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Estimating the Correlation in Bivariate Normal Data With Known
Variances and Small Sample Sizes

Bailey K. FOSDICK and Adrian E. RAFTERY

We consider the problem of estimating the correlation in bi-
variate normal data when the means and variances are assumed
known, with emphasis on the small sample case. We consider
eight different estimators, several of them considered here for
the first time in the literature. In a simulation study, we found
that Bayesian estimators using the uniform and arc-sine priors
outperformed several empirical and exact or approximate maxi-
mum likelihood estimators in small samples. The arc-sine prior
did better for large values of the correlation. For testing whether
the correlation is zero, we found that Bayesian hypothesis tests
outperformed significance tests based on the empirical and ex-
act or approximate maximum likelihood estimators considered
in small samples, but that all tests performed similarly for sam-
ple size 50. These results lead us to suggest using the posterior
mean with the arc-sine prior to estimate the correlation in small
samples when the variances are assumed known.

KEY WORDS: Arc-sine prior; Bayes factor; Bayesian test; Jef-
freys prior; Maximum likelihood estimator; Uniform prior.

1. INTRODUCTION

Sir Francis Galton defined the theoretical concept of bivariate
correlation in 1885, and a decade later Karl Pearson published
the formula for the sample correlation coefficient, also known
as Pearson’s r (Rodgers and Nicewander 1988). The sample
correlation coefficient is still the most commonly used mea-
sure of correlation today as it assumes no knowledge of the
population means or variances and is the maximum likelihood
estimator for the correlation coefficient in the bivariate normal
distribution when the means and variances are unknown.

If the variances are known, information is lost by using the
sample correlation coefficient. We cannot simply substitute the
known variance quantities into the denominator of the sample
correlation coefficient since that results in an estimator that is
not the maximum likelihood estimator and may fall outside the
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interval [−1, 1]. When the variances are known, we seek an
estimator that takes advantage of this information.

Kendall and Stuart (1979) noted that conditional on the vari-
ances, the maximum likelihood estimator of the correlation is
the solution of a cubic equation. Sampson (1978) proposed a
consistent, asymptotically efficient estimator based on the cubic
equation that avoided the need to solve the equation directly. In a
simulation study, we found that when the true correlation is zero
and the sample size is small, the variances of these estimators are
undesirably large. This led us to search for more stable estimates
of the correlation, which condition on the known variances and
perform well when sample sizes are small.

Our interest in this problem arose in the context of proba-
bilistic population projections. Alkema et al. (2011) developed
a Bayesian hierarchical model for projecting the total fertility
rate (TFR) in all countries. This model works well for pro-
jecting the TFR in individual countries. However, for creating
aggregated regional projections, there was concern that excess
correlation existed between the country fertility rates that was
not accounted for in the model. To investigate this, we con-
sidered correlations between the normalized forecast errors in
different countries, conditional on the model parameters. Often
there were as few as 5–10 data points to estimate the correlation.
For each pair of countries, these errors were treated as samples
from a bivariate normal distribution with means equal to zero
and variances equal to 1. Determining whether the correlations
between the countries are nonzero, and if so estimating them, is
necessary to form a valid predictive distribution of aggregated
population quantities.

In Section 2, we describe the estimators we consider; in Sec-
tion 3, we give the results of our simulation study; and in Section
4, we discuss alternative approaches.

2. ESTIMATORS OF CORRELATION

Let (Xi, Yi), i = 1, . . . , n be independent and identically
distributed observations from a bivariate normal distribution
with means equal to zero, variances equal to 1, and correla-
tion unknown. We let SSx = ∑n

i=1X
2
i , SSy = ∑n

i=1 Y
2
i , and

SSxy = ∑n
i=1XiYi and we consider eight estimators of the

correlation.
The first estimator is the maximum likelihood estimator for

bivariate normal data when the variances are unknown. We refer
to this as the sample correlation coefficient even though we have
conditioned on the means being zero. This estimator is defined
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as follows:

ρ̂(1) =
∑n

i=1 XiYi
n√(∑n

i=1 X
2
i

n

) (∑n
i=1 Y

2
i

n

) = SSxy√
SSx SSy

.

The second estimator is a modification of the first estimator,
where we assume that the variances are known to be equal to
1. We name this estimator the empirical estimator with known
variances and define it as

ρ̂(2) =
∑n

i=1XiYi

n
= SSxy

n
.

This estimator is unbiased yet is not guaranteed to fall in
[−1, 1], especially for small samples. This unappealing prop-
erty motivated us to define the third estimator called the trun-
cated empirical estimator with known variances, ρ̂(3), where the
second estimator is truncated at −1 if it falls below −1 and at 1
if it falls above 1.

The maximum likelihood estimator (MLE) when the means
are known to be zero and variances are known to be 1 is the
fourth estimator. This estimator is found by solving the cubic
equation

0 = ρ3 − ρ2 SSxy

n
− ρ

(n− SSx − SSy)

n
− SSxy

n
, (1)

which results from setting the derivative of the log-likelihood
equal to zero. If we define

ψ ≡ ψ(SSx, SSy, SSxy)=−3n(n−SSx−SSy)−SSxy2, and

γ ≡ γ (SSx, SSy, SSxy)= − 36n2SSxy + 9nSSx × SSxy

+ 9nSSy × SSxy − 2SSxy3,

then the three roots of this equation are

ρ
(4)
1 = SSxy

3n
+ 21/3 (ψ)

3n
(
γ +

√
4 (ψ)3 + (γ )2

)1/3

−
(
γ +

√
4 (ψ)3 + (γ )2

)1/3

3 × 21/3n
,

ρ
(4)
2 = SSxy

3n
−

(
1 + i

√
3
)

(ψ)

3 × 22/3n
(
γ +

√
4 (ψ)3 + (γ )2

)1/3

+
(

1 − i
√

3
) (
γ +

√
4 (ψ)3 + (γ )2

)1/3

6 × 21/3n
,

and

ρ
(4)
3 = SSxy

3n
−

(
1 − i

√
3
)

(ψ)

3 × 22/3n
(
γ +

√
4 (ψ)3 + (γ )2

)1/3

+
(

1 + i
√

3
) (
γ +

√
4 (ψ)3 + (γ )2

)1/3

6 × 21/3n
.

Kendall and Stuart (1979) noted that at least one of these roots
is real and lies in the interval [−1, 1]. However, it is possible

that all three roots are real and in the admissible interval, in
which case the likelihood can be evaluated at each root to deter-
mine the true maximum likelihood estimate. Based on whether
(SSxy/n)2 is bigger than 3(SSx/n+ SSy/n− 1), and whether
γ /(2ψ) is bigger than 1, Madansky (1958) specified conditions
under which each of the three roots is the maximum likelihood
estimate.

Sampson (1978) acknowledged the effort involved in com-
puting the maximum likelihood estimate when the variances
are known and proposed an asymptotically efficient estimator
of the correlation based solely on the coefficients in the cubic
Equation (1). Sampson’s estimator does not necessarily fall in
the interval [−1, 1] so he suggested truncating the estimate to
lie in the interval, as was done with the empirical estimator with
known variances. This less computationally intensive estimator
is referred to as Sampson’s truncated MLE approximation, ρ̂(5),
and is the fifth estimator we consider.

The remaining three estimators are Bayesian. Our sixth esti-
mator is the posterior mean assuming a uniform prior, which
has the following form:

ρ̂(6) = E[ρ|X, Y ]

=
∫ 1
−1

ρ

2

(
1

2π
√

1−ρ2

)n
exp

(
− 1

2(1−ρ2) [SSx − 2ρSSxy + SSy]
)
dρ

∫ 1
−1

1
2

(
1

2π
√

1−ρ2

)n
exp

(
− 1

2(1−ρ2) [SSx − 2ρSSxy + SSy]
)
dρ

,

whereX = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). The denomi-
nator is the integral of the likelihood of the bivariate normal data
multiplied by 1/2, representing the Uniform(−1, 1) prior, while
the numerator is the same but with the integrand multiplied by
ρ for the expectation.

Jeffreys (1961) described the improper prior, conditional on
the variances, as follows:

λJeffreys(ρ) ∝
√

1 + ρ2

1 − ρ2
.

This prior was the basis for the seventh estimator: the posterior
mean assuming a Jeffreys prior, ρ̂(7).

Finally, Jeffreys (1961) noted that the arc-sine prior,

λarc-sine(ρ) = 1

π

1√
1 − ρ2

,

is similar to the Jeffreys prior, but integrable on [−1, 1]. The
posterior mean assuming an arc-sine prior, ρ̂(8), represents the
eighth, and final, estimator investigated.

Each of these priors is shown in Figure 1. The curve for the
Jeffreys prior is an approximation since it is not integrable on
[−1, 1]. Note that the arc-sine distribution on ρ is equivalent to
placing a generalized beta (2, 1, 0.5, 0.5) of the first kind on
|ρ| (McDonald 1984). Similarly, the uniform prior corresponds
to a generalized beta (1, 1, 1, 1) of the first kind on |ρ|. Of these
estimators, the empirical estimator with known variances and
truncated empirical estimator with known variances are, to our
knowledge, proposed here for the first time.
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Table 1. Root mean squared errors multiplied by 1000 for each estimator based on one million simulated datasets (n = sample size). The
estimators with the smallest root mean squared error are shown in bold for each sample size and each true correlation interval.

|ρ|
n Estimator [0, 1] [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

5 Sample correlation coeff 352 442 406 326 172
Emp w/ known var 516 452 479 529 595
Trunc emp w/ known var 387 419 399 369 358
MLE 373 464 437 352 161
Sampson’s MLE approx 382 462 435 357 232
Mean w/ uniform prior 297 289 315 332 244
Mean w/ Jeffreys prior 311 358 354 319 182
Mean w/ arc-sine prior 299 316 330 325 213

10 Sample correlation coeff 240 311 280 213 101
Emp w/ known var 365 319 338 373 421
Trunc emp w/ known var 299 314 312 295 274
MLE 248 334 295 203 72
Sampson’s MLE approx 249 333 295 206 90
Mean w/ uniform prior 216 241 246 227 124
Mean w/ Jeffreys prior 222 277 261 208 92
Mean w/ arc-sine prior 217 254 251 219 109

50 Sample correlation coeff 104 139 122 88 39
Emp w/ known var 163 143 151 167 188
Trunc emp w/ known var 150 143 151 161 145
MLE 100 142 117 75 29
Sampson’s MLE approx 100 142 117 75 29
Mean w/ uniform prior 97 129 116 82 33
Mean w/ Jeffreys prior 98 135 115 78 30
Mean w/ arc-sine prior 98 131 116 80 32

3. SIMULATION STUDY

3.1 Estimating the Correlation

Samples of sizes 5, 10, and 50 were generated from a bivariate
normal distribution with means equal to zero, variances equal

Figure 1. The density of each of the priors for the Bayesian estima-
tors are shown. The Jeffreys curve is an approximation since it is not
integrable on [−1, 1]. Observe that the arc-sine and Jeffreys priors are
very similar, but the Jeffreys puts more weight on extreme values.

to 1, and a specified correlation value. The estimators were first
evaluated for positive and negative values of the correlation and
were all found to be symmetric. Thus, values of the correlation
were sampled uniformly from symmetric intervals on [−1, 1] to
analyze how the estimators performed for different magnitudes
of correlation. The estimators were compared based on root
mean squared error using one million samples. The results are
shown in Table 1.

Numerical issues arose when computing the integrals in-
volved in the posterior mean estimators in cases where the
true correlation value was extremely close to 1 in magnitude.
To handle this, a tolerance of 10−6 × n was put on the value
of |SSx + SSy ± 2SSxy| since SSx + SSy ± 2SSxy = 0 sig-
nifies a correlation of ∓1, respectively. When this tolerance
was satisfied, the correlation estimate was given the appropriate
value of 1 or −1. This approximation was used about 10 times
out of one million in the [0, 1] interval and 30 times out of one
million in the [0.75, 1] interval for each sample size.

For the first column, since the correlations were drawn uni-
formly from the interval [−1, 1], the Bayesian estimator assum-
ing a uniform prior will have the lowest mean squared error ac-
cording to theory. In samples of size 5, the uniform and arc-sine
priors had superior performance over the entire [−1, 1] interval
compared to the other estimators, with a root mean squared error
of about 0.3. The empirical estimator with known variances per-
formed least well, whereas the maximum likelihood estimator
and the sample correlation coefficient performed similarly, with
the sample correlation coefficient doing slightly better. This sug-
gests that in small sample sizes, knowing the variances yields no
improvement when using the maximum likelihood estimator.
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However, when the correlations are decomposed by mag-
nitude, a different story is told. For correlation values above
0.75, the sample correlation coefficient, maximum likelihood
estimator, and posterior mean assuming a Jeffreys prior had
the smallest root mean squared errors. The Jeffreys prior is
highly concentrated at extreme correlation values so we would
expect it to outperform the other Bayesian estimators in the
last interval. The posterior means assuming arc-sine and uni-
form priors had root mean squared errors 1.3 and 1.5 times as
large as those for the MLE, or the best estimator. Conversely,
at low values of correlation, the uniform and arc-sine posterior
mean estimates had significantly lower root mean squared error
than all other estimators. The posterior median estimators for
each of the priors was also considered. They performed sim-
ilarly to the posterior mean estimates and so are not included
here.

In general, one does not know the magnitude of the corre-
lation to be estimated, so an estimator that performs well for
all levels of correlation is desired. Both the posterior mean as-
suming an arc-sine prior and that assuming a uniform prior had
routinely low root mean squared error values when compared to
the other estimators and were fairly consistent across the differ-
ent correlation magnitudes. Therefore, we concluded that these
should be the methods of choice for small sample sizes. One
might argue that if estimating large correlations accurately is of
greater interest, then the posterior mean assuming the arc-sine
prior should be used since it outperforms that with a uniform
prior at the highest correlations.

As the sample size increased from 5 to 10 and from 10 to
50, the root mean squared errors decreased for all estimators,
as expected. For samples of size 50, the root mean squared er-
rors for correlations on the entire interval [−1, 1] were low
and effectively the same for all estimators except the em-
pirical estimators when the variances are known. However,
the estimators’ performances still varied by magnitude of the
correlation.

Sampson’s truncated approximation of the maximum likeli-
hood estimator performed similarly to the maximum likelihood
estimator for smaller sample sizes and almost identically for
the larger sample sizes. This is because, as the sample size in-
creases, the probability of the cubic equation having more than
one real root goes to zero. Thus, large samples make it easier to
use properties of cubic equations to pinpoint the correct MLE
root.

Figure 2 shows the first 5000 samples of each estimator’s
correlation estimates and the true correlation values for samples
of size 5. Notice that the empirical estimate with known vari-
ances often lay outside the range [−1, 1]. In addition, for small
values of the correlation, the empirical estimates, maximum
likelihood estimates, and Sampson’s estimates were extremely
variable, spanning most of the interval [−1, 1]. The Bayesian
estimates showed a closer association overall between the true
correlation value and the estimates, especially when the true
correlation was small. However, there was some curvature in
the tails of the plots for the Bayesian estimators, suggesting that
the estimators typically underestimate the magnitude of the cor-
relation when the true correlation is high. This is to be expected,

Table 2. 95% significance test bounds for testing if ρ > 0 for the
non-Bayesian estimators when ρ = 0 based on one million simulated
datasets

Sample size 5 10 50

Sample correlation coeff 0.729 0.522 0.233
Emp w/ known var 0.731 0.518 0.232
Truncated emp w/ known var 0.731 0.518 0.232
MLE 0.754 0.565 0.241
Sampson’s MLE approx 0.756 0.566 0.241

as the Bayesian approach shrinks estimators away from the
extremes.

3.2 Hypothesis Tests

Estimating the value of the correlation is important, but often
with small sample sizes our interest is not in its actual value but
simply in whether or not it is nonzero. We often have knowledge
about the sign of the correlation between two variables. Here
we consider the case when we are interested in testing if the
correlation is positive.

One way of testing this is to look at the confidence bounds
of the estimators. A level 0.05 test of whether the true correla-
tion is positive can be derived by generating numerous samples
of independent bivariate normal random variables with means
equal to zero and variances equal to 1, calculating a correla-
tion estimate for each sample, and determining the sample 95%
quantile of the correlations. A level 0.05 test then rejects the
hypothesis that the correlation is zero in favor of the alternative
that it is positive if the estimate obtained is greater than the 95%
quantile, that is, the significance test bound. Table 2 shows the
95% significance test bounds for all non-Bayesian estimators
based on one million simulations with ρ = 0. For example, for
the sample correlation coefficient, the significance test bound for
samples of size 5 is 0.73, indicating that about 5% of the samples
resulted in an estimated correlation value greater than 0.73.

For Bayesian tests, Jeffreys (1935, 1961) developed ideas
based on Bayes factors for testing/deciding between two models,
see also Kass and Raftery (1995). A Bayes factor,B10, is the ratio
of the probability of the data under the alternative model to the
probability of the data under the null model. Equivalently, it is
the ratio of the posterior odds for the alternative against the null
model, to its prior odds. A test that rejects the null hypothesis
when B10 > 1 minimizes the sum of the probabilities of Type
I and Type II errors if the prior odds between the models are
equal to 1.

However, if we wish to fix the probability of a Type I error
at 0.05, for example, we can generate data under the null model
and determine the value c such that the probability under the
null model that the Bayes factor is greater than c is 0.05. A
level 0.05 test is then carried out for the null model against the
alternative model by rejecting the null model if the Bayes factor
is greater than c. This method was used with ρ = 0 as the null
hypothesis and ρ > 0 as the alternative hypothesis to compare
the performance of the Bayesian and non-Bayesian methods
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Figure 2. For samples of size 5, the true and estimated correlation values for each estimator is shown above for the first 5000 samples. The
dotted lines in the empirical with known variances plot mark the admissible interval [−1, 1].

when the Type I error is fixed at 0.05. The Bayes factor is

B10 = P (X, Y |ρ > 0)

P (X, Y |ρ = 0)
=
∫ 1

0 p(X, Y |ρ)p(ρ|ρ > 0)dρ

p(X)p(Y )

= 2
∫ 1

0 p(X, Y |ρ)p(ρ)dρ

p(X)p(Y )
, (2)

where p(ρ) is the prior distribution of ρ and the denominator
is the product of the marginal probabilities assuming ρ = 0, or
independence. The factor of two in Equation (2) is due to the
fact that all prior distributions are centered at zero. The Bayes
factor is undefined for the Jeffreys prior so we do not consider
it further here.

Table 3 shows the values of c obtained for the various prior
distributions and sample sizes. We see that as sample size in-

creased, the values of c decreased since the amount of evidence
for the null increased. Also, the values of c for the arc-sine prior
were much greater than those for the uniform prior, reflecting
the fact that the arc-sine prior places more weight on extreme
correlation values.

Table 3. Value of c such that the Bayes factor has 5% probability of
exceeding c if the true value of ρ is 0 [i.e., P(B10 > c|ρ = 0) = 0.05]
based on one million simulated datasets

Sample size 5 10 50

Uniform prior 2.701 2.304 1.238
Arc-sine prior 2.275 1.715 0.817
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Table 4. Average power multiplied by 1000 over intervals for ρ when testing ρ = 0 versus ρ > 0 at the 0.05 significance level based on one
million simulated datasets. For the non-Bayesian estimators, the significance test bounds found in Table 2 were used. The Bayesian tests were
based on the Bayes factors using the value of c listed in Table 3. The tests with the largest power are shown in bold for each sample size and
each correlation interval.

ρ

n Test based on [0, 1] [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

5 Sample correlation coeff 383 81 187 423 839
Emp w/ known var 288 89 198 348 517
Trunc Emp w/ known var 288 89 198 348 517
MLE 356 69 141 352 862
Sampson’s MLE approx 355 69 140 350 861
Uniform prior 397 82 196 442 869
Arc-sine prior 397 81 192 440 875

10 Sample correlation coeff 529 106 326 708 977
Emp w/ known var 441 110 302 562 793
Trunc emp w/ known var 441 110 302 562 793
MLE 505 88 262 682 990
Sampson’s MLE approx 505 88 260 680 990
Uniform prior 534 105 325 722 985
Arc-sine prior 534 104 323 723 987

50 Sample correlation coeff 770 250 833 998 1000
Emp w/ known var 759 245 800 993 1000
Trunc emp w/ known var 759 245 800 993 1000
MLE 768 238 834 999 1000
Sampson’s MLE approx 768 238 834 999 1000
Uniform prior 772 250 838 998 1000
Arc-sine prior 772 250 838 999 1000

Table 4 shows the power when the true correlation was uni-
formly generated from various intervals for each of the non-
Bayesian significance tests and the tests based on Bayes factors.
In samples of size 5, the Bayesian tests had the greatest power
over the entire [0, 1] interval and for the most extreme correla-
tion values. For the smaller correlation values, all tests, except
possibly those based on the MLE and Sampson’s MLE, per-
formed about the same. The tests based on the arc-sine prior
and uniform prior performed similarly for all correlation values
and sample sizes. As sample size increased, the difference be-
tween the powers of the tests based on the MLE and Sampson’s
MLE and all others decreased.

Tests based on the Bayes factor are optimal in that they min-
imize the sum of the probabilities of Type I and Type II errors
when simulating from the prior. For this reason, the uniform
prior performs best over the entire interval [0,1] for all sample
sizes. Table 5 shows the average value of the Type I and Type II
error probabilities when the standard rule of rejecting the null
hypothesis when the Bayes factor is greater than 1 is used. This
optimal Bayesian method is compared with the significance test
bound procedure for the non-Bayesian estimators via this aver-
age error measure. The Bayesian tests had the smallest average
error for samples of size 5. The MLE and Sampson’s MLE ap-
proximation performed very similarly to the Bayesian tests at
the extreme correlation values.

At larger sample sizes, the tests performed effectively equally
well. For the extreme correlation values with samples of size
50, all tests have essentially 100% power so their average error
achieves its lower bound at one-half the Type I error rate. Notice
again that the tests based on the arc-sine prior had slightly

smaller average error than that assuming a uniform prior at
extreme correlation values and that its performance on the entire
interval [0, 1] was close to the uniform, which was best.

4. DISCUSSION

We have considered the estimation of the correlation in bi-
variate normal data when the means and variances are assumed
known, with emphasis on the small sample situation. Using sim-
ulation, we found that the posterior mean using a uniform prior
or an arc-sine prior consistently outperformed several previ-
ously proposed empirical and exact and approximate maximum
likelihood estimators for small samples. The arc-sine prior per-
formed similarly to the uniform prior for small values of ρ, and
better for large values of ρ in small samples. This suggests using
the posterior mean with the arc-sine prior for estimation when
it is important to identify extreme correlations.

For testing whether the correlation is zero, we carried out a
simulation for positive values of ρ within specified intervals,
and found that Bayesian tests had smaller average error than the
non-Bayesian tests when n = 5. With n = 50, however, all the
tests performed similarly.

Spruill and Gastwirth (1982) derived estimators of the corre-
lation when the data are normal but the variables are contained
in separate locations and cannot be combined. Their work com-
bines the data into groups based on the value of one variable
to obtain an estimate of the correlation. This differs from the
more usual situation considered here where both variables are
available in their sampled pairs.
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Table 5. Average error probability, [Type I + Type II]/2, when testing if ρ = 0 versus ρ > 0, multiplied by 1000, based on one million simulated
datasets. The error probabilities for the non-Bayesian tests are based on 0.05 level significance tests and the Bayesian test error probabilities are
based on rejecting the null hypothesis that ρ = 0 if the Bayes factor is greater than 1. The tests with the smallest average error are shown in bold
for each sample size and each correlation interval.

ρ

n Test based on [0, 1] [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1]

5 Sample correlation coeff 333 485 431 313 106
Emp w/ known var 381 480 426 351 267
Trunc emp w/ known var 381 480 426 351 267
MLE 347 490 455 349 94
Sampson’s MLE approx 348 491 455 350 95
Uniform prior 284 460 351 210 113
Arc-sine prior 289 469 374 225 88

10 Sample correlation coeff 261 472 362 171 37
Emp w/ known var 304 470 374 244 129
Trunc emp w/ known var 304 470 374 244 129
MLE 272 481 394 184 30
Sampson’s MLE approx 273 481 395 185 30
Uniform prior 235 446 291 128 76
Arc-sine prior 240 458 319 132 51

50 Sample correlation coeff 140 400 109 26 25
Emp w/ known var 145 402 125 29 25
Trunc emp w/ known var 145 402 125 29 25
MLE 141 406 108 25 25
Sampson’s MLE approx 141 406 108 25 25
Uniform prior 139 389 100 33 32
Arc-sine prior 142 411 114 21 20

Estimation of the sample correlation coefficient with trun-
cation was investigated by Gajjar and Subrahmaniam (1978).
However, there it is the underlying distribution that is assumed
to be truncated instead of the estimator as here.

Datasets and distributions for which use of the sample corre-
lation coefficient is inappropriate were investigated by Carroll
(1961). Norris and Hjelm (1961) considered estimation of corre-
lation when the underlying distribution is not normal, and Farlie
(1960) considered it for general bivariate distribution functions.
Since we limit ourselves to the bivariate normal distribution, we
did not consider these estimators.

Olkin and Pratt (1958) derived unbiased estimates of the cor-
relation in the case when the means are known and the case
when all parameters are unknown. This addresses different sit-
uations to the one we have considered, where the variances are
also assumed known.

Others have considered estimating the correlation in a
Bayesian framework for the bivariate normal setting. Berger
and Sun (2008) addressed this problem using objective priors
whose posterior quantiles match up with the corresponding fre-
quentist quantiles. Ghosh et al. (2010) extended these results
by considering a probability matching criterion based on high-
est posterior density regions and the inversion of test statistics.
However, in both cases, the focus was on matching frequentist
probabilities rather than estimation accuracy.

Much of the other Bayesian correlation work relates to the
estimation of covariance matrices. Barnard, McCulloch, and
Meng (2000) discussed prior distributions on covariance matri-
ces by decomposing the covariance matrix into� = SRS where
S = diag(σ ) is a diagonal matrix of standard deviations and R is

the correlation matrix. With this, one can use the prior factoriza-
tion p(σ,R) = p(σ )p(R|σ ) to specify a prior on the covariance
matrix. Barnard, McCulloch, and Meng (2000) suggested some
default choices for the prior distribution on R that are inde-
pendent of σ . Specifically they mentioned the possibility of
placing a uniform distribution on R, p(R) ∝ 1, where R must
be positive definite. The marginal distributions of the individual
correlations are then not uniform.

Alternatively, for a (d × d) matrix R, one can specify

p(R|ν) ∝ |R| 1
2 (ν−1)(d−1)−1

(
d∏
i=1

|Rii |−ν/2
)
, ν ≥ d,

whereRii is the ith principal submatrix of R. This is the marginal
distribution of R when � has a standard inverse-Wishart distri-
bution with ν degrees of freedom and results in the following
marginal distribution on the pairwise correlations:

f (rij |ν) ∝ (
1 − r2

ij

) ν−d−1
2 , where |rij | ≤ 1.

Uniform marginal distributions for all pairwise correlations
come from the choice ν = d + 1. For ν = 2 and d = 2, this
reduces to the arc-sine prior. This is the boundary case that is
the most diffuse prior in the class. Barnard, McCulloch, and
Meng (2000) discussed using these priors for shrinkage esti-
mation of regression coefficients and a general location-scale
model for both categorical and continuous variables. Zhang,
Boscardin, and Belin (2006) focused on methods for sampling
such correlation matrices.
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Liechty, Liechty, and Muller (2004) considered a model
where all correlations have a common truncated normal prior
distribution under the constraint that the resulting correlation
matrix be positive definite. They also considered the model
where the correlations or observed variables are clustered into
groups that share a common mean and variance. Chib and
Greenberg (1998) assumed a multivariate truncated normal prior
in the context of a multivariate probit model, and Liu and Sun
(2000) and Liu (2001) assumed a Jeffreys prior on R in the con-
text of a multivariate probit and multivariate multiple regression
model.

A number of advances have been made with respect to the
estimation of the covariance matrix treating the variances as
unknown, unlike here. Geisser and Cornfield (1963) developed
posterior distributions for multivariate normal parameters with
an objective prior, and Yang and Berger (1994) focused on esti-
mation with reference priors. Geisser (1965), Tiwari, Chib, and
Jammalamadaka (1989), and Press and Zellner (1978) derived
posterior distributions of the multiple correlation coefficient us-
ing the prior from Geisser and Cornfield, an informative beta
distribution, and diffuse and natural conjugate priors assuming
fixed regressors, respectively. It is possible that some of these
ideas regarding prior specification of covariance matrices could
be applied to the present setting or be used to extend this work
to the multivariate setting.

[Received July 2011. Revised February 2012.]
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