a wide range of applications,
probabilistic forecasts based on ensembles provide

higher economic and societal value than a single deter-
ministic forecast (Richardson 2000; Palmer 2002; Gnei-
ting and Raftery 2005).

While showing significant spread–error correlations,
ensemble forecasts are often biased and underdisper-
sive (Buizza 1997; Hamill and Colucci 1997; Grimit and
Mass 2002; Scherrer et al. 2004; Eckel and Mass 2005).
Hence, to realize the full potential of an ensemble fore-
cast it is necessary to apply some form of statistical
postprocessing, with the goal of generating probabilistic
forecasts that are calibrated and yet sharp. In the spirit
of the pioneering work of Glahn and Lowry (1972),
who introduced regression-type model output statistics
approaches to a meteorological audience, various sta-
tistically based ensemble postprocessing techniques
have been proposed. In this paper, we introduce a post-
processing technique that combines two of these meth-
ods, Bayesian model averaging (Raftery et al. 2005) and
the geostatistical output perturbation technique (Gel et
al. 2004a), to generate calibrated probabilistic forecasts
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of whole weather fields simultaneously, rather than just
weather quantities at individual locations.

Bayesian model averaging (BMA) is a statistical
technique originally developed for social and health sci-
ence applications in situations with several competing
statistical models (Hoeting et al. 1999). Raftery et al.
(2005) proposed the use of BMA to calibrate forecast
ensembles and generate predictive probability density
functions (PDFs) for future weather quantities. The
BMA predictive PDF is a weighted average of predic-
tive PDFs associated with each individual ensemble
member, with weights that reflect the member’s rela-
tive skill. However, each location in the forecast do-
main is considered individually, and spatial correlations
among errors are ignored.

The geostatistical output perturbation (GOP) method
dresses a single deterministic weather field forecast
with simulated error fields, to obtain statistical en-
sembles of weather fields that take spatial correlations
into account (Gel et al. 2004a). This resembles the per-
turbation approach in Houtekamer and Mitchell (1998,
2001), but in the GOP technique spatially correlated
perturbations are applied to the outputs of numerical
weather prediction models, rather than the inputs.

In essence, the BMA technique honors ensemble in-
formation but ignores spatial correlation. The GOP
method takes spatial dependencies into account, but
applies to a single deterministic forecast, rather than to
an ensemble of weather field forecasts, and fails to
honor the flow-dependent spread that derives from the
nonlinear evolution of the atmosphere and is charac-
teristic for dynamical ensembles.

Spatial BMA addresses these shortcomings by com-
bining the two techniques. As in the original BMA
technique, the spatial BMA predictive PDF is a
weighted average of forecast PDFs centered at bias-
corrected versions of the ensemble member models,
with weights that relate to each member’s performance.
However, in spatial BMA the forecast PDFs are mul-
tivariate densities with covariance structures designed
to honor the spatial structure of weather observations.
The spatial BMA technique can be used to generate
statistical ensembles of whole weather fields simulta-
neously, of any size, and at minimal computational cost.
At any location individually, spatial BMA reduces to
the original BMA technique.

The paper is organized as follows. In section 2, we
review the BMA and GOP methods and describe the
spatial BMA technique in detail. In section 3 we give an
example of spatial BMA forecasts of surface tempera-
ture over the North American Pacific Northwest, using
the University of Washington mesoscale ensemble

(Grimit and Mass 2002; Eckel and Mass 2005). Section
4 presents verification results for spatial BMA forecasts
in the calendar year 2004, focusing on spatial and com-
posite quantities. The paper ends with a discussion in
section 5, in which we compare the spatial BMA tech-
nique to the dressing approaches of Roulston and
Smith (2003) and Wang and Bishop (2005).

2. Methods

We now describe the BMA, GOP, and spatial BMA
techniques, and we explain our approach to parameter
estimation.

a. Bayesian model averaging

We consider an ensemble of K weather field fore-
casts. In our examples, this is the eight-member Uni-
versity of Washington mesoscale ensemble (UWME;
Eckel and Mass 2005), but BMA applies to all forecast
ensembles with physically distinguishable member
models, such as the poor person’s or multimodel en-
sembles. With small modifications, BMA also applies to
ensembles with exchangeable members, including bred
and singular-vector ensembles (Raftery et al. 2005).

We write y for the weather quantity of interest, and
f1, . . . , fK for the respective ensemble member fore-
casts. With each ensemble member, we associate a con-
ditional PDF, gk(y | f 0

k), which we interpret as the con-
ditional PDF of y given that member k is the best
among the ensemble member forecasts, as indicated by
the superscript. The BMA predictive PDF for the
weather quantity then is

p�y | f1, . . . , fk� � �
k�1

K

wkgk�y | f k
0�, �1�

where wk is the probability of ensemble member k be-
ing the best. In the implementation of Raftery et al.
(2005), which applies to forecasts of surface tempera-
ture and sea level pressure, the conditional PDFs are
univariate normal densities centered at a linearly bias-
corrected forecast. Hence, gk(y | f 0

k) is a univariate nor-
mal PDF with mean ak � bkfk and standard deviation
�0, assumed to be constant across ensemble members.
We denote this situation by

y | f k
0 � N �ak � bkfk, �0

2�. �2�

The BMA weights in (1) and the bias and variance
parameters in (2) are estimated from training data us-
ing a two-stage procedure. The bias parameters ak and
bk are estimated for each ensemble members separately
via linear least squares regression: they are the values
of ak and bk that minimize the residual sum of squares
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over the entire domain. As such, they are domain spe-
cific and do not vary with location. The BMA weights
w1, . . . , wk and the BMA variance �2

0 are estimated
simultaneously for all the K ensemble members using
the Expectation Maximization (EM) algorithm (Demp-
ster et al. 1977). The BMA weights reflect the relative
performance of the ensemble member models during
the training period; since they are probabilities, they
are nonnegative and their sum is equal to 1. The best
member interpretation is intuitively appealing, but it
should be noted that the model in (1) is also a mixture
model, where wk represents the weight of the kth mix-
ture component.

The BMA method as specified by (1) is implemented
in the ensembleBMA package for the R language
(Ihaka and Gentleman 1996), which is available online
at http://cran.r-project.org.

In its original formulation, BMA yields predictive
PDFs for one location at a time, and thus ignores cor-
relations between the errors in forecasts of the same
weather quantity at different locations. Typically, how-
ever, there are strong spatial correlations between
these errors. If we seek the predictive PDF of a spatially
aggregated quantity such as the average or minimum
temperature across a region, then the spatial correla-
tion is important. One way to proceed using BMA out-
put would be to obtain the predictive PDF assuming
that forecast errors at different locations are statisti-
cally independent, and thus uncorrelated. However,
this would give an erroneous predictive PDF for an
aggregated quantity if the spatial correlation was
strong, as it often is.

b. The geostatistical output perturbation technique

The GOP technique dresses a single deterministic
weather field forecast with Gaussian error fields that
are generated using geostatistical methods (Gel et al.
2004a). Here, the deterministic weather field forecast is
taken to be a member of the dynamical ensemble.

Specifically, let S denote a possibly large but finite set
of distinct model grid points or scattered observation
sites. If our intention is to produce postage stamp maps
of weather field forecasts, this set is the model grid. For
verification purposes, it is a collection of observation
locations, and the forecasts are bilinearly interpolated
from the model grid to the observation sites. We write

Y � {y�s�: s ∈ S}

for the weather field at the sites of interest, and Fk �
{ fk(s): s ∈ S} for the corresponding deterministic
weather field forecast. The GOP technique employs a
statistical model, which assumes that

Y |Fk � MVN �ak1 � bkFk, �k�, �3�

where 1 is the vector with all components equal to 1.
The right-hand side of (3) denotes a multivariate nor-
mal PDF centered at the bias-corrected member fore-
cast, ak1 � bkFk, with covariance matrix �k, whose en-
tries are specified in (4). Superficially, one might think
of (3) as a spatial version of (2), but the relationships
differ fundamentally: in (3), we consider Fk as a single
deterministic forecast without reference to any of the
other ensemble members; in (2), we consider fk(s) con-
ditionally on this member being the best among the
ensemble member forecasts. This latter assumption of
forecast k being the best generally implies a deflated
variance in (2), when compared to (3), as will be seen
below. For surface temperature and sea level pressure,
the use of a multivariate normal PDF seems reasonable
as an approximation, but this may not be true for other
weather variables, such as precipitation or wind speed.

From here on, we refer to the difference between the
observation and the bias-corrected forecast as the er-
ror. The covariance matrix in (3) describes the spatial
structure of the error field and needs to be estimated
from training data. Gel et al. (2004a) used a parametric,
stationary, and isotropic geostatistical model, which as-
sumes that the (i, j)th element of the covariance matrix
�k is

�k
2�ij � �k

2 exp��
||si � sj ||

rk
�, �4�

where ||si � sj || denotes the Euclidean distance between
the respective locations, si and sj, and 	ij equals 1 if si �
sj and is 0 otherwise. In geostatistical terminology, 
2

k is
called the nugget effect and represents the variance of
the measurement error as well as small-scale variability,

2

k � �2
k is known as the sill, and rk is called the range

and indicates the rate at which the spatial correlations
of the errors decay (Cressie 1993; Chilès and Delfiner
1999). In meteorological terminology, measurement er-
ror is often referred to as instrument error, and repre-
sentativeness errors correspond to small-scale variabil-
ity. Covariance structures that are more complex can be
accommodated, and we discuss some of the options in
section 5.

Note that (3) and (4) give a fully specified, multivari-
ate normal predictive PDF for the weather field Y. To
generate statistical ensembles from this PDF, we ex-
press (3) and (4) in the form of the stochastic represen-
tation

Y |Fk � ak1 � bkFk � E1k � E2k, �5�

where Fk is the deterministic weather field forecast, ak and
bk are scalar bias parameters, and E1k � {�1k(s): s ∈ S}
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and E2k � {�2k(s): s ∈ S} are independent random vec-
tors with mean zero, satisfying

cov
�1k�si�, �1k�sj�� � �k
2 exp��

||si � sj ||
rk

�,

and cov[�2k(si), �2k(sj)] � 
2
k	ij , respectively. In this rep-

resentation, E1k is a spatially correlated error field that
varies continuously with distance, and we refer to it as
the continuous component of the error field. In con-
trast, E2k is a noise vector that stands for instrument
and representativeness errors, and we refer to it as the
discontinuous component of the error field. Statistical
GOP ensembles of any size can be obtained by simu-
lating E1k and E2k from their respective multivariate
PDFs, and adding the simulated errors to the bias-
corrected forecast, as directed by (5). For the simula-
tions, we use the circulant embedding technique (Wood
and Chan 1994; Gneiting et al. 2006) as implemented in
the RandomFields package for the R language
(Schlather 2001). The GOP method is itself imple-
mented in the ProbForecastGOP package for the R
language. (All R packages are available online at http://
cran.r-project.org.)

c. Spatial BMA

We now show how to combine the BMA and GOP
methods into the spatial BMA technique. Again, we
consider a weather field Y � {Y(s): s ∈ S} at a possibly
large but finite collection S of locations, but now con-
ditionally on an ensemble,

F1 � { f1�s�: s ∈ S}, . . . , FK � { fK�s�: s ∈ S},

of K weather field forecasts simultaneously, rather than
just a single deterministic weather field forecast. The
spatial BMA predictive PDF for the weather field is

p�Y |F1, . . . , FK� � �
k�1

K

wkgk�Y |Fk
0�, �6�

where wk is the BMA weight, equal to the probability
that member k is the best among the ensemble member
forecasts, and gk(Y |F0

k) is the conditional PDF of Y
given that member k is the best, as indicated by the
superscript. In our implementation, the conditional
PDFs are multivariate normal densities centered at the
bias-corrected ensemble member forecast, ak1 � bkFk,
and having a spatially structured covariance matrix, �0

k .
By analogy to (2), we denote this situation by

Y |Fk
0 � MVN �ak1 � bkFk, �k

0�. �7�

In (7),

�k
0 �

�0
2

�k
2 � �k

2 �k , �8�

where �2
0 is the BMA variance in (2), �k is the spatially

structured GOP covariance matrix with entries speci-
fied in (4), and 
2

k and �2
k are the respective GOP co-

variance parameters. The quantity

�k �
�0

2

�k
2 � �k

2

is the ratio of the BMA variance to the GOP variance
for the errors, and we call it as the deflation factor for
member model k, where k � 1, . . . , K. Spatial BMA
generalizes both the original BMA method and the
GOP technique: it reduces to the former when the set S
consists of a single location only, and it reduces to the
latter for an ensemble of size K � 1, that is, a deter-
ministic weather field forecast.

Similarly to GOP, the spatial BMA Eqs. (6)–(8) give
a fully specified, multivariate predictive PDF for the
weather field. However, it is more practical to generate
a statistical ensemble of weather field forecasts, by sam-
pling from the spatial BMA predictive PDF. Condition-
ally on ensemble member k being the best, we can write
(7) as

Y |Fk
0 � ak1 � bkFk � E1k

0 � E2k
0 , �9�

where E0
1k and E0

2k denote the continuous and the dis-
continuous parts of the conditional error field, respec-
tively, with multivariate normal PDFs equal to those
described in section 2 for the unconditional counter-
parts, E1k and E2k, except that the covariance matrix is
rescaled by the deflation factor, �k.

The following algorithm generates a member of the
spatial BMA ensemble:

1) Sample a number k ∈ {1, . . . , K}, with probabilities
given by the BMA weights, w1, . . . , wK. This speci-
fies the member of the dynamical ensemble to be
dressed.

2) Simulate realizations of the continuous and discon-
tinuous parts, E0

1k and E0
2k, of the conditional error

field from the respective conditional PDFs.
3) Use the right-hand side of (9) to dress the bias-

corrected weather field forecast, ak1 � bkFk, with
the simulated conditional error fields, E0

1k and E0
2k .

Proceeding in this manner, we obtain spatial BMA
ensembles of weather field forecasts, of any desired
ensemble size, and at minimal computational cost.

d. Parameter estimation

The estimation of a spatial BMA model for an un-
derlying dynamical ensemble requires the fitting of a
BMA model as well as GOP models for the individual
ensemble members. This is done using prior observa-
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tions and ensemble forecasts for the same prediction
horizon and forecast cycle, with forecasts that are bi-
linearly interpolated from the model grid to the obser-
vation sites. We use a sliding training period consisting
of the recent past. In deciding how long this training
period should be, there is a trade-off: with a short train-
ing period the method adapts more quickly to changes
in the ensemble and in its component members as well
as seasonal changes. With a longer training period, on
the other hand, estimation tends to be less variable.
Raftery et al. (2005) showed that for 48-h BMA fore-
casts of surface temperature in the North American
Pacific Northwest there are substantial gains in increas-
ing the length of the training period to 25 days, but
there is little gain beyond. In the examples below, we
adopt this choice of a sliding 25-day training period.
Other weather variables, domains, and forecast lead
times may require different choices.

To fit the BMA models (1) and (2), we follow Raf-
tery et al. (2005) in estimating the bias parameters, ak

and bk, by linear least squares regression of the obser-
vations on the respective ensemble member forecast.
The BMA weights, wk, and the BMA variance, �2

0, are
estimated using the maximum likelihood technique in
the form of the EM algorithm (Dempster et al. 1977).
The estimate of the BMA variance �2

0 is then refined by
searching numerically for the value of �2

0 that mini-
mizes the continuous ranked probability score (CRPS;
Hersbach 2000; Gneiting et al. 2005; Wilks 2006, his
section 7.5.1) of BMA over the training data. This is
done keeping all the other BMA parameters fixed,
while searching over a range of values of �2

0 centered
around the maximum likelihood estimate given by the
EM algorithm.

It remains to fit the GOP models for the weather
field forecasts using member model k, where k � 1, . . . ,
K. Estimation of the spatial covariance parameters, 
2

k,
�2

k and rk in (4), is based on the fact that the GOP error
field, �k(s) � �1k(s) � �2k(s), satisfies

1
2

E 
�k�si� � �k�sj��
2 � �k

2 � �k
2�1 � exp��

||si � sj ||
�k

��,

where E denotes expectation. In geostatistical lan-
guage, the error field has variogram

�k�d� � �k
2 � �k

2�1 � e�d�rk�,

where d � ||si � sj || denotes the Euclidean distance
between two distinct observation sites, and �k(d) is one-
half the expected squared difference between errors at
stations that are distance d apart.

We now compute the sample version of the vari-

ogram, �̂k(d), using data from the sliding training pe-
riod, as follows:

1) Use the estimates of the bias-correction terms ak

and bk previously obtained by fitting a linear least
squares regression to the data from the 25-day train-
ing period.

2) For each day in the training period, find the empiri-
cal error field, by subtracting the bias-corrected
forecast field from the corresponding field of veri-
fying weather observations.

3) For each day in the training period, and for all pairs
of observation locations on that day, find the dis-
tance between the sites, and compute one-half the
squared difference between the errors.

4) Group the distances into bins Bl with midpoints dl.
5) Compute the empirical variogram value �̂k(dl) at

distance dl, by averaging the respective one-half
squared differences over the distance bin Bl.

With this, we apply the weighted least squares tech-
nique to estimate the GOP parameters. Specifically, if
nl denotes the total number of pairs of observation sites
whose distance falls into bin Bl, the weighted least
squares estimates of the covariance parameters 
2

k, �2
k

and rk are the values that minimize

S��k
2, �k

2, rk� � �
l

nl��̂k�xl� � 
�k
2 � �k

2�1 � e�dl �rk��

�k
2 � �k

2�1 � e�dl �rk�
�2

.

To solve this optimization problem, we use the quasi-
Newton and conjugate-gradient techniques described
by Byrd et al. (1995) and implemented in the R lan-
guage (Ihaka and Gentleman 1996).

Following the estimation of the spatial covariance
parameters for ensemble members k � 1, . . . , K, we
combine the GOP and BMA models into the spatial
BMA model, using (6)–(8). We do the estimation using
the previously mentioned R packages, ensembleBMA
and ProbForecastGOP.

3. Example

We now give an example of 48-h spatial BMA fore-
casts of surface temperature over the North American
Pacific Northwest, which includes Oregon, Washington,
southern British Columbia, and part of the northeast-
ern Pacific Ocean, using the UWME (Grimit and Mass
2002; Eckel and Mass 2005). In the 2004 version used
here, the UWME is an eight-member multianalysis en-
semble. The members use the fifth-generation Pennsyl-
vania State University–National Center for Atmo-
spheric Research (PSU–NCAR) Mesoscale Model
(MM5; Grell et al. 2004) driven by initial and lateral
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boundary conditions supplied by eight distinct global
models. Specifically; the AVN member uses initial and
lateral boundary conditions from the Global Forecast
System run by the National Centers for Environmental
Prediction (NCEP); the CMCG member is based on
the Global Environmental Multiscale model run by the
Canadian Meteorological Center; the Eta Model mem-
ber uses the limited-area mesoscale model run by
NCEP; the GASP member is based on the Global
Analysis and Prediction model run by the Australian
Bureau of Meteorology; the JMA member is based on
the Global Spectral Model run by the Japan Meteoro-
logical Agency; the NGPS member uses the Navy Op-
erational Global Atmospheric Prediction System run
by the Fleet Numerical Meteorology and Oceanogra-
phy Center; the TCWB member is based on the Global
Forecast System run by the Taiwan Central Weather
Bureau; and the UKMO member derives from the Uni-
fied Model run by the Met Office. Eckel and Mass
(2005) give a detailed description of UWME.

Our example is for 48-h forecasts of the surface (2 m)
temperature field over the North American Pacific
Northwest, initialized at 0000 UTC 14 February 2004.
To deal with nonstationarities in the error fields, we
divided the 12-km UWME forecast grid into two sub-

domains, land and ocean, and estimated separate spa-
tial BMA models for the two domains, using the afore-
mentioned 25-day sliding training period.

Table 1 shows estimates of the BMA variance, �2
0,

the BMA weights, wk, and the additive and multiplica-
tive bias, ak and bk, respectively, for the eight UWME
members. The BMA weights differed substantially be-
tween land and ocean. The member with the highest
BMA weight on land was the NGPS model, and the
CMCG model had the highest weight over the ocean.
The GASP and TCWB models performed poorly rela-
tive to the other members during the training period
and received negligible weights in both domains. The
two domains also differed in terms of the BMA vari-
ance, which was smaller over the Pacific Ocean, likely
because of a decrease in the representativeness error.

Table 2 shows estimates of the GOP covariance pa-
rameters, 
2

k, �2
k and rk, for the error fields, along with

estimates of the deflation factor, �k. The estimates of
the nugget effect, 
2

k, which subsumes instrument and
representativeness errors, were much larger on land
than over the Pacific Ocean. The estimates of �2

k were
generally somewhat larger on land than over ocean.
The range, rk, corresponds to the correlation length of
the continuous component of the error field, with spa-

TABLE 2. Estimates of spatial BMA covariance parameters and deflation factors for 48-h forecasts of surface temperature verifying
at 0000 UTC 16 Feb 2004, using UWME.

Member

Land Ocean


2
k (°C) 2 � 2

k (°C) 2 rk (km) �k 
2
k (°C) 2 � 2

k (°C) 2 rk (km) �k

AVN 2.26 6.30 129 0.91 1.08 5.87 258 0.75
CMCG 2.32 6.06 134 0.93 1.07 5.10 246 0.84
Eta 2.24 6.08 124 0.94 1.06 5.58 245 0.78
GASP 2.31 7.25 163 0.81 1.02 6.11 265 0.73
JMA 2.29 6.24 134 0.91 1.12 5.96 277 0.73
NGPS 2.20 5.37 105 1.03 1.05 5.16 245 0.84
TCWB 2.35 6.67 149 0.86 1.03 6.98 312 0.65
UKMO 2.29 6.39 141 0.90 0.98 5.29 211 0.83

TABLE 1. Estimates of BMA parameters for 48-h forecasts of surface temperature verifying at 0000 UTC 16 Feb 2004, using
UWME.

Member

Land Ocean

wk ak bk � 2
0 (°C)2 wk ak bk � 2

0 (°C) 2

AVN 0.11 0.93 0.90 7.78 0.03 1.13 0.87 5.20
CMCG 0.12 0.97 0.88 7.78 0.49 1.21 0.86 5.20
Eta 0.19 1.05 0.91 7.78 0.08 1.23 0.86 5.20
GASP 0.00 0.88 0.87 7.78 0.00 1.05 0.87 5.20
JMA 0.15 0.98 0.92 7.78 0.05 1.17 0.89 5.20
NGPS 0.27 1.04 0.90 7.78 0.15 1.18 0.87 5.20
TCWB 0.00 0.85 0.83 7.78 0.00 1.08 0.83 5.20
UKMO 0.16 0.97 0.88 7.78 0.20 1.14 0.86 5.20
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tial correlations decaying to about 0.05 at distance 3rk.
The estimates of the range were larger over the ocean
than on land, suggesting stronger correlations over wa-
ter.

The deflation factor �k reflects the skill of each en-
semble member, with the more accurate members re-
ceiving the higher estimates. Indeed, if a member
model generally performs well, then its unconditional
error variance will not be very different from its con-
ditional error variance given that it is the best among
the ensemble member forecasts, and its deflation factor
will be close to 1. Still, caution is needed in interpreting
estimates of deflation factors. For instance, the esti-
mated deflation factors in Table 2 were generally
higher on land than they were over the ocean, and the
land deflation factor for the NGPS model was larger
than 1, counter to intuition. These patterns can be ex-
plained by Fig. 1, which illustrates the estimation of the
GOP covariance parameters for the NGPS member on
land and the CMCG member over the ocean. Each
panel shows both the empirical variogram of the error
field, composited over the training period, and the fit-
ted exponential variogram. The intercept of the fitted
exponential variogram equals the estimate of the nug-
get effect, 
2

k, and corresponds to the variance of instru-
ment and representativeness errors. The horizontal as-
ymptote is at the estimated sill, 
2

k � �2
k, and equals the

estimated marginal variance of the GOP error field.
The weighted least squares technique seems to under-
estimate the sill for the NGPS member on land, result-
ing in a deflation factor that exceeds 1.

The exponential variograms fit quite well over the
first 400 km, and the fit deteriorates thereafter. This is
quite typical of geostatistical applications, and is not a
matter of concern. Generally, when fitting a parametric

variogram model, attention is focused on the smaller
distances, which are particularly relevant in character-
izing the spatial statistical properties of the error fields.

Figures 2 and 3 illustrate the generation of a member
of the spatial BMA ensemble on land and over the
ocean, respectively. Figures 2a and 3a show the bias-
corrected member of the dynamical ensemble that is to
be dressed. On land, this is the NGPS member, and
over the ocean it is the CMCG member. Figures 2b,c
and 3b,c show simulated realizations of the continuous
and discontinuous components of the error field, re-
spectively. Figures 2d and 3d show the member of the
spatial BMA ensemble as the sum of the three compo-
nents. Repeating this process, statistical ensembles of
any size can be generated.

A characteristic feature of Figs. 2 and 3, and in gen-
eral of the spatial BMA (and GOP) ensemble member
fields, is an increase in roughness compared to weather
fields generated by numerical weather prediction mod-
els. This stems from spatial BMA aiming to reproduce
the spatial structure of weather observations, including
instrument and representativeness errors, represented
by the discontinuous component of the error field (Figs.
2c and 3c). The discontinuous component can be ig-
nored, if desired, and the spatial BMA technique can be
implemented by adding the bias-corrected weather
field forecast (Figs. 2a and 3a) and the continuous com-
ponent of the simulated error field (Figs. 2b and 3b)
only. This is an implementation decision that needs to
be made depending on the prediction problem at hand.
In our implementation, we added both components of
the error to the bias-corrected forecast field.

The continuous component of the error field gener-
ally contributes more than the discontinuous compo-
nent, since the estimates of the covariance parameter

FIG. 1. Empirical variograms of 48-h errors for surface temperature over a 25-day training
period ending 14 Feb 2004, using UWME: (a) NGPS member on land and (b) CMCG member
over ocean.
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�2
k, which represents the marginal variance of the con-

tinuous component, are substantially larger than the
estimates of the nugget effect 
2

k, the marginal variance
of the discontinuous component.

For each region, we generated a spatial BMA en-
semble of 19 weather fields. These could be displayed
in the form of a postage stamp plot, but this would be
likely to overwhelm users, and plots that summarize the
spatial BMA ensemble are likely to be more useful.
Ensemble forecasts for all types of composite quantities
can be derived from the statistical ensemble. For in-
stance, we might be interested in predicting the empiri-
cal variogram of the temperature field verifying at 0000
UTC 16 February 2004. We computed the empirical
variogram for each of the 19 members of the spatial
BMA ensemble, using 300 distance bins. At each bin,
the minimum and the maximum of the respective 19
values envelop a 95% prediction interval for the veri-
fying variogram value, which we computed from the

observed temperature field. Figure 4 shows the results
of this experiment. The prediction intervals generally
cover the verifying empirical variogram values.

4. Verification results

In calendar year 2004, the 0000 UTC cycle for the
12-km domain of the eight-member UWME was run on
245 days. For each day, we fitted BMA, GOP, and spa-
tial BMA models for 48-h forecasts of surface (2 m)
temperature over the North American Pacific North-
west, separately on land and over the ocean, using a
sliding 25-day training period. We then generated origi-
nal BMA, GOP, and spatial BMA forecast ensembles
for each day. The original BMA ensembles were cre-
ated by sampling from the univariate original BMA
predictive PDFs at each location separately, incorrectly
assuming spatial independence of the error fields. The
GOP ensembles were based on the UWME UKMO

FIG. 2. A member of the spatial BMA ensemble for 48-h forecasts of surface temperature over the land portion of the Pacific
Northwest, initialized at 0000 UTC 14 Feb 2004: adding (a) the bias-corrected UWME NGPS weather field forecast, (b) the continuous,
and (c) the discontinuous component of the simulated error field, we obtain (d) a member of the spatial BMA ensemble. Note that
different color scales are used in (a)–(d) to make it easier to see the patterns in each one.
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model, which had the best aggregate performance
among the ensemble member models, both on land and
over the ocean. In the interest of a fair comparison to
the eight-member UWME, our GOP, original BMA,
and spatial BMA ensembles also had eight members
only. However, the statistical ensembles allow for en-
sembles of any size, and larger ensembles frequently
show better verification results.

We now assess and rank the performance of the
UWME, GOP, original BMA, and spatial BMA en-
sembles, emphasizing spatial and composite quantities.
On average, observations of surface temperature were
available at 761 stations on land and 196 stations over
the Pacific Ocean. We verified bilinearly interpolated
ensemble forecasts against the temperature observa-
tions.

In contrast to the statistical ensembles, UWME is not
designed to take instrument and representativeness er-
rors into account. Hence, we consider a fifth ensemble,
which we call UWME � noise. To create the UWME �

noise ensemble, we added Gaussian noise to each of the
eight UWME members, at each site independently,
with mean zero and a variance that equals the esti-
mated nugget effect, 
2

k, for the corresponding member
model.

a. Temperature forecasts at individual sites

We begin by assessing surface temperature forecasts
at individual sites. For forecasts at single sites, spatial
BMA, and original BMA are equivalent; hence the re-
sults for the two ensembles are essentially identical,
with any differences due to chance variability in the
generation of the ensemble members. All verification
statistics were spatially and temporally composited over
the Pacific Northwest and the 2004 calendar year.

Table 3 shows the mean absolute error (MAE) and
the average CRPS (Hersbach 2000; Gneiting et al. 2005;
Wilks 2006, his section 7.5.1) for the various ensemble
methods. The MAE assesses the accuracy of the deter-
ministic forecasts. The UWME and UWME � noise

FIG. 3. Same as in Fig. 2, but for the UWME CMCG member and over the Pacific Ocean.
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deterministic forecast is the raw ensemble mean; for the
GOP method it is the bias-corrected UWME UKMO
forecast; and for the original BMA and spatial BMA
techniques it is a weighted average of the bias-corrected
ensemble member forecasts. The CRPS is a scoring rule
for predictive PDFs that addresses calibration as well as
sharpness, and is proper, that is, discourages hedging.
The CRPS generalizes the absolute error, to which it
reduces for deterministic forecasts; it is also reported in
degrees Celsius, and average CRPS values can be di-
rectly compared to the MAE (Gneiting et al. 2005). A
clear rank order can be observed, in that the BMA
ensembles showed substantially lower CRPS values
than the GOP ensemble, followed by the UWME �
noise and UWME ensembles.

To assess the calibration of the ensemble forecasts,
we use the verification rank histogram (Anderson 1996;
Talagrand et al. 1997; Hamill and Colucci 1997; Hamill
2001). Figure 5 shows the histograms for the various
ensembles. We also computed the respective discrep-
ancy from uniformity,

D � �
j�1

K�1 �pj �
1

K � 1�, �10�

where K � 8 is the number of ensemble members and
pj is the observed relative frequency of rank j. The
smaller the discrepancy, the smaller the deviation from
a uniform rank histogram, and the better the calibra-
tion. In both domains, the UWME and UWME � noise
ensembles were underdispersive, while the GOP, origi-
nal BMA, and spatial BMA ensembles had rank histo-
grams that were nearly uniform. The slight overdisper-
sion of the rank histograms of the original and spatial

BMA ensembles over ocean can be attributed to the
smaller number of cases available over ocean, com-
pared to land.

b. Temperature field forecasts

To assess the calibration of the ensembles as weather
field forecasts, rather than as forecasts of weather quan-
tities at individual sites, we use a variant of the verifi-
cation rank histogram that is tailored to this task,
namely the minimum spanning tree (MST) rank histo-
gram (Smith and Hansen 2004; Wilks 2004). An MST
rank k ∈ {1, . . . , K � 1} is computed based on each
day’s ensemble of weather field forecasts and the veri-
fying weather field. This yields 245 MST ranks for each
of the five ensemble techniques, and the corresponding
histogram is uniform if the ensemble is calibrated. Fig-
ure 6 shows the MST rank histograms for the UWME,
UWME � noise, GOP, original BMA, and spatial
BMA weather field ensembles, separately on land and
over the ocean, along with the discrepancy (10) that
measures the departure from uniformity. The UWME,
UWME � noise, and GOP weather field ensembles
were severely underdispersive. The original BMA en-

TABLE 3. MAE and average CRPS for 48-h forecasts of surface
temperature over the Pacific Northwest in 2004 (°C).

Ensemble

Land Ocean

MAE CRPS MAE CRPS

UWME 2.94 2.58 2.44 2.12
UWME � noise 2.94 2.23 2.44 1.89
GOP 2.71 2.13 2.35 1.82
Original BMA 2.70 1.95 2.35 1.72
Spatial BMA 2.70 1.95 2.35 1.72

FIG. 4. Empirical variogram values (dots) for the verifying surface temperature field at 0000
UTC 16 Feb 2004, and pointwise minimum and maximum of the empirical variogram values
(lines) from the 19-member spatial BMA weather field ensemble (a) on land and (b) over
ocean.
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semble also was underdispersive, but to a lesser extent.
The MST rank histograms for the spatial BMA weather
field ensemble departed the least from uniformity. The
difference between the GOP and spatial BMA en-
sembles corroborates the widely held perception that it
is advantageous to take account of the flow-dependent
information contained in the dynamical ensemble.

As an alternative approach to the spatial verification
of ensembles of weather field forecasts, we repeated
the variogram computations in Fig. 4 for the 245 avail-
able days in 2004 and the five types of weather field
ensembles. Each eight-member ensemble supplies
nominal 7/9 � 100% � 77.8% prediction intervals for
variogram values computed from the verifying tem-

perature field. If an ensemble is faithfully reproducing
the spatial structure of the observed weather field, we
would expect that the prediction intervals for vari-
ogram values constructed using the variogram of the
ensemble forecasts would contain the variogram of the
verifying temperature field 78 times out of 100. If this is
not the case, the ensemble may not be reproducing the
spatial structure of the observed weather field.

Table 4 shows the empirical coverage of the predic-
tion intervals when composited over the 245 days and
300 distance bins. For all five types of ensembles, the
empirical coverage was lower than desired, but the cov-
erage for the GOP and spatial BMA ensembles was
closest to the nominal 77.8%.

FIG. 6. MST rank histograms for 48-h weather field forecasts of surface temperature over the Pacific Northwest in 2004 (top) on
land and (bottom) over the ocean.

FIG. 5. Verification rank histograms for 48-h forecasts of surface temperature over the Pacific Northwest in 2004 for individual
stations (top) on land and (bottom) over the ocean.
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c. Average temperature in National Weather Service
forecast zones

Spatial correlations play crucial roles in the predic-
tion of a number of composite quantities. Here, we
present verification results for ensemble forecasts of
spatial averages of temperature. Figure 7 shows the 44
National Weather Service (NWS) forecast zones in the
state of Washington. For each zone and each day, we
considered ensemble forecasts of average surface tem-
perature, understood as the mean of the temperature
observations at the stations within the zone.

Figure 8 summarizes verification statistics for the
various types of eight-member ensembles in the 44
zones. The performance of the GOP ensemble was al-
most identical to that of the spatial BMA ensemble,
and we omit the corresponding results. Figure 8a shows
the discrepancy (10) that measures the departure of the
verification rank histogram from uniformity. In almost
all zones, the spatial BMA ensemble showed the lowest
discrepancy. Figure 9 illustrates this for forecast zone 7,

which has one of the highest numbers of stations and
contains the city of Seattle, Washington. Both UWME,
UWME � noise, and the original BMA ensemble were
underdispersive, while the GOP and spatial BMA en-
sembles had verification rank histograms that were
similar to each other and close to being uniform. The
underdispersion of the original BMA ensemble is not
surprising, in that the assumption of spatial indepen-
dence of errors implies an underestimation of the vari-
ance of temperature averages. The slight overdisper-
sion of spatial BMA and GOP may reflect the small
number of cases used to construct the rank histogram
(only 245).

Figure 8b shows the average range of the forecast
ensemble for the various types of ensembles. The range
quantifies the sharpness of the predictive distributions
and is simply the difference between the maximum and
the minimum of the eight ensemble values. The
UWME had the sharpest predictive distributions, but it
was underdispersive, and therefore uncalibrated. A
similar comment applies to the original BMA en-
semble. The spatial BMA ensemble was the least sharp,
but it was better calibrated than the other types of en-
sembles. Finally, to assess calibration and sharpness si-
multaneously, Fig. 8c shows the aggregate CRPS val-
ues. Despite being sharpest, the UWME generally had
the highest, least desirable CRPS values. The original
BMA and the spatial BMA ensembles had CRPS val-
ues that were lower, and quite similar to each other,
even though the ensembles behaved quite differently in

FIG. 7. NWS forecast zones in the state of WA, bordered by the Pacific Ocean to the west,
and British Columbia, ID, and OR to the north, east, and south, respectively. (See www.atmos.
washington.edu/data/images/zone.gif.)

TABLE 4. Coverage of nominal 77.8% prediction intervals for
variogram values.

Ensemble Land Ocean

UWME 20.5 28.8
UWME � noise 36.3 42.8
GOP 56.6 58.7
Original BMA 30.9 46.3
Spatial BMA 60.1 57.1

APRIL 2007 B E R R O C A L E T A L . 1397



terms of calibration and sharpness. There is a trade-off
between calibration and sharpness, in that the goal of
probabilistic forecasting is to produce a predictive dis-
tribution that is as concentrated as possible, yet cali-
brated, meaning that it is statistically consistent with the
distribution of the observations (Gneiting et al. 2005).
From the perspective of maximizing sharpness subject
to calibration, the performance of the spatial BMA en-
semble is superior.

d. Minimum temperature along Interstate 90

We now present verification results for another com-
posite quantity: minimum temperature along the Inter-
state 90 Mountains to Sound Greenway, Washington’s
primary east–west-bound highway. Accommodating 20
million travelers annually, Interstate 90 crosses the Cas-
cade Mountains in a dramatic mountain landscape with
substantial altitude differentials. Accurate and reliable
forecasts of minimum temperature are critical to high-
way maintenance operations.

Figure 10 shows the locations of 13 meteorological
stations along the Cascades section of Interstate 90,
some of which are very near each other. We consider
ensemble forecasts of the minimum temperature
among these 13 stations. The UWME forecasts were
available on the 12-km model grid and were bilinearly
interpolated to the observation locations. However, In-

terstate 90 and the meteorological stations are gener-
ally located at lower altitudes, while the surrounding
grid points are at higher altitudes. On average, there is
a difference of 264 m between the station height and
the respective heights of the surrounding model grid
points. Hence, altitude is a critical consideration, and
we applied a standard lapse rate correction of 0.65°C
(100 m)�1 to all five types of forecast ensembles at all
13 stations.

Figure 11 shows verification rank histograms for the
eight-member UWME, UWME � noise, GOP, original
BMA, and spatial BMA forecast ensembles. The
UWME and UWME � noise ensembles were under-
dispersive. The original BMA ensemble was strongly
biased, tending to underestimate the minimum tem-
perature along Interstate 90. Indeed, the minimum of a
collection of independent forecasts tends to be smaller
than the minimum of a collection of forecasts that are
spatially correlated. The GOP and spatial BMA en-
sembles had rank histograms that were close to being
uniform, and their slight overdispersion can be ex-
plained in terms of the small number of events used to
construct the histogram. Table 5 shows the verification
rank histogram discrepancy, the mean ensemble range,
and the mean CRPS value for the forecast ensembles.
The UWME, GOP, and spatial BMA ensembles
showed similar CRPS values, thereby illustrating a

FIG. 9. Verification rank histograms for 48-h forecasts of average surface temperature in NWS forecast zone 7 in 2004.

FIG. 8. Verification statistics for 48-h forecasts of average surface temperature in NWS forecast zones in 2004. (a) Verification rank
histogram discrepancy, (b) mean ensemble width (°C), and (c) mean CRPS value (°C).
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trade-off between calibration and sharpness. In view of
our goal of maximizing sharpness under the constraint
of calibration, we contend that the GOP and spatial
BMA ensembles are preferable for most users.

5. Discussion

We have introduced the spatial BMA method, a sta-
tistical postprocessing technique for calibrating forecast
ensembles of whole weather fields simultaneously. Spa-
tial BMA generalizes and combines Bayesian model
averaging (BMA) and the geostatistical output pertur-
bation (GOP) technique, and it honors ensemble as
well as spatial statistical information. The spatial BMA
predictive PDF for the weather field is a weighted av-
erage of multivariate normal PDFs centered at bias-
corrected members of the dynamical forecast ensemble.
At any single location, spatial BMA reduces to the
original BMA technique. It is computationally inexpen-
sive and can be used to generate statistical ensembles of
any size.

In experiments with the University of Washington
mesoscale ensemble, the Spatial BMA ensemble com-
pared favorably to the raw dynamical ensemble, the

raw ensemble with added observational noise, the GOP
ensemble, and the original BMA ensemble. In particu-
lar, the minimum spanning tree histogram, a key tool in
assessing the calibration of ensembles of weather field
forecasts (Smith and Hansen 2004; Wilks 2004), was
closest to being uniform for the spatial BMA ensemble.
For forecasts of composite quantities, such as tempera-
ture averages over NWS forecast zones and minimum
temperature along the Cascades corridor of Interstate
90, the GOP ensemble and the spatial BMA ensemble
showed similar performances, and outperformed the
other types of ensembles. While our experiments were
with surface temperature fields, spatial BMA in its
present form applies to all weather variables with fore-
cast error distributions that are approximately Gauss-
ian, including sea level pressure. Further research is
needed to extend spatial BMA to other weather vari-
ables, such as precipitation or wind speed. Sloughter et
al. (2007) presented a non-Gaussian version of BMA
that yields calibrated quantitative probabilistic precipi-
tation forecasts at individual sites, but not for weather
fields.

There are several directions in which the spatial
BMA technique could be developed. One is bias cor-
rection. In the current implementation, we use a simple
linear bias correction that does not take altitude, land
use, latitude, longitude, or distance from the ocean into
account. More sophisticated regression based bias re-
moval techniques might include some or all of these
quantities as predictor variables. Another possibility is
to use a nearest-neighbor approach based on distance,
altitude, and land use categories.

Another possibility would be to reduce the bias cor-
rection to a simple additive bias correction, including
only the term ak and fixing bk to 1. This would reduce
the number of parameters to estimate. In their imple-
mentation of the original BMA technique for the Ca-
nadian Ensemble System, Wilson et al. (2007) found
that for training periods of up to 50 days and for fore-
cast lead times up to 7 days, using only ak in the bias
removal step performed as well as using both ak and bk.

Another way to reduce the number of parameters to
estimate on each day would be to estimate the covari-

FIG. 10. Meteorological stations along the Cascades corridor of
Interstate 90.

FIG. 11. Verification rank histograms for 48-h forecasts of minimum temperature along Interstate 90.
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ance parameters for each ensemble member only once,
using data from a previous year. The regression param-
eters ak and bk, the BMA weights, w1, . . . , w8, and the
BMA standard deviation �0 would still have to be es-
timated using the training period, and the new estimate
of the BMA variance would be employed to compute
the deflaction factor �k for each ensemble member.

In modeling the covariance structure of the error
fields, we used a stationary and isotropic exponential
correlation function. There are several ways in which
more complex, and potentially more realistic, covari-
ance structures could be used. Stationary and isotropic
correlation functions that are more versatile than an
exponential function are available (Mitchell et al. 1990;
Gneiting 1999). Anisotropic covariance structures
could also be used (Purser et al. 2003); however, in the
case of surface temperature over the Pacific Northwest,
Gel et al. (2004b) did not find any significant differ-
ences between longitudinal and latitudinal empirical
variograms of the forecast error fields. Finally, nonsta-
tionary covariance models, that is, models that are not
translation invariant, could be used. In our experi-
ments, we dealt with nonstationarities between the land
and the ocean by fitting and generating two distinct
spatial BMA ensembles, each of which used a station-
ary and isotropic covariance structure. This was a fairly
simple way to resolve nonstationarities, and yet pro-
duced good results. The methods of Paciorek and
Schervish (2006) could be used to fit valid covariance
structures that are stationary on homogeneous do-
mains, yet nonstationary globally, thereby allowing for
the generation of a single spatial BMA ensemble over
all domains simultaneously, without incurring disconti-
nuities along the boundaries.

An issue not explicitly considered in the spatial BMA
approach is that of phase or displacement errors. These
could perhaps be addressed by partitioning the errors
of the ensemble member weather field forecasts into
displacement, distortion, amplitude, and residual fields,
as in Du et al. (2000), and applying the spatial BMA
technique to the residual component only, while devel-
oping parametric statistical models for displacement,

distortion, and amplitude errors. This would be an in-
teresting avenue for future research, with potential re-
wards in the form of sharper yet calibrated forecast
PDFs, but may require impracticably large sets of train-
ing data.

Another issue that calls for discussion is the choice of
the training period. In the current implementation, we
use forecast and observation data from a sliding win-
dow consisting of the 25 most recent days available to
estimate the spatial BMA parameters. This allows the
method to adapt rapidly to seasonal changes in the at-
mosphere as well as changes in the design of the en-
semble, but limits the availability of training data. How-
ever, even with limited data, we did not have the prob-
lem of overfitting when estimating all the spatial BMA
parameters, as our results on the quality of the spatial
BMA out-of-sample predictions indicate. In addition,
the estimates of the parameters vary smoothly with
time, and the variability from day to day is not great. A
potential way of increasing the amount of training data
is to also use training data from the same season in
previous years; this could be done using ensemble re-
forecasts, as proposed by Hamill et al. (2004). However,
reforecasts put high demands on computational and hu-
man resources, and they were not available to us.

We close by comparing spatial BMA to other en-
semble postprocessing techniques. Wilks (2002) pro-
posed fitting mixtures of multivariate normal densities
to ensemble forecasts of multivariate weather quanti-
ties. This resembles the spatial BMA technique, but
does not take bias and calibration adjustments into ac-
count. Roulston and Smith (2003) proposed combining
statistical and dynamical ensembles, and suggested the
use of hybrid ensembles, in which the members of the
dynamical ensemble are dressed with errors drawn
from an archive of the best member errors. A difficulty
in this approach is the identification of the best mem-
bers. Wang and Bishop (2005) showed that under a
wide range of scenarios the best member dressing
method fails to be calibrated. They proposed a modi-
fied dressing technique, in which statistical perturba-
tions are generated, with flexible covariance structures
that are estimated from training data. This is similar to
the spatial BMA technique, in that the Wang and
Bishop (2005) predictive PDF is also a weighted aver-
age of multivariate normal densities, each centered at a
bias-corrected member of the dynamical forecast en-
semble, but the weights are all equal and do not depend
on the member’s skill. Fortin et al. (2006) proposed
dressing kernels that depend on the rank of the mem-
ber within the ensemble. This method is tailored to
ensembles with exchangeable members, as opposed to
the University of Washington mesoscale ensemble, or

TABLE 5. Verification rank histogram discrepancy, mean en-
semble width, and mean CRPS value for ensemble forecasts of
minimum temperature along Interstate 90.

Ensemble Discrepancy Range (°C) CRPS (°C)

UWME 0.68 2.76 1.55
UWME � noise 0.47 4.37 1.67
GOP 0.18 7.75 1.53
Original BMA 0.95 6.48 2.76
Spatial BMA 0.22 8.04 1.54
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any poor person’s ensemble, for which the members are
not exchangeable. Raftery et al. (2005, p. 1170) discuss
an adaptation of BMA to the case of exchangeable
members.
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