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Winter road maintenance is one of the main tasks for the Washington State Department of Transportation. Anti-icing, that is, the preemptive
application of chemicals, is often used to keep the roadways free of ice. Given the preventive nature of anti-icing, accurate predictions of
road ice are needed. Currently, anti-icing decisions are usually based on deterministic weather forecasts. However, the costs of the two kinds
of errors are highly asymmetric because the cost of a road closure due to ice is much greater than that of taking anti-icing measures. As a
result, probabilistic forecasts are needed to optimize decision making.

We propose two methods for forecasting the probability of ice formation. Starting with deterministic numerical weather predictions,
we model temperature and precipitation using distributions centered around the bias-corrected forecasts. This produces a joint predictive
probability distribution of temperature and precipitation, which then yields the probability of ice formation, defined here as the occurrence
of precipitation when the temperature is below freezing. The first method assumes that temperatures, as well as precipitation, at different
spatial locations are conditionally independent given the numerical weather predictions. The second method models the spatial dependence
between forecast errors at different locations. The model parameters are estimated using a Bayesian approach via Markov chain Monte
Carlo.

We evaluate both methods by comparing their probabilistic forecasts with observations of ice formation for Interstate Highway 90 in
Washington State for the 2003–2004 and 2004–2005 winter seasons. The use of the probabilistic forecasts reduces costs by about 50%
when compared to deterministic forecasts. The spatial method improves the reliability of the forecasts, but does not result in further cost
reduction when compared to the first method.

KEY WORDS: Cost–loss ratio; Latent Gaussian process; Markov chain Monte Carlo; Numerical weather forecast; Predictive distribution;
Spatial dependence.

1. INTRODUCTION

Ice and snow on roads have large impacts. Failure to maintain
roads in winter often leads to road closures and hence economic
losses (Sherif and Hassan 2004). The Washington State Depart-
ment of Transportation estimated that between 1992 and 2004
Snoqualmie Pass on Interstate Highway 90 (I-90) was closed
120 hr per year on average, causing an annual loss of at least
17.5 million dollars. Ice and snow also increase the risk of ac-
cidents (Norrman, Eriksson, and Lindqvist 2000; Eriksson and
Norrman 2001). The crash rate on the I-90 Mountains to Sound
Greenway, Washington State’s primary east–west bound high-
way, in the presence of snow is about five times the rate in clear
conditions (Federal Highway Administration 2006).

Several strategies can be used for winter road maintenance.
Among these, two of the most common are de-icing, in which
chemicals are used to melt ice and snow, and anti-icing, a pre-
ventive measure that reduces ice by hindering bonds between
ice crystals and road pavement. Due to the use of chemicals,
both strategies hurt the environment; soil, vegetation, streams,
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road surface, and vehicles are all damaged by the chemicals
used in both de-icing and anti-acing (Shao and Lister 1996;
Ramakrishna and Viraraghavan 2005). However, anti-icing is
preferred to de-icing on roads with high traffic volume because
it reduces total chemical use and allows a higher level of service
to the public.

The costs of winter road maintenance are high, but the losses
due to road closures are much higher so accurate ice fore-
casts are needed (Shao 1998; Chapman, Thornes, and Bradley
2001a). Currently, forecasts of road ice come primarily from
numerical road prediction models or numerical weather predic-
tion models. Numerical road prediction models take weather
forecasts and road condition data as inputs and forecast fu-
ture road conditions using the surface energy-balance equation,
which describes the flux of energy between the atmosphere
and the road (Sass 1992). Numerical weather prediction mod-
els forecast future weather by integrating coupled differential
equations representing the physical processes that govern the
atmosphere forward in time. Both kinds of forecasts are deter-
ministic and do not assess uncertainty, which is a critical factor
in weather-related decision making (Palmer 2000; Richardson
2000; American Meteorological Society 2002; Gneiting and
Raftery 2005; National Research Council of the National Acad-
emies 2006; Roulston et al. 2006).

The cost of failing to take anti-icing measures when ice does
form on the road is much greater than that of anti-icing when
no ice forms. As a result, it will be best to take anti-icing mea-
sures when the predicted probability of ice is greater than some
threshold that is typically well below 50%. Thus, a good esti-
mate of the probability of ice formation is needed and deter-
ministic forecasts do not provide it. In this article we present
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methods for estimating this, building on the work of Mass et al.
(2003), who documented the joint effort of the Department of
Atmospheric Sciences at the University of Washington and of
the Washington State Department of Transportation to monitor
and provide forecasts of road ice for I-90 by postprocessing nu-
merical weather forecasts.

The physical process that produces ice on roads is complex
and involves the interaction of weather with road surface condi-
tions (Chapman, Thornes, and Bradley 2001a; Thornes, Cavan,
and Chapman 2005). Here we simplify it and we assume that ice
will form at a point on the road if precipitation occurs and the
air temperature is at or below freezing. Starting from numerical
weather forecasts, we develop a model for the joint predictive
probability distribution of temperature and precipitation, which
yields the probability of ice formation.

The problem of winter road maintenance is intrinsically spa-
tial. We examine whether spatial dependence in the forecast er-
rors ought to be modeled explicitly by comparing two models,
one that does not take account of spatial correlation and one
that does. The latter produces joint predictive probability distri-
butions of future temperature and precipitation over space that
account for the spatial correlation of the forecast errors.

In Section 2, we describe the data and introduce the statistical
models and the estimation methods that we use. In Section 3,
we give verification results and in Section 4 we discuss other
approaches that were developed for this problem and possible
limitations of our methodology.

2. DATA AND METHODS

2.1 Road Maintenance Problem

The I-90 Mountains to Sound Greenway is one of the main
arteries of the State of Washington, with a traffic volume of
20 million vehicles per year. The highway crosses the Cascade
Mountains with large changes in altitude and connects the urban
centers of the Puget Sound with farmlands in eastern Washing-
ton; it is an important route for the regional economy. During
the winter months, from October to March, I-90 is often con-
gested because of poor driving conditions due to snow accumu-
lation and ice. To provide a safe transit to travelers, the Wash-
ington State Department of Transportation employs preventive
anti-icing measures during the winter season. In this study, we
use data from 10 meteorological stations along a 140 km sec-
tion that includes Snoqualmie Pass. Figure 1 shows the altitude
profile for this section of I-90.

The data span the three winter seasons of 2002–2003,
2003–2004, and 2004–2005 and include minimum tempera-
ture and precipitation during the 3-hr interval 1:00 a.m. through
4:00 a.m. Hereafter, we use the term “temperature” to refer to
minimum temperature between 1:00 a.m. and 4:00 a.m. Since
this is the coldest time interval of the day, it is very likely
that, should there be road ice, it will occur during this inter-
val. Precipitation occurrence was recorded if there was at least
0.01 inch of precipitation.

The data comprise 438 days of observations: 131 during the
2002–2003 winter season, 159 during the following winter sea-
son, and 148 during the 2004–2005 winter season. The num-
ber of observations per station ranges from a minimum of 169
to a maximum of 363, with an average of 307 and a median

of 323. There was no discernible pattern to the missing data and
our methods do not require us to impute values for the missing
observations. Very few observations were available during the
month of October. As a consequence, in evaluating the predic-
tive performance of our method, we compare predictions for the
months of November through March with the observations.

As the basis for our forecast, we use 12-hr-ahead model
runs of temperature and precipitation produced by the fifth-
generation Pennsylvania State University/National Center for
Atmospheric Research Mesoscale Model (MM5) (Grell, Dud-
hia, and Stauffer 1994). The model was run by the University of
Washington Department of Atmospheric Sciences with initial
and boundary conditions supplied by the U.K. Meteorological
Office (Grimit and Mass 2002; Eckel and Mass 2005). The fore-
casts were generated on a 12 km grid and then bilinearly in-
terpolated to the observation sites. Bilinear interpolation is a
standard technique for downscaling numerical model output to
the point level and it is considered an integral part of the nu-
merical weather prediction model. It performs better than naive
interpolation (Shao, Stein, and Ching 2007; Jun, Knutti, and
Nychka 2008) and it does not involve using observational data,
just the numerical model output at the grid level. The numeri-
cal forecasts that we use are based on the information available
at 4:00 p.m. the day before, which is typically the most recent
available to managers deciding whether to take anti-icing mea-
sures overnight.

Figure 2 shows weather data at the Alpental station. This
is close to Snoqualmie Pass and is one of the highest stations
along I-90. The MM5 model predicted temperature quite ac-
curately, with a mean absolute error of the temperature fore-
cast at Alpental during the winter season 2002–2003 of 1.6◦C.
The precipitation forecasts at Alpental also performed well dur-
ing the 2002–2003 winter season. For example, in 59 of the 64
cases in which more than 0.01 inch of rain was predicted, pre-
cipitation was indeed observed. In 33 of the 50 cases in which
the forecast was for no precipitation, the forecast was correct
and there was no precipitation.

Most numerical road models, such as ICEBREAKER (Shao
and Lister 1996), assume that ice forms on the road if the road
surface temperature falls below freezing and the road surface is
wet. Reliable direct observations of the conditions of the road
pavement for the section of I-90 considered in this study are
not available and so we use air temperature and precipitation
as proxies for road temperature and road wetness. Adapting
the definition of road ice used in numerical road models to the
proxy variables, we say that a point along I-90 experiences ice
formation if the temperature is equal to or less than 0◦C and
there is precipitation. Similarly, we say that a section of I-90
experiences ice formation if there is at least one point in the
section at which the temperature is at most 0◦C and there is
precipitation. Our goal is to produce probabilistic forecasts of
ice formation along a section of I-90.

2.2 Statistical Model

We now describe our statistical model for ice formation at a
given time. The time is fixed and so is not explicitly included
in our notation. We write Y(s) for the observed temperature at
a site s along the portion I of I-90 shown in Figure 1. We let
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(a)

(b)

Figure 1. (a) Meteorological stations along I-90. (b) Altitude profile along I-90.

W(s) = 1 if precipitation occurs at s and 0 if not, and we say
that ice forms on the road at s if

Y(s) ≤ 0◦C and W(s) = 1. (1)

Our goal is to produce probabilistic forecasts of ice forma-
tion simultaneously at all sites s on a grid of points along I .
We write Ỹ(s) for the 12-hr-ahead forecast of temperature at s
and we follow Sloughter et al. (2007) in using the cube root
of the forecast of accumulated precipitation, which we denote
by W̃(s), as a predictor.

Given our definition of ice formation, in order to produce
probabilistic forecasts of ice, we need to specify a joint model
for temperature and precipitation occurrence. We assessed the
dependence between temperature and precipitation occurrence
given the forecasts by dividing the observations into groups
with similar values of the forecasts. Within each group we find

no evidence of dependence. We, therefore, assume that temper-
ature and precipitation occurrence are conditionally indepen-
dent of one another given the forecasts. We now specify two
models, each of them for the joint distribution of temperature
and precipitation occurrence. The two models differ in that one
models the spatial correlation in the forecast errors and the other
one does not. Given the spatial nature of the data, we are inter-
ested in finding out whether modeling the spatial correlation
improves predictive performance.

In our first model, which we call the marginal model, we
assume that temperatures at different locations are indepen-
dent of one another, as are occurrences or not of precipitation,
given the forecasts of temperature and accumulated precipita-
tion. To remove systematic nonstationary variation, we include
a regression-based adjustment of the mean temperature field on
latitude, longitude, and elevation, similarly to Handcock and
Wallis (1994) in their analysis of the average U.S. winter tem-
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(a)

(b)

Figure 2. (a) Temperature at the Alpental station during the 2002–2003 winter season. The solid line shows the observed temperature, the
dashed line the forecast. (b) Precipitation occurrence (black dots) and forecasts of accumulated precipitation (grey bars) at Alpental during the
3-hr interval 1:00 a.m. to 4:00 a.m.

perature. The marginal model for temperature is then

Y(s) = γ0 +γ1Ỹ(s)+γ2 lat(s)+γ3 lon(s)+γ4 ht(s)+ε(s), (2)

where lat, lon, and ht denote the centered latitude and longi-
tude (in degrees) and elevation (in meters), γ0, γ1, γ2, γ3, and γ4
are regression coefficients, and ε(s) is a mean-zero Gaussian
process with

Cov(ε(s), ε(t)) = ς2δst, (3)

where δst = 1 if s = t and 0 otherwise.
We now describe our spatial model, which takes account

of spatial correlation in forecast errors. The mean temperature
field is modeled using the same regression adjustment as in
the marginal model. However, the temperature error field is as-
sumed to have a stationary and isotropic exponential covariance

structure with nugget, that is,

Y(s) = α0 + α1Ỹ(s) + α2 lat(s)

+ α3 lon(s) + α4 ht(s) + ξT(s), (4)

where α0, α1, α2, α3, and α4 are regression coefficients and
ξT(s) is a mean-zero stationary and isotropic Gaussian process
with covariance function

Cov(ξT(s), ξT(t)) = ρ2δst + τ 2 exp

(
−|s − t|

r

)
, (5)

where |s− t| is the Euclidean distance between the two sites and
δst is defined earlier. The covariance parameters are the nugget
effect, ρ2, the sill, σ 2 = ρ2 + τ 2, equal to the marginal vari-
ance, and the range, r, which specifies the rate at which the ex-
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ponential correlation decays (Cressie 1993; Chilès and Delfiner
1999).

We now describe our models for precipitation occurrence.
In the marginal model we assume conditional spatial indepen-
dence for precipitation occurrence given the forecast of precip-
itation, so that

W(s) =
{

1 with probability π(s),

0 with probability 1 − π(s),
(6)

where

log

(
π(s)

1 − π(s)

)
= λ0 + λ1W̃(s) + λ2 ht(s), (7)

and W(s) and W(t) are independent given W̃(s), W̃(t), ht(s), and
ht(t). The inclusion of latitude and longitude made no difference
in predictive performance so these variables were not included.
Essentially, the marginal model for precipitation occurrence is
a logistic regression model with the cube root of the forecast of
accumulated precipitation and elevation as predictor variables.

In specifying our spatial model for precipitation occurrence
we follow Albert and Chib (1993) and extend their hierarchical
model for independent binary data to spatially dependent binary
data. We postulate a latent Gaussian process Z(s) that regulates
precipitation occurrence. If the latent variable Z(s) is greater
than 0, then there is precipitation at the site; otherwise there is
no precipitation.

This is basically equivalent to the Tobit model (Tobin 1958),
which was adapted to precipitation modeling by Bardossy and
Plate (1992) and subsequently used by Hutchinson (1995),
Sansò and Guenni (1999, 2000, 2004), Allcroft and Glasbey
(2003), and Rappold, Gelfand, and Holland (2008). Unlike
in the model of Bardossy and Plate (1992), where the latent
Gaussian random field is conveniently power-transformed and
truncated to reproduce the long right tail of the rainfall distri-
bution, in our spatial model the latent Gaussian process is not
transformed. This is because our model deals only with the bi-
nary random variable of precipitation occurrence and not with
the rainfall amount.

The mean of the latent Gaussian process Z(s) is a linear com-
bination of the cube root of the forecast amount, and elevation.
The covariance structure of Z(s) is modeled using an exponen-
tial covariance function. Other covariance structures can also be
used. To ensure identifiability, the marginal variance of Z(s) is
set equal to 1 and the only covariance parameter is the range
parameter θ , which gives the rate of decay of the spatial corre-
lation.

The complete spatial model for precipitation occurrence is
thus:

W(s) =
{

1 if Z(s) > 0,

0 otherwise,
(8)

Z(s) = β0 + β1W̃(s) + β2 ht(s) + ξP(s), (9)

where ξP(s) is a mean-zero unit variance Gaussian process with
covariance function

Cov(ξP(s), ξP(t)) = exp

(
−|s − t|

θ

)
. (10)

Both our spatial models, for temperature and precipitation,
account for the temporal and spatial dependence in the data.

The spatial dependence is modeled explicitly in the residual
processes ξT(s) and ξP(s), while the temporal dependence is
accounted for by the mean functions of the Gaussian processes
Y(s) and Z(s) in Equations (4) and (9), respectively. Temper-
ature and precipitation are temporally autocorrelated, but the
forecasts largely account for this and the forecast errors have
essentially no autocorrelation. We discuss this further in Sec-
tion 4.

2.3 Model Fitting

For each day, the parameters of the statistical models in
Equations (2) through (10) were estimated using data from a
“sliding window” training period consisting of the previous N
days.

The parameters of the marginal model in Equations (2)
and (3) were estimated by fitting a linear regression of observed
temperature on latitude, longitude, elevation, and the forecast
temperature. The parameters of the marginal model in Equa-
tions (6) and (7) were estimated by fitting a logistic regression
of the observed precipitation occurrence on the cube root of the
forecast accumulated precipitation and elevation. The data used
to fit both regressions were observations and forecasts for the
10 stations along I from the previous N days. Our choice of the
length N of the training period is explained in Section 2.4.

For the spatial model, as synchronous Markov chain Monte
Carlo schemes often behave poorly due to weak identifiability
and extremely slow mixing (Sahu, Gelfand, and Holland 2006,
p. 70), we proceeded in two stages: first, the regression coeffi-
cients α0, α1, α2, α3, and α4 and the marginal variance σ 2 were
fitted, then the covariance parameters ρ2, τ 2, and r were esti-
mated.

Since the training period is a sliding window consisting of
the previous N days, only a limited amount of data are avail-
able. This can make the ordinary least-squares estimates of the
regression coefficients and of the marginal variance unstable,
as shown in Figure 3. Therefore, we used a Bayesian frame-
work, adopting the posterior means as estimates of the regres-
sion coefficients, α0, α1, α2, α3, and α4, and of the marginal
variance, σ 2. Specifically, our estimates are based on the fol-
lowing Bayesian model:

Y(s) = α0 + α1Ỹ(s) + α2 lat(s)

+ α3 lon(s) + α4 ht(s) + ξ ′
T(s),

(11)
α = (α0, α1, α2, α3, α4)

T | σ 2 ∼ MVN5(η, σ 2�),

σ 2 ∼ InvGamma(ν,ψ),

where ξ ′
T(s) is a mean-zero Gaussian process with covariance

function Cov(ξ ′
T(s), ξ ′

T(t)) = σ 2δst, η is a vector with compo-
nents (η0, . . . , η4), and � is a diagonal matrix with diagonal el-
ements (ω2

0, . . . ,ω
2
4). This is a simplification in that the spatial

structure is not included in this model; however, the verification
results in Section 3 indicate that this does not hurt the predictive
performance.

We based the prior distributions of α0, α1, . . . , α4 and σ 2 on
the data from the first winter season available to us, that of
2002–2003. For each day in the 2002–2003 winter season, we
estimated the regression parameters by fitting a linear regres-
sion with data from the previous N days. The prior mean and
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Figure 3. Bayesian estimates of α0, α1, α2, α3, α4, and σ 2 versus time (solid black line). The ordinary least-squares estimate (dashed grey
line) and the prior mean (solid grey line) are also shown.

prior standard deviation of α0 were the mean and twice the stan-
dard deviation of the resulting estimates of α0, and similarly for
α1, . . . , α4. Table 1 reports these prior values for a training pe-
riod of length N = 20.

To specify the hyperparameters of the inverse Gamma prior
distribution of σ 2, we minimized the sum of squared devia-
tions between the cumulative distribution function of an inverse
Gamma distribution and the empirical distribution of the esti-
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Table 1. Prior mean and prior standard deviation of α0, α1, α2, α3,
and α4 for training period length N = 20

α0 α1 α2 α3 α4

Prior mean 0.164 0.672 0.366 3.578 −0.006
Prior standard deviation 0.701 0.205 0.473 1.166 0.001

mates of σ 2. The resulting 10th, 50th, and 90th percentiles of
the prior distribution of σ were 1.36◦C, 1.67◦C, and 2.12◦C.
The posterior means of the regression parameters are given by
standard closed form expressions (e.g., Gelman et al. 2004,
chapter 14). As can be seen from Figure 3, the use of a Bayesian
approach stabilized the ordinary least-squares estimates when
they were unstable, but otherwise hardly changed them at all,
which was our goal.

To estimate the covariance parameters ρ2 and r, which were
assumed to be constant in time, we used the data from the 2002–
2003 winter season. We constructed the empirical variogram
of the residuals of the linear regression of the observed tem-
perature on the centered latitude, longitude, and elevation, and
on the forecast of temperature. We then fitted a parametric ex-
ponential variogram with nugget effect to the empirical vari-
ogram using weighted least-squares (Cressie 1993), where the
weights were the numbers of times each pair of stations had
been observed simultaneously. Figure 4 shows the empirical
variogram of the temperature residuals and the fitted exponen-
tial variogram model.

The marginal variance σ 2 varies with time and was re-
estimated daily. We ascribe the variability over time of the mar-
ginal variance to the variability of the variance of the continu-
ous component in Equation (5). We thus model ρ2, the small
scale variability, as constant in time, while we allow τ 2 to
change with time and re-estimate it daily. From Equation (5)
it follows that, for each day, we can obtain a new estimate of τ 2

by subtracting the estimate of ρ2 from the estimate of σ 2.
In estimating the parameters of the spatial model for precipi-

tation occurrence, the parameters in Equations (8), (9), and (10)

are estimated for each day in a Bayesian way using data from
a training period consisting of the previous N days. We use the
following priors for β and θ :

β = (β0, β1, β2)
T ∼ MVN3(μ,V), (12)

θ ∼ Unif(0,1000). (13)

As we did for temperature, we use spread-out prior distribu-
tions with hyperparameters based on data from the 2002–2003
winter season. For each day in the 2002–2003 season, we fit a
logistic regression of the observed precipitation occurrence on
the cube root of the forecast of accumulated precipitation and
on elevation to data from a training period made up of the pre-
vious N days. This yielded a set of estimates of β0, β1, and β2.
The prior mean μ then consisted of the means of the estimates
of β0, β1, and β2, while V was diagonal with diagonal elements
equal to four times the empirical variances of the estimates.

For each day, the parameters of the spatial hierarchical
model for precipitation, given by Equations (8), (9), (10), (12),
and (13), were estimated using a Markov chain Monte Carlo al-
gorithm (Gelfand and Smith 1990). Since a closed form for the
full conditional distributions of Z(s) and β is available, we used
a Metropolis–Hastings step to update the covariance parameter
θ and a Gibbs sampler algorithm to update all other parameters.

2.4 Choice of Training Period

In choosing the length of the training period there is a trade-
off: a shorter period allows changes in the atmosphere to be
taken into account more promptly, but on the other hand it re-
duces the amount of data available for estimation of the para-
meters.

To choose the length of the training period we used the root
mean square error (RMSE) of the temperature predictions and
the Brier score (Brier 1950) for the predictions of probability
of precipitation, both obtained using training periods of lengths
N = 5,10, . . . ,60 days. In both cases the predictions were made

Figure 4. Empirical variogram of the temperature residuals with fitted exponential variogram model. Each dot represents a pair of stations.
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at individual sites. The Brier score is defined as:

Brier score = 1

M

M∑
i=1

(oi − fi)
2, (14)

where M is the total number of predictions, oi is the ith ob-
served event (1 if the event occurred, 0 otherwise) and fi is the
forecast probability that the ith event will occur. It is negatively
oriented, that is, lower is better.

Figure 5 shows the RMSE and the Brier score of the pre-
dictions as a function of the training period length. Both plots
seems to indicate that 20 days is a good length for the training
period: the magnitude of the RMSE error decreased noticeably
as the length N of the training period increased up to 20 days,
while the Brier score attained its minimum at 20 days. Beyond
20 days, there was not much gain in using a longer training pe-
riod and the quality of the predictions of temperature worsened
slightly for training periods longer than 30 days.

We, therefore, used a training period of 20 days to esti-
mate the model parameters for both temperature and precipi-
tation. Training periods of 25 to 30 days were also found to
be adequate for the postprocessing of numerical forecasts of
temperature and precipitation at short lead times by Raftery
et al. (2005), Sloughter et al. (2007), Hagedorn, Hamill, and
Whitaker (2008), and Hamill, Hagedorn, and Whitaker (2008).

2.5 Generating Forecasts

To produce probabilistic forecasts of ice formation along
the section I of I-90 shown in Figure 1, we discretized and
simulated from the joint predictive distribution of temperature
and precipitation occurrence at 104 points along the highway.
The distances between neighboring points range from 1.3 km
to 2.0 km and cover a section of I-90 that is about 140 km long.

Realizations of the temperature and precipitation occurrence
fields were obtained by simulating from the corresponding
stochastic processes: the temperature [Equations (2) and (3)],

Figure 5. RMSE of temperature forecasts and Brier score for predictions of the probability of precipitation versus training period length, for
the 2003–2004 and 2004–2005 winter seasons.
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and precipitation occurrence [Equations (6) and (7)] specifi-
cations for the marginal model, and the temperature [Equa-
tions (4) and (5)] and precipitation occurrence [Equations (8),
(9), and (10)] specifications for the spatial model. In both cases,
we used parameters estimated from the training data for the
simulations. We defined a realization as forecasting ice at one
of the 104 points on the road if it had both freezing temperature
and nonzero precipitation at that point. The probability of ice on
the road at that location was then the proportion of realizations
forecasting ice.

Figure 6 maps these probabilities for one day for both mod-
els. Not surprisingly, they are similar between the two models
because the real differences between the models are for the joint
distribution of ice at different places, not for the probability of
ice at one place.

To verify the probabilistic forecasts, we used the observa-
tions at the 10 stations, for which the forecast probabilities can
be computed analytically. We did not observe directly whether
there was ice on the road, and instead, we say that ice occurred
if the temperature was at or below freezing and there was pre-
cipitation.

Comparisons of forecasts and observations at individual sites
assess the performance of the predictive distributions only mar-
ginally. To evaluate the probabilistic forecasts of the ice field as
a whole, we forecast ice formation simultaneously at all 10 ob-
servation sites. This was done using the procedure described at
the beginning of this section, replacing the 104 points with the
10 observation sites. For a given realization, we say that ice was
predicted along the section I of I-90 if ice formation was fore-
cast at at least 1 of the 10 sites. We say that ice was observed
along I if temperature was at or below freezing and there was
precipitation at at least one of the stations.

To distinguish between the two different types of verifica-
tion—marginal and spatial—we use the expression “ice at ob-
servation sites” for verification results relative to forecasts of
ice at the individual sites, and “ice along I ” to refer to forecasts
of ice simultaneously at the 10 observation sites.

3. RESULTS

We now compare the out-of-sample predictive performance
of our probabilistic forecasting methods for the 2003–2004 and
2004–2005 winter seasons, for individual sites and for the entire
section I of I-90, with that of several other methods. One of
them is the deterministic forecast from the numerical weather
prediction model, which we call the “raw” forecast. We define
this as predicting ice if it forecasts both freezing temperature
and nonzero precipitation.

To determine the impact of a simple bias correction on the
predictive performance of the raw forecast, we compare the pre-
dictive performance of our methods to that of the bias-corrected
raw forecast. We refer to this forecast as the bias-corrected fore-
cast. The bias correction was performed on a daily basis and it
was carried out using simple linear regression and data from a
20-day “sliding window” training period.

We also compare our probabilistic forecasts to those from
an ensemble of numerical forecasts, the University of Washing-
ton Mesoscale Ensemble (UWME; Eckel and Mass 2005). This
is an eight-member ensemble generated in the Department of
Atmospheric Sciences at the University of Washington, which
is obtained by running the MM5 numerical weather prediction
model with eight distinct sets of initial and boundary condi-
tions, supplied by major domestic and foreign weather agencies
on the basis of past and current observations. The uncertainty
captured by the ensemble thus represents the uncertainty in ini-
tial and boundary conditions. We also compare our methods to
a bias-corrected version of the UWME in which each member
of the ensemble was adjusted for bias, using simple linear re-
gression and a 20-day training period.

Our main measure of performance is the Brier score defined
in Section 2.4. The Brier score can be decomposed into uncer-
tainty, reliability, and resolution components and equals uncer-
tainty plus reliability minus resolution (Murphy 1973). Specif-

Figure 6. Probability of ice formation along I-90 on March 31, 2004, as forecast by the spatial model (solid black line) and the marginal
model (dot–dash black line). The profile of I-90 is shown in grey, while observations are represented by black dots.
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ically, if the forecast probabilities take values p1, . . . ,pK then

Brier score = ō(1 − ō)︸ ︷︷ ︸
uncertainty

+ 1

M

K∑
k=1

nk(pk − ōk)
2

︸ ︷︷ ︸
reliability

− 1

M

K∑
k=1

nk(ōk − ō)2

︸ ︷︷ ︸
resolution

,

where nk is the number of times that pk is forecast, ōk is the re-
spective observed relative event frequency, and ō is the overall
relative event frequency. In cases like ours, in which the prob-
ability forecast is a continuous variable, the decomposition de-
pends on a binning of the forecast values and is approximate
only, but typically is very close to being exact. The uncertainty
component measures the inherent uncertainty in the observa-
tions and is independent of the forecasts. The reliability com-
ponent measures the deviation of the reliability curve from the
diagonal. It addresses calibration, that is, the statistical consis-
tency between the forecasts and the observations, and is nega-
tively oriented. The resolution component measures the ability
of the forecast to distinguish between prior situations that will
lead to the occurrence or nonoccurrence of the event and is pos-
itively oriented.

Table 2 shows that for the probability that ice forms at in-
dividual locations, both of our probabilistic forecasting meth-
ods substantially outperformed the raw and the ensemble fore-
casts. Figures 7 and 8 show reliability diagrams for the prob-
abilistic forecasts of ice formation provided by the marginal
model, the spatial model, the UWME, and the bias-corrected
UWME. Our methods were superior to both ensembles, which
were very underdispersed and particularly unreliable for high
predicted probabilities. At individual locations along I-90, the
marginal and spatial methods performed similarly, as expected.
However, for probability forecasts of the spatial aggregate “ice
formation along I ,” the spatial model was more reliable: the
marginal model tended to overestimate the probability of ice
formation.

We now compare the forecasting methods in economic terms.
In the case of the probability forecasts, we assume that anti-
icing measures, costing C, are taken whenever the probability
of road ice is greater than a given threshold. A loss L is incurred
when no anti-icing measures are taken, but ice does form on the
roadway. Various estimates of the economic loss L associated
with the closure of I-90 have been reported, ranging from 1
to 18 million dollars per day (Paulson 2001). The cost C of

anti-icing measures was estimated at about 100,000 dollars per
day.

The threshold probability used to decide whether or not to
take anti-icing measures equals the cost–loss ratio, R = C/L.
Table 3 shows contingency tables cross-classifying action (anti-
icing measures or not) against outcome (road ice or not) for
each of seven different forecasting methods when R = 0.1.
We have discussed six of these forecasts: the raw forecast, the
bias-corrected forecast, the two ensembles (UWME and bias-
corrected UWME), and our two methods. The seventh forecast
we consider, the naive forecast, is the same in every instance.
If the relative frequency of road ice over a prior winter season
is above the threshold probability R, then the naive forecast al-
ways predicts road ice; otherwise it always predicts no road ice.
The marginal probability of ice formation over the 2002–2003
winter season was 0.07 (9 instances out of 131 forecast events)
and so the naive forecast always predicts ice if R < 0.07 and
never predicts ice if R ≥ 0.07.

The contingency tables enable us to determine what the total
cost associated with winter road maintenance decisions will be
if we had used these forecasts during the two winter seasons.
We write n00, n01, n10, and n11 for the entries in a contingency
table; for example, n01 is the number of times that ice was fore-
cast but no ice formed. Then the total cost over the period con-
sidered will have been Ln10 + C(n01 + n11).

Figure 9 shows the economic cost associated with each of
the seven forecasting methods as a function of the cost–loss
ratio, R, when C equals 100,000 dollars. Since the costs for
the bias-corrected forecast and the bias-corrected UWME are
nearly identical to those for the raw forecast and the UWME,
respectively, Figure 9 does not include results for the former
two methods. Our probabilistic forecasts will have led to con-
siderably lower costs than the raw forecast, at all thresholds.
The naive forecast will have led to a total cost of 27.5 million
dollars if R < 0.07, in which case it always predicts ice. At
thresholds R ≥ 0.07, the naive forecast never predicts ice and
its total cost is Ln10 = C

R n10.
To give a more detailed example, consider the case in which

C equals 100,000 dollars and L equals 1,000,000 dollars, so
that R = 0.1, which is a realistic assumption. In that case, act-
ing on the basis of the raw forecast will have resulted in a to-
tal cost of 46.0 million dollars over the two winter seasons.
Bias-correcting the raw forecast will have lowered the cost
only slightly, to 45.9 million dollars. Acting on the basis of the
UWME and bias-corrected UWME will have resulted in total
costs of 31.1 and 30.5 million dollars, respectively. With the
marginal and the spatial model, the cost will have been cut to

Table 2. Brier scores for probability forecasts of ice formation at individual sites and along the section I of I-90 for the 2003–2004 and
2004–2005 winter seasons. The uncertainty, reliability, and resolution components of the Brier score are shown in parentheses

Ice at observation sites Ice along I

Raw forecast 0.179 (0.138; 0.070; 0.030) 0.280 (0.234; 0.085; 0.040)
Bias-corrected forecast 0.167 (0.138; 0.060; 0.031) 0.247 (0.234; 0.064; 0.051)
UWME 0.126 (0.138; 0.022; 0.035) 0.193 (0.234; 0.037; 0.078)
Bias-corrected UWME 0.152 (0.138; 0.047; 0.033) 0.203 (0.234; 0.045; 0.076)
Marginal model 0.103 (0.138; 0.043; 0.078) 0.167 (0.234; 0.103; 0.171)
Spatial model 0.115 (0.138; 0.045; 0.069) 0.163 (0.234; 0.080; 0.151)
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Figure 7. Reliability diagram for probability forecasts of ice formation at observation sites by the UWME, the bias-corrected UWME, the
marginal model, and the spatial model, for the 2003–2004 and 2004–2005 winter seasons. Histograms of the forecast probabilities are also
shown.

23.2 and 23.5 million dollars. Thus our results suggest that us-
ing our probabilistic forecasts can have lowered the overall eco-
nomic loss by nearly 50%, or about 11 million dollars yearly on
just one mountain pass, when compared to the raw forecast, and
by 24% or 3.8 million dollars yearly, when compared to the en-
semble forecasts. Bias removal alone reduces costs, but only
slightly so.

Our test dataset consisted of 275 cases, so in our example
with C = 100,000 dollars, taking anti-icing measures every day
will have cost 27.5 million dollars. Basing decisions on the raw
forecasts will have led to a loss considerably greater than this,
showing the danger of relying on deterministic guidance when
the costs and losses are as asymmetric as in this case. Using
probabilistic forecasts of ice provided by the marginal model
will have yielded a reduction in economic loss of about 15%, or
2 million dollars per year compared with the strategy of always
anti-icing.

4. DISCUSSION

We develop two ways of estimating the probability of ice
formation on a roadway. The simpler one ignores spatial de-
pendence and the more complex one models spatial depen-
dence explicitly. In our experiments, both probabilistic meth-
ods considerably outperformed the raw forecast and the en-
semble forecasts we considered and will almost halve the to-
tal economic cost relative to relying on deterministic guidance.
The two methods give similar results because much of the spa-
tial dependence in ice formation was already accounted for by
the numerical weather forecasts.

Our approach to the problem of predicting road ice goes be-
yond previous approaches by providing probabilistic forecasts
rather than deterministic predictions. Additionally, it provides
forecasts that are better calibrated and more reliable than prob-
abilistic forecasts produced by ensembles of numerical fore-
casts.
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Figure 8. Reliability diagram for probability forecasts of ice formation along the section I of I-90 for the UWME, the bias-corrected UWME,
the marginal model, and the spatial model for the 2003–2004 and 2004–2005 winter seasons. Histograms of the forecast probabilities are also
shown.

Commonly, road ice is forecast using mathematical mod-
els that reproduce the physical interactions between the road
and the atmosphere (Sass 1992; Shao and Lister 1995; Best
1998; Chapman, Thornes, and Bradley 2001b; Crevier and De-
lage 2001; Korotenko 2002). Such models take into account
meteorological parameters, such as air temperature, precipi-
tation, wind direction, wind speed, humidity, and dew point,
and predict both road surface temperature and road conditions
(Chapman, Thornes, and Bradley 2001b). However, despite the
high level of detail, their predictions are not always accurate
(Shao 1998). For example, three numerical road models used
in the U.K. were found to be negatively biased (Chapman,
Thornes, and Bradley 2001b).

Statistical methods are applied to select the weather and other
variables that best predict road surface temperature (Shao and
Lister 1996; Chapman, Thornes, and Bradley 2001a; Thornes,
Cavan, and Chapman 2005). Similarly, statistical postprocess-
ing methods for the outputs of numerical weather prediction or

road prediction models are proposed. Shao (1998) used a back-
propagation neural network to postprocess short-range fore-
casts of road surface temperature. Sherif and Hassan (2004)
generated predictions of road surface temperature by linear re-
gression of the observed pavement temperature on the numeri-
cal forecasts of selected meteorological variables. These meth-
ods are all deterministic in the sense that they are intended to
yield point forecasts, rather than predictive distributions.

Our marginal and spatial models are fairly simple, yet they
provide big improvements over the raw forecast and over en-
sembles of forecasts, both in terms of accuracy and economic
value. The method for computing the predictive mean in our
marginal model can be viewed as an instance of Model Output
Statistics (MOS; Glahn and Lowry 1972; Wilks 2006). How-
ever, MOS was not previously applied to road ice forecast-
ing and MOS does not yield probabilistic forecasts. Our spa-
tial model can be viewed as a generalization of the model of
Gel, Raftery, and Gneiting (2004) for probabilistic forecasting
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Table 3. Forecasts and observations of ice formation for the naive
forecast, the raw forecast, the bias-corrected forecast, the UWME,

the bias-corrected UWME, the marginal model, and the spatial
model at threshold probability R = 0.1 for the 2003–2004 and

2004–2005 winter seasons. Both the raw and the bias-corrected
forecasts are deterministic, so their entries do not depend on

the threshold probability

Forecast type Ice forecast Ice observed Not observed

Naive forecast Yes 0 0
No 103 172

Raw forecast Yes 68 42
No 35 130

Bias-corrected forecast Yes 67 32
No 36 140

UWME Yes 88 73
No 15 99

Bias-corrected UWME Yes 88 67
No 15 105

Marginal model Yes 101 111
No 2 61

Spatial model Yes 102 123
No 1 49

of temperature fields to simultaneous forecasting of tempera-
ture and precipitation fields.

In our spatial model, precipitation occurrence is modeled by
a latent Gaussian random field with spatial dependence between
sites. Similar models for modeling precipitation were used by
others (Bardossy and Plate 1992; Hughes and Guttorp 1994;
Hutchinson 1995; Guillot 1999; Hughes, Guttorp, and Charles
1999; Sansò and Guenni 1999, 2000, 2004; Allcroft and Glas-
bey 2003; Rappold, Gelfand, and Holland 2008). Our main con-
tribution here is modeling temperature and precipitation jointly
to generate forecasts of ice.

One direction in which our approach can be expanded will
be to make use of available forecast ensembles, perhaps us-
ing a Bayesian model averaging approach (Raftery et al. 2005;
Berrocal, Raftery, and Gneiting 2007; Sloughter et al. 2007).

Although our methods outperform ensemble forecasts, combin-
ing the two might work better than either one individually.

There are several other ways in which the two models pre-
sented in this article can be expanded. Some or all of the coef-
ficients in both the spatial and marginal models for temperature
and precipitation can be modeled as spatially varying parame-
ters. In the spatial model, a more flexible class of covariance
structures, such as the Matérn covariance function (Guttorp and
Gneiting 2006), can be used to model the spatial dependence in
the forecast errors of temperature and precipitation. However,
it is not clear that this will lead to improvements in predictive
performance since, as we noted, the numerical forecasts them-
selves already account for much of the spatial dependence in
the data.

In estimating the model parameters, we have fit the two mod-
els for each day using a “sliding window” training period. This
is a simple adaptive approach that, nevertheless, yields good re-
sults. A different approach will be to develop a dynamic version
of the models presented here and estimate the parameters using
all the data at once. We did not pursue this approach mainly for
two reasons. First, our interest was in developing a method that
can be operationally implemented by forecasters for real-time
forecasting of road ice. Thus, we preferred a simple model that
is easy to fit and interpret over a more complex one. Second, de-
spite the spatio-temporal nature of the data, there was no need
to model both the spatial and the temporal structure. Numerical
weather forecasts are obtained by solving a system of partial
differential equations that describe how the atmosphere evolves
in time, and so they already incorporate temporal dependence.
By including the numerical forecasts in the mean functions of
the Gaussian processes for temperature and precipitation, we
are accounting for temporal dependence. To confirm this, Fig-
ure 10 shows the empirical autocorrelation function of the raw
forecast errors and the residuals from the regression model of
Equation (2) at the Snoqualmie River Bridge station over three
winter seasons. The results were similar for other stations.

To estimate the model parameters we adopt a two-stage ap-
proach, in which different parameters are estimated separately,

Figure 9. Total economic cost associated with forecasts of ice formation provided by the naive forecast, the raw forecast, the UWME, the
marginal model, and the spatial model. The costs refer to the 2003–2004 and 2004–2005 winter seasons and depend on the cost–loss ratio, R.
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Figure 10. Empirical autocorrelation function for temperature forecast errors from the raw forecast and residuals from the regression model
in Equation (2) at the Snoqualmie River Bridge (HOME) station for the winter seasons 2002–2003, 2003–2004, and 2004–2005. A color version
of this figure is available in the electronic version of this article.

but that, as our results show, works well. Simultaneous estima-
tion of all the parameters using Markov chain Monte Carlo of-
ten does not work well in this type of situation (Sahu, Gelfand,
and Holland 2006), and might not be fast and simple enough
for real-time implementation.

We developed our methods using numerical weather fore-
casts of air temperature and rainfall amount, and we defined
ice as the joint occurrence of air temperature at or below freez-
ing and precipitation. It will be more accurate to use observa-
tions of whether or not road ice actually occurred, but these
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were not available. Failing that, a more accurate definition of
road ice will be the joint occurrence of pavement (rather than
air) temperature at or below freezing and nonzero precipitation.
Numerical forecasts of pavement temperature and observations
of road surface temperature were not available to us. However,
both the marginal model and the spatial model method can be
adapted and applied to forecasts and observations of pavement
temperature rather than air temperature.

[Received April 2007. Revised March 2009.]
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