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ABSTRACT

Bayesian model averaging (BMA) is a statistical postprocessing technique that generates calibrated and

sharp predictive probability density functions (PDFs) from forecast ensembles. It represents the predictive

PDF as a weighted average of PDFs centered on the bias-corrected ensemble members, where the weights

reflect the relative skill of the individual members over a training period.

This work adapts the BMA approach to situations that arise frequently in practice; namely, when one or

more of the member forecasts are exchangeable, and when there are missing ensemble members. Ex-

changeable members differ in random perturbations only, such as the members of bred ensembles, singular

vector ensembles, or ensemble Kalman filter systems. Accounting for exchangeability simplifies the BMA

approach, in that the BMA weights and the parameters of the component PDFs can be assumed to be equal

within each exchangeable group. With these adaptations, BMA can be applied to postprocess multimodel

ensembles of any composition.

In experiments with surface temperature and quantitative precipitation forecasts from the University of

Washington mesoscale ensemble and ensemble Kalman filter systems over the Pacific Northwest, the pro-

posed extensions yield good results. The BMA method is robust to exchangeability assumptions, and the

BMA postprocessed combined ensemble shows better verification results than any of the individual, raw, or

BMA postprocessed ensemble systems. These results suggest that statistically postprocessed multimodel

ensembles can outperform individual ensemble systems, even in cases in which one of the constituent systems

is superior to the others.

1. Introduction

Bayesian model averaging (BMA) was introduced by

Raftery et al. (2005) as a statistical postprocessing

method that generates calibrated and sharp predictive

probability density functions (PDFs) from ensemble

systems. The BMA predictive PDF of any future weather

quantity of interest is a weighted average of PDFs cen-

tered on the individual bias-corrected forecasts, where

the weights reflect the predictive skill of the member

forecasts over a training period. The initial development

of BMA was for weather quantities for which the forecast

errors are approximately Gaussian, such as surface tem-

perature and sea level pressure (Raftery et al. 2005;

Wilson et al. 2007a). The approach was extended by

Sloughter et al. (2007, 2009) to apply to skewed weather

variables, such as quantitative precipitation and wind

speed. For all variables considered, and for both meso-

scale ensembles and synoptic ensembles, the BMA post-

processed PDFs outperformed the unprocessed ensemble

forecast and were calibrated and sharp.

This work extends the BMA approach to accommo-

date situations that arise frequently in practice, namely,

when one or more of the member forecasts are ex-

changeable and when there are missing ensemble mem-

bers. We show how BMA can be adapted to handle these

situations, and demonstrate good performance for the

proposed extensions. There is considerable recent in-

terest in the use of multimodel ensembles as a means of

improving deterministic and probabilistic forecast skill

(e.g., Hagedorn et al. 2005; Doblas-Reyes et al. 2005;

Corresponding author address: Chris Fraley, Department of

Statistics, University of Washington, Box 354322, Seattle, WA

98195-4322.

E-mail: fraley@stat.washington.edu

190 M O N T H L Y W E A T H E R R E V I E W VOLUME 138

DOI: 10.1175/2009MWR3046.1

� 2010 American Meteorological Society



Park et al. 2008; Weigel et al. 2008). Our extensions allow

for the application of the BMA technique to any type

and configuration of multimodel ensemble. Contrary to

earlier studies, our results show that statistically post-

processed multimodel ensembles are likely to outperform

any of the raw or postprocessed constituent ensembles.

Exchangeable members lack individually distinguish-

able physical features. Examples include members of the

bred or singular vector synoptic ensembles used by

the National Centers for Environmental Prediction and

the European Centre for Medium-Range Weather Fore-

casts (Toth and Kalnay 1993; Molteni et al. 1996), and the

members of ensemble Kalman filter systems (Evensen

1994; Hamill 2005). Accounting for exchangeability fa-

cilitates postprocessing, in that the BMA weights and

model parameters can be constrained to be equal within

each exchangeable group. This simplifies the BMA ap-

proach, and speeds up the associated computations.

Missing ensemble members typically stem from dis-

ruptions in communications, and software or hardware

failures, which can last for days or weeks at a time. The

chance that any member forecast is missing increases

with the ensemble size and ensemble diversity. Thus,

with the current trend toward larger and multimodel

ensembles, a considerable amount of potentially useful

information would be ignored if instances with missing

members were excluded from training sets.

The remainder of the paper is organized as follows.

The basic BMA framework is reviewed in section 2,

where we also show how to estimate the BMA parame-

ters via the expectation-maximization (EM) algorithm.

Section 3 shows how the BMA approach can be modified

to properly account for exchangeability, and gives veri-

fication results for 24-h surface temperature forecasts

from the University of Washington (UW) mesoscale

ensemble (ME), ensemble Kalman filter (EnKF), and

ME–EnKF combined systems over the Pacific North-

west (Grimit and Mass 2002; Eckel and Mass 2005;

Dirren et al. 2007; Torn and Hakim 2008). Section 4

describes how missing ensemble members can be han-

dled in estimation and prediction, and gives verification

results with these methods for 48-h surface tempera-

ture and quantitative precipitation forecasts from the

UW ME system. The paper ends with a discussion in

section 5.

2. Ensemble postprocessing using Bayesian
model averaging

In BMA for ensemble forecasting (Raftery et al.

2005) each ensemble member forecast, fi, is associated

with a component PDF, gi(yjfi, ui), where y represents

the weather quantity of interest, and ui comprises the

parameters of the ith component PDF. The BMA pre-

dictive PDF then is a mixture of the component PDFs:
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where the BMA weight wi is based on ensemble member

i’s relative performance in the training period. The wis

are probabilities and so they are nonnegative and add up

to 1, that is, �m

i51w
i

5 1. Here m is the number of fore-

casts in the ensemble.

The component PDF gi(yj fi) can be thought of as the

conditional PDF of the weather quantity y given that

ensemble member i provides the most skillful forecast.

This heuristic interpretation is in line with how opera-

tional weather forecasters often work, by selecting one

or a small number of ‘‘best’’ forecasts from a potentially

large number available, based on recent predictive

performance (Joslyn and Jones 2008). For weather var-

iables such as temperature and sea level pressure, which

have approximately Gaussian errors, the component

PDFs can be taken to be normal distributions centered

at bias-corrected ensemble member forecasts, as shown

by Raftery et al. (2005). We refer to this case as the

Gaussian mixture model. For quantitative precipitation,

Sloughter et al. (2007) model the component PDFs using

a mixture of a point mass at zero and a power-transformed

gamma distribution. For wind speed, Sloughter et al.

(2009) propose the use of gamma components.

Certain member-specific parameters of the BMA

model are estimated individually and at an initial stage,

prior to applying the EM algorithm that we describe

here. For example, in the Gaussian mixture model, bias

correction is done for each ensemble member in-

dividually by fitting a standard linear regression model

to the training data (Raftery et al. 2005). For quantita-

tive precipitation (Sloughter et al. 2007), a logistic re-

gression model for the probability of precipitation is fit

for each ensemble member. These initial procedures allow

for straightforward adaptation when ensemble members

are exchangeable and/or missing, in that training sets for

exchangeable members are merged to estimate a single,

common regression model for each exchangeable group,

and instances with the given ensemble member missing

are excluded from the training set. These adaptations

are immediate and will not be further discussed here.

The BMA weights, wi, and the remaining parameters,

ui, of the component PDFs are estimated by maximum

likelihood (Wilks 2006) from training data. Typically,

the training set comprises a temporally and/or spa-

tially composited collection of past ensemble forecasts,

f1,s,t, . . . , fm,s,t, and the respective verifying observation,

ys,t, at location or station s and time t. The likelihood
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function, ‘, is then defined as the probability of the

training data, viewed as a function of the wis and uis:
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where the product extends over all instances (s, t) in the

training set. The maximum likelihood estimates are

those values of the wis and uis that maximize the likeli-

hood function, that is, the values under which the veri-

fying observations were most likely to materialize.

The likelihood function typically cannot be maximized

analytically, and so it is maximized using the EM algorithm

(Dempster et al. 1977; McLachlan and Krishnan 1997).

The EM algorithm is iterative, and alternates between two

steps, the expectation or E step, and the maximization or

M step. For mixture models, it uses unobserved quantities

zi,s,t, which can be interpreted as the probability of en-

semble member i being the most skillful forecast for lo-

cation s at time t. The z1,s,t, . . . , zm,s,t are nonnegative and

sum to 1 for each instance (s, t) in the training set.

In the E step, the zi,s,t are estimated given the current

values of the BMA weights and component PDFs; spe-

cifically,
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where the superscript ‘‘(k)’’ refers to the kth iteration of

the EM algorithm, and thus w(k)
p and u

(k)
p refer to the

estimates at the kth iteration.

The M step then consists of maximizing the expected

complete-data log likelihood as a function of the wis and

uis, where the expectation is conditional on the training

data and the previous estimates. The expected complete-

data log likelihood is the sum of two terms, one of which

involves the wis and not the uis, and the other of which

involves the uis but not the wis (Dempster et al. 1977).

We refer to the second term as the partial expected

complete-data log likelihood.

Maximizing the partial expected complete-data log like-

lihood as a function of the wis yields updated estimates,
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of the BMA weights, where n is the total number of

instances in the training set.

Updated estimates u
(k11)
1 , . . . , u(k11)

m of the compo-

nent parameters are obtained by maximizing the partial

expected complete-data log likelihood:
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over u1, . . . , um, where the BMA weights are fixed at

their current estimates. For the Gaussian mixture model,

this optimization can be done analytically (Raftery et al.

2005). For the gamma mixtures that apply to quantitative

precipitation and wind speed (Sloughter et al. 2007, 2009)

numerical optimization is required. The E step and M

step are then alternated iteratively to convergence.

Vrugt et al. (2008) compared the EM algorithm to a fully

Bayesian, Markov chain Monte Carlo (MCMC)-based

method for fitting the BMA parameters in the Gaussian

mixture model. The MCMC approach has considerable

flexibility and provides potentially useful information

about the uncertainty associated with the estimated BMA

weights and variances. However, although much more

computationally intensive than EM estimation, the

MCMC method gave similar predictive results.

The standard form of the EM algorithm assumes that

none of the ensemble member forecasts, fi,s,t, are miss-

ing, and that the ensemble members are individually

distinguishable, so that distinct weights can be physically

interpreted. In what follows, we extend BMA to cases in

which the members can be grouped into subsets of ex-

changeable forecasts and/or some of the ensemble mem-

ber forecasts are missing.

3. Accommodating exchangeable
ensemble members

The methodology we have described so far has been

for a situation where the ensemble members come from

clearly distinguishable sources. We now show how to

modify it to deal with situations in which some or all of

the ensemble members are statistically indistinguish-

able, differing only in some random perturbations. Most

of the synoptic ensembles that are currently in use are of

this type (Buizza et al. 2005; Park et al. 2008). In these

cases, members that are statistically indistinguishable

should be treated as exchangeable, and thus should have

equal BMA weight and equal BMA parameter values.

The Gaussian mixture model for temperature already

constrains the standard deviation parameters to be equal

across all members (Raftery et al. 2005), so the only

changes in this case are the added constraints that the

BMA mean or bias parameters and the BMA weights

be equal, as described by Wilson et al. (2007b). In the

gamma models for quantitative precipitation (Sloughter

et al. 2007) and wind speed (Sloughter et al. 2009), the

variance parameters need to be constrained to be equal

within exchangeable groups of ensemble members.

a. Estimation with exchangeable ensemble members

Consider an ensemble of size m, where the member

forecasts can be divided into groups of exchangeable
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members. We assume that there are I such groups, with

the ith exchangeable group having mi $ 1 exchange-

able members, so that �I
i51m

i
5 m. Let fi,j denote the

jth member of the ith group. Then the BMA mixture

distribution (1) can be rewritten to accommodate groups

of exchangeable members:
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where wi $ 0 and �I

i51wi 5 1. Note that BMA weights,

probability functions and parameters are equal within

each exchangeable group. For EM estimation, the E

step in Eq. (2) can now be written as
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In the M step, the weight estimates are averaged over the

ensemble members in the respective exchangeable group:
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I , of the com-

ponent parameters, are obtained by maximizing the

partial expected complete-data log likelihood, which

takes the following form:
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b. Application to University of Washington
ensemble systems

In the experiment below, we use both the UW ME

(Grimit and Mass 2002; Eckel and Mass 2005) and the

recently developed UW EnKF systems (Torn et al. 2006;

Dirren et al. 2007; Torn and Hakim 2008) over the Pa-

cific Northwest and adjacent areas of the Pacific Ocean.

The version of the UW ME used here is an eight-

member multianalysis ensemble based on the fifth-

generation Pennsylvania State University–National Center

for Atmospheric Research (PSU–NCAR) Mesoscale

Model (MM5). The MM5 model is run with 36-km

horizontal grid spacing over western North America and

the eastern North Pacific Ocean, driven by initial and

lateral boundary conditions from eight distinct global

models. A summary description of the ensemble mem-

bers is given in Table 1. Thus, the UW ME system

consists of eight nonexchangeable members.

The UW EnKF uses the Advanced Research (ARW)

version of the Weather Research and Forecasting (WRF)

model with 45-km horizontal grid spacing. Since 7 No-

vember 2007 the EnKF system has been run with 80

members; until then it used 90 members, which we restrict

to the first 80 only, for consistency. Thus, the UW EnKF

system comprises 80 exchangeable members, for which

our BMA specification enforces equal weights and pa-

rameter values.

The UW ME–EnKF combined ensemble thus has

88 members, 80 of which are exchangeable. The resulting

BMA specification requires the estimation of nine distinct

weights and nine distinct sets of parameter values only.

We consider 24-h forecasts of surface (2 m) temper-

ature in calendar year 2007. Forecasts were bilinearly

interpolated from the model grid to observation sta-

tions. The UW EnKF data contains forecasts at 590

Automated Surface Observing System (ASOS) stations

as well as fixed buoys, as shown in Fig. 1. While the UW

ME data is more extensive, we restrict all verification

results to the range of dates and sites common to both

systems. The training period is a sliding window con-

sisting of forecast and observation data from the most

recent 30 days available. Thus, the first 30 days of data

are used for training purposes only, leaving a total of

226 days and 106 333 unique forecast cases in the test

period. To handle missing ensemble members, we use

the renormalization method as described in section 4.

In probabilistic forecasting, the aim is to maximize

the sharpness of the predictive distributions subject to

calibration (Gneiting et al. 2007). Calibration of an

TABLE 1. Composition of the eight-member University of

Washington Mesoscale Ensemble (UW ME; Eckel and Mass 2005),

with member acronyms, and organizational and synoptic model

sources for initial and lateral boundary conditions. The organiza-

tional sources are the National Centers for Environmental Pre-

diction (NCEP), the Canadian Meteorological Centre (CMC), the

Australian Bureau of Meteorology (ABM), the Japanese Meteo-

rological Agency (JMA), the Fleet Numerical Meteorology and

Oceanography Center (FNMOC), the Taiwan Central Weather

Bureau (TCWB), and the Met Office (UKMO).

Member Source Driving synoptic model

GFS NCEP Global Forecast System

ETA NCEP Limited-Area Mesoscale Model

CMCG CMC Global-Environment Multiscale Model

GASP ABM Global Analysis and Prediction Model

JMA JMA Global Spectral Model

NGPS FNMOC Navy Operational Global Atmospheric

Prediction System

TCWB TCWB Global Forecast System

UKMO UKMO Unified Model
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ensemble system is assessed by means of the verification

rank histogram (Anderson 1996; Hamill and Colucci 1997;

Talagrand et al. 1997; Hamill 2001), while calibration of

the BMA forecast distributions is evaluated by means

of the probability integral transform (PIT) histogram

(Raftery et al. 2005; Gneiting et al. 2007). The verifica-

tion rank histogram plots the rank of each observed value

relative to the ensemble member forecasts. The PIT is the

value of the BMA cumulative distribution function when

evaluated at the verifying observation, and is a continu-

ous analog of the verification rank. In both cases, a more

uniform histogram indicates better calibration.

Figure 2 shows the verification rank histograms for the

UW ME and EnKF systems, which are considerably

underdispersive. The verification rank histogram for the

ME–EnKF combined ensemble is almost identical to that

for the EnKF system and is therefore not shown. Figure 3

displays the PIT histograms for the BMA postprocessed

UW ME, EnKF, and ME–EnKF combined ensembles,

all of which show much improved calibration.

Table 2 gives summary measures of predictive per-

formance for the raw and BMA postprocessed ensemble

forecasts. As detailed in appendix A, the continuous

ranked probability score (CRPS) and the mean absolute

error (MAE) quantify probabilistic and deterministic

forecast performance, respectively. Both quantities are

negatively oriented, that is, the lower the better. The

table shows that the unprocessed UW ME system out-

performs the recently developed, maturing EnKF en-

semble as well as the ME–EnKF combined system.

However, this finding changes radically if we consider

BMA postprocessed ensembles, in that the postprocessed

ME–EnKF combined ensemble shows considerably

better performance than either of the raw or BMA

postprocessed individual ensemble systems. We believe

that this is an important result, which demonstrates the

potential for substantially improved forecasts from sta-

tistically postprocessed multimodel ensemble systems,

even in cases in which one of the constituent systems is

superior to the others.

Comparative results for BMA specifications with

plausible exchangeable group assignments in a single-

system situation can be found in Wilson et al. (2007a),

Hamill (2007), and Wilson et al. (2007b).

c. Results under misspecification

Having seen results under correct exchangeability

assumptions, we now compare to BMA specifications

that ignore exchangeability. Figure 4 shows estimated

FIG. 1. Station locations common to UW ME and EnKF (there are

590 unique locations).

FIG. 2. Verification rank histograms for 24-h forecasts of surface

temperature in 2007, using (left) the 8-member UW ME and (right)

the 80-member UW EnKF systems.

FIG. 3. PIT histograms for BMA postprocessed 24-h forecasts of surface temperature in 2007, based on the UW ME,

EnKF, and ME–EnKF combined systems.
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BMA weights for 9 of the 80 exchangeable EnKF

members in the ME–EnKF combined ensemble, using

a BMA specification in which they are mistakenly treated

as if they were individually distinguishable. Since the

members are not considered exchangeable, the weights

(and also the BMA parameter values) vary across the 80

EnKF members.

The panels display the evolution of these over time,

with each estimate based on the trailing 30-day training

period at hand. There is considerable noise that can, and

ought to be, avoided by invoking the exchangeability

assumption. However, the sum of the BMA weights for

the 80 EnKF members is nearly the same, regardless of

whether or not the BMA specification accounts for ex-

changeability, and the predictive performance is not af-

fected by the exchangeability assumption (Table 2).

Figure 5 shows that near equality holds for the BMA

weights of the nonexchangeable ME members as well.

Furthermore, the CRPS and MAE scores under the

misspecified BMA model are essentially unchanged

from those in Table 2, where the BMA specification

accounts for exchangeability. However, the computa-

tional effort for the (erroneous) BMA specification with

88 nonexchangeable members is considerably greater

than that for the (correct) specification with 8 non-

exchangeable ME and 80 exchangeable EnKF members.

4. Accommodating missing ensemble members

In this section we show how to adapt the standard

BMA implementation in order to take missing ensemble

members into account. Missing ensemble members stem

from disruptions in communications, and software or

hardware failures, which can last for days or weeks at

a time. The chance that any member forecast is missing

TABLE 2. Verification results for 24-h forecasts of surface

temperature in 2007 using the raw and BMA postprocessed UW

ME, EnKF, and ME–EnKF combined systems. The mean CRPS

applies to the probabilistic forecast and the MAE applies to the

deterministic forecast given by the median of the predictive dis-

tribution, in units of 8C. For the postprocessed forecasts of the

combined ensemble, results are given for the case in which the

BMA specification accounts for exchangeability of the EnKF

members, as well as for the case in which the EnKF members are

assumed nonexchangeable. Note that the exchangeability as-

sumption has no effect on the predictive performance.

Ensemble forecast CRPS MAE

ME 1.96 2.31

EnKF 2.84 3.32

ME–EnKF combined 2.64 3.25

BMA postprocessed forecast CRPS MAE

ME 1.55 2.15

EnKF 1.76 2.49

ME–EnKF exchangeable 1.48 2.09

ME–EnKF nonexchangeable 1.48 2.09

FIG. 4. (left) BMA weights for the first nine of the 80 EnKF members and (right) sum of the BMA weights for the EnKF members in

the UW ME–EnKF combined system in 2007. The weights are shown under a BMA specification in which the EnKF members are not

considered exchangeable (broken blue line) and under the correct BMA specification in which the EnKF members are treated as ex-

changeable (solid red line). Under the exchangeability assumption, the BMA weights are the same across the 80 EnKF members.

However, the sum of the BMA weights for the EnKF members is nearly the same regardless of whether or not exchangeability is assumed.

JANUARY 2010 F R A L E Y E T A L . 195



increases with ensemble size and ensemble diversity,

and a considerable amount of potentially useful infor-

mation would be ignored if instances with missing

members were excluded from training sets.

For example, Park et al. (2008) describe the pattern and

extent of missing data in The Observing System Research

and Predictability Experiment (THORPEX) Interactive

Grand Global Ensemble (TIGGE) system, which is

substantial, with some of the constituent ensembles

missing for weeks or months at a time. Tables 3 and 4

illustrate the extent of missing members in the eight

member UW ME system, which we now consider in its

nested 12-km grid version over the Pacific Northwest. For

48-h forecasts of surface (2 m) temperature, there was

a total of 557 109 instances in 2006, of which 90 130 or

16.2% had missing member forecasts, in numbers ranging

from 1 to 3. In 2007, there was a total of 922 267 instances,

of which 58 580 or 6.4% had missing ensemble members,

in numbers ranging from 1 to 5. For 48-h forecasts of daily

precipitation accumulation, there is much less observa-

tional data available, but the extent and pattern of miss-

ing data is similar. Figure 6 shows the 12-km UW ME

domain along with the unique station locations in the

verification database in calendar years 2006 and 2007.

a. Estimation with missing ensemble members

Our goal now is to estimate a full BMA model with

terms for all ensemble members, while allowing for in-

stances (s, t) in the training data that lack one or more

ensemble member forecasts. We assume initially that

the ensemble members are nonexchangeable, that is, we

return to the scenario of section 2. We now propose an

approach that enables the handling of all configurations

of missing data that might conceivably arise in practice.

To achieve this, we modify the EM algorithm as fol-

lows. When there are no missing ensemble members, the

E step in Eq. (2) can be written as
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FIG. 5. BMA weights for the eight ME members in the UW ME–EnKF combined system in 2007. The weights are shown under a BMA

specification in which the EnKF members are not considered exchangeable (broken blue line) and under the correct BMA specification in

which the EnKF members are treated as exchangeable (solid red line).

TABLE 3. Extent of missing members in the 8-member UW ME

system for 48-h forecasts of surface temperature over the Pacific

Northwest in 2006 and 2007.

2006 Instances Percent

Tot 557 109 100.0

Complete 466 979 83.8

1 Missing member 76 496 13.7

2 Missing members 11 667 2.1

3 Missing members 1967 0.4

2007 Instances Percent

Tot 922 267 100.0

Complete 863 687 93.6

1 Missing member 40 369 4.4

2 Missing members 7324 0.8

3 Missing members 6607 0.7

4 Missing members 2276 0.2

5 Missing members 2004 0.2
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Define

A
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5 ijensemble member i available at locationf
s and time tg,

which is a subset of, orequal to, the full index set,f1, . . . , mg.
If there are missing members at location s and time t, the

E step is modified, in that

z
(k11)
i,s,t 5

w
(k)
i g

i
(y

s,t
jf

i,s,t
, u

(k)
i )

�
p2A

s,t

w
(k)
p g

p
(y

s,t
j f

p,s,t
, u(k)

p ) �
q2A

s,t

w
(k)
p

, (9)

if i belongs to As,t, and z
(k11)
i,s,t 5 0 otherwise. Note that

the denominator is normalized to account for the miss-

ing ensemble members. Accordingly, the M step in Eq.

(3) is modified:

w
(k11)
i 5

�
s,t

z
(k11)
i,s,t

�
s,t

�
m

p51
z

(k11)
p,s,t

. (10)

Updated estimates u
(k11)
1 , . . . , u(k11)

m of the component

parameters are obtained by maximizing a renormalized

partial expected complete-data log likelihood:

�
s,t

�
p2A

s,t

z
(k11)
p,s,t log(g

p
( y

s,t
j f

p,s,t
, u

p
))

�
q2A

s,t

z
(k11)
q,s,t

2
6664

3
7775, (11)

as a function of u1, . . . , um.

It is straightforward to combine these formulas with

those of section 3, to extend them to situations in which

there are both missing and exchangeable members, and

we do so in appendix B.

b. Forecasting with missing ensemble members

We have described above how to adapt the EM esti-

mation algorithm to account for missing member fore-

casts in the training set. The resulting full BMA model in

(1) includes terms for all ensemble members. In fore-

casting, however, the full BMA model cannot be used

when one or more of the members are missing.

We have tested a number of different approaches to

forecasting with missing ensemble members, including

the following:

d Ensemble mean: Missing members are replaced by the

mean of the nonmissing member forecasts. (We also

experimented with the median, with nearly identical

results.)

TABLE 4. Extent of missing members in the 8-member UW ME

system for 48-h forecasts of daily precipitation accumulation over

the Pacific Northwest in 2006 and 2007.

2006 Instances Percent

Tot 117 573 100.0

Complete 97 559 83.0

1 Missing member 17 002 14.4

2 Missing members 2667 2.3

3 Missing members 345 0.3

2007 Instances Percent

Tot 128 447 100.0

Complete 120 262 93.6

1 Missing member 6037 4.7

2 Missing members 837 0.7

3 Missing members 838 0.7

4 Missing members 303 0.2

5 Missing members 170 0.1

FIG. 6. Nested 12-km UW ME domain over the Pacific Northwest with station locations for (left) temperature (4709

locations) and (right) precipitation (1016 locations).
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d Conditional mean: Missing members are replaced

using a standard procedure for missing data handling

that is known as single imputation (e.g., Schafer 1997),

as implemented in the R package norm. For details see

appendix C.
d Renormalized: The model is reduced to the terms for

the nonmissing forecasts, with the BMA weights re-

normalized to sum to 1. A small quantity (we use

0.0001) is added to each weight before renormaliza-

tion, to account for cases in which all nonmissing

members have small BMA weights.

Numerical weather forecasts are generally generated

on grids, from which they are bilinearly interpolated to

observation sites. Thus, on any given day, any specific

member will either be available on the entire model

grid, or not at all. In such cases, the BMA model can be

estimated with the training data restricted to the mem-

bers available on the forecast day. Any remaining in-

stances with missing forecasts in the training data can

still be retained, using the missing member modeling

with renormalization as described above (restrict–keep),

or else be eliminated from the training data (restrict–drop).

McCandless et al. (2009) refer to this latter approach as

case deletion.

c. Application to the University of Washington
mesoscale ensemble

To compare the methods described above, we apply

them to 48-h forecasts of surface temperature and daily

precipitation accumulation with the UW ME system in

calendar years 2006 and 2007. As noted before, the model

domain and the extent of missing ensemble members are

described in Fig. 6 and Tables 3 and 4, respectively.

Tables 5 and 6 show verification results in terms of the

mean CRPS and MAE. For both temperature and pre-

cipitation accumulation, the BMA forecasts outperform

the raw ensemble, but there is little difference in fore-

casting performance between the various alternatives

for missing member handling. Our overall recommen-

dation thus is the use of the renormalization approach. It

is possible that a different conclusion would be reached

if there are higher proportions of missing members, or in

situations such as the European Poor Man’s Ensemble

Prediction System (PEPS; Heizenreder et al. 2005), in

which the ensemble members have overlapping but

distinct model domains.

5. Discussion

We have shown that the BMA approach to the statis-

tical postprocessing of forecast ensembles can be ex-

tended to accommodate situations in which member

forecasts may be exchangeable and/or missing. In the case

of exchangeable members, as in most bred, singular

vector or ensemble Kalman filter systems, these modifi-

cations result in a physically principled BMA specifica-

tion, simplify the approach, and facilitate the associated

computations. An implementation is available within the

R package ensemble BMA (Fraley et al. 2007), both for

the Gaussian mixture model for temperature and pres-

sure and for the gamma models that apply to quantitative

precipitation and wind speed.

TABLE 5. Verification results for 48-h forecasts of surface tem-

perature over the Pacific Northwest in 2006 and 2007, using the raw

and BMA postprocessed UW ME system, with missing member

handling as described in the text. The mean CRPS applies to the

probabilistic forecast and the MAE applies to the deterministic

forecast given by the median of the predictive distribution (in units

of 8C).

2006 CRPS MAE

UW ME 2.08 2.43

BMA ensemble mean 1.73 2.40

BMA conditional mean 1.73 2.40

BMA renormalized 1.73 2.40

BMA restrict/drop 1.72 2.40

BMA restrict/keep 1.72 2.40

2007 CRPS MAE

UW ME 2.08 2.44

BMA ensemble mean 1.70 2.36

BMA conditional mean 1.70 2.36

BMA renormalized 1.70 2.36

BMA restrict/drop 1.68 2.34

BMA restrict/keep 1.70 2.36

TABLE 6. Verification results for 48-h forecasts of daily pre-

cipitation accumulation over the Pacific Northwest in 2006 and

2007, using the raw and BMA postprocessed UW ME system, with

missing member handling as described in the text. The mean CRPS

applies to the probabilistic forecast, and the MAE applies to the

deterministic forecast given by the median of the predictive dis-

tribution (in units of mm).

2006 CRPS MAE

UW ME 1.74 2.15

BMA ensemble mean 1.46 1.98

BMA conditional mean 1.46 1.98

BMA renormalized 1.44 1.98

BMA restrict/drop 1.45 1.99

BMA restrict/keep 1.44 1.98

2007 CRPS MAE

UW ME 1.75 2.14

BMA ensemble mean 1.36 1.83

BMA conditional mean 1.36 1.83

BMA renormalized 1.35 1.83

BMA restrict/drop 1.34 1.83

BMA restrict/keep 1.35 1.83
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With these extensions, the BMA postprocessing ap-

proach applies to any type and configuration of multi-

model ensemble system. Recently, Park et al. (2008)

concluded that a single ensemble system that has mark-

edly better performance than its competitors, performs as

well or better than a multimodel combined system that

gives equal weight to all members. However, the authors

acknowledge that constraining the weights to be equal may

be the reason for this outcome. Our results support this

explanation, by showing that a BMA postprocessed com-

bined ensemble system, in which the weights are allowed

to vary among the nonexchangeable members, can per-

form considerably better than any of the constituent en-

sembles by itself. This is a strongly encouraging conclusion,

which suggests BMA postprocessing for other types of

multimodel ensembles, including but not limited to the

Development of a European Multimodel Ensemble Sys-

tem for Seasonal-to-Interannual Prediction (DEMETER;

Hagedorn et al. 2005; Doblas-Reyes et al. 2005) and

TIGGE (Park et al. 2008; Bougeault et al. 2009, manu-

script submitted to Bull. Amer. Meteor. Soc.) systems.
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APPENDIX A

Verification Scores

Scoring rules provide summary measures of predictive

performance that address calibration and sharpness si-

multaneously. A particularly attractive scoring rule for

probabilistic forecasts of a scalar variable is the contin-

uous ranked probability score, which is defined as

crps(P, x) 5

ð‘

�‘

(P(y)� I y $ xf g)2 dy,

where P is the forecast distribution, here taking the form

of a cumulative distribution function, I is an indicator

function, equal to 1 if the argument is true and equal to

0 otherwise, and x is the observed weather quantity

(Hersbach 2000; Wilks 2006). An alternative form is

crps(P, x) 5 EjX � xj� 1

2
EjX �X9j,

where X and X9 are independent random variables with

distribution P (Grimit et al. 2006; Gneiting and Raftery

2007), and E denotes the expectation operator. The

CRPS is proper and generalizes the absolute error, to

which it reduces in the case of a deterministic forecast.

Both the CRPS and the absolute error are reported in

the same units as the forecast variable, and both are

negatively oriented, that is, the lower the better.

In this paper, we report the mean CRPS and the

MAE, which average individual scores over forecast

cases. From any probabilistic forecast we can form

a deterministic forecast, by taking the median of the

respective predictive distribution, and the MAE repor-

ted here refers to this forecast.

APPENDIX B

Estimation with Exchangeable and Missing
Ensemble Members

When there are groups of exchangeable members as

well as missing member forecasts, let

A
i,s,t

5 jjmember j of group i available at locationf

s and time tg.

The E step in Eq. (6) is then adapted as follows:

z
(k11)
i, j,s,t 5

w
(k)
i g

i
(y

s,t
j f

i, j,s,t
, u

(k)
i )

�
I

p51
�

r2A
p,s,t

w
(k)
p g

p
(y

s,t
jf

p,r,s,t
, u(k)

p ) �
I

q51
�

r2A
q,s,t

w
(k)
q

,

(B1)

if j belongs toA
i,s,t

, and z
(k11)
i, j,s,t 5 0 otherwise. The M step

update in Eq. (7) for the BMA weight estimates is

generalized as

w
(k11)
i 5

1

m
i

�
s,t

�
m

i

j51
z

(k11)
i, j,s,t

�
s,t

�
I

p51
�
m

p

r51
z

(k11)
p,r,s,t

, (B2)

and the M step update of u maximizes

�
s,t

�
I

i51
�

j2A
i,s,t

z
(k11)
i, j,s,t log(g

i
(y

s,t
j f

i, j,s,t
, u

i
))

�
I

p51
�

r2A
p,s,t

z
(k11)
p,r,s,t

2
6666664

3
7777775

. (B3)
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For example, the Gaussian mixture model for tem-

perature (Raftery et al. 2005) has a single variance pa-

rameter, s2, that is common to all members and needs

to be estimated in each M step. Table B1 summarizes the

respective updates, both with and without missing mem-

bers, and with and without exchangeability assumptions.

APPENDIX C

Imputing Missing Ensemble Members: Conditional
Mean Approach

In the conditional mean approach to the imputation of

missing ensemble members we use a standard procedure

for missing data handling that is known as single impu-

tation (e.g., Schafer 1997) and implemented in the

R package norm.

Suppose, for now, that the ensemble has m nonex-

changeable members. Let m 2 Rm and S 2 Rm3m be the

standard maximum likelihood estimates for the mean

vector and the covariance matrix of the ensemble mem-

bers, based on training data. The conditional mean ap-

proach imputes the conditional mean for any missing

members in the ensemble forecast, based on an assumption

of multivariate normality and the above estimates, m and S.

This is now explained in more detail, using an illus-

trative example. Let f 2 Rm denote the ensemble fore-

cast, with q $ 1 members missing. Let

f 5
f

A

f
M

� �
, m 5

m
A

m
M

� �
and S 5

S
AA

S
AM

S
MA

S
MM

� �

be partitions of f, m, and S corresponding to the non-

missing or available (A), and the missing (M) members,

respectively. Then the conditional distribution of fM given

fA is N (m0, S0), where

m
0

5 m
M

1 S
MA

S�1
AA( f

A
� m

A
) 2 R

q

and

S
0

5 S
MM
�S

MA
S�1

AAS
AM
2 R

q3q.

For example, in the case of 48-h UW ME forecasts of

surface temperature, five member forecasts are missing

for initialization date 4 July 2007, that is, m 5 8 and q 5 5.

To facilitate the presentation, we do not distinguish row

and column vectors, leaving the (obvious) identifications

and transpositions to the reader. Using a 30-day sliding

training period and the R package norm (Schafer 1997),

the ensemble mean vector is

m 5
GFS CMCG ETA GASP JMA NGPS TCWB UKMO
18.82 18.95 18.38 18.26 18.03 18.77 17.98 18.67

� �
,

and the ensemble covariance matrix is

S 5

GFS CMCG ETA GASP JMA NGPS TCWB UKMO
GFS 31.49 30.41 30.73 30.31 30.07 30.95 31.04 31.18
CMCG 30.41 33.06 31.00 30.96 30.84 31.90 31.47 31.69
ETA 30.73 31.00 32.96 30.64 30.47 31.42 31.58 31.49
GASP 30.31 30.96 30.64 32.91 30.69 31.92 31.57 31.68
JMA 30.07 30.84 30.47 30.69 31.97 31.12 31.19 31.57
NGPS 30.95 31.90 31.42 31.92 31.12 33.83 32.20 32.38
TCWB 31.04 31.47 31.58 31.57 31.19 32.20 33.66 32.14
UKMO 31.18 31.69 31.49 31.68 31.57 32.38 32.14 33.97

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

.

TABLE B1. The M step variance updates for the Gaussian

mixture model.

Missing Exchangeable M step update for (s2)(k11)

No No �
s,t

�
m

i51
z
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2
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No Yes
�
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�
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�
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n

Yes No
�
s,t

�
m

i51
z

(k11)
i,s,t (y
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� f
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The UW ME ensemble forecast at the Seattle–Tacoma Airport ASOS station is

f 5
GFS CMCG ETA GASP JMA NGPS TCWB UKMO
25.75 NA 27.57 NA NA NA 25.90 NA

� �
,

where NA indicates a missing value. We replace the q 5 5 missing member by the respective conditional mean, m0,

namely

m
0

5 m
M

1 S
MA

S�1
AA( f

A
� m

A
)

5
CMCG GASP JMA NGPS UKMO
18.95 18.26 18.03 18.77 18.67

� �

1

GFS ETA TCWB
CMCG 30.41 31.00 31.47

GASP 30.31 30.64 31.57

JMA 30.07 30.47 31.19

NGPS 30.95 31.42 32.20

UKMO 31.18 31.49 32.14

0
BBBBBBBB@

1
CCCCCCCCA

GFS ETA TCWB
GFS 31.49 30.73 31.04

ETA 30.73 32.96 31.58

TCWB 31.04 31.58 33.66

0
BBB@

1
CCCA
�1

25.75 � 18.82

27.57 � 18.38

25.90 � 17.98

0
B@

1
CA

5
CMCG GASP JMA NGPS UKMO
26.73 25.18 25.59 26.59 26.42

� �
.

For weather parameters such as temperature, it is also

possible to perform the imputation based on the de-

viations from the ensemble mean forecast, rather than

the ensemble forecasts themselves. In experiments, we

found no appreciable difference between these two

imputation alternatives on UW ME temperature fore-

casts for 2006 and 2007.

The method as described above assumes non-

exchangeable members, but it can easily be extended to

account for exchangeability. This is done by constrain-

ing the elements of the mean vector, m, and the diagonal

elements in the covariance matrix, S, to be equal for

exchangeable members, and requiring that the cross-

covariance terms depend on the group assignments only.

As an illustration, consider a four-member ensemble in

which the second and third members are exchangeable.

Then we use

m 5 (m
1
, m

2
, m

2
, m

3
)

with the second and third entry constrained to be equal,

and the covariance matrix, S, is constrained to be of the

following form:

S 5

s2
11 a

12
a

12
a

12

a
12

s2
22 a

22
a

22

a
12

a
22

s2
22 a

22

a
12

a
22

a
22

s2
33

0
BBB@

1
CCCA,

where a
12

and a
22

are cross-covariance terms.
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