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Markov chain Monte Carlo (MCMC) methods for Bayesian computation are mostly
used when the dominating measure is the Lebesgue measure, the counting measure,
or a product of these. Many Bayesian problems give rise to distributions that are not
dominated by the Lebesgue measure or the counting measure alone. In this article we
introduce a simple framework for using MCMC algorithms in Bayesian computation
with mixtures of mutually singular distributions. The idea is to find a common dom-
inating measure that allows the use of traditional Metropolis–Hastings algorithms. In
particular, using our formulation, the Gibbs sampler can be used whenever the full con-
ditionals are available. We compare our formulation with the reversible jump approach
and show that the two are closely related. We give results for three examples, involv-
ing testing a normal mean, variable selection in regression, and hypothesis testing for
differential gene expression under multiple conditions. This allows us to compare the
three methods considered: Metropolis–Hastings with mutually singular distributions,
Gibbs sampler with mutually singular distributions, and reversible jump. In our exam-
ples, we found the Gibbs sampler to be more precise and to need considerably less
computer time than the other methods. In addition, the full conditionals used in the
Gibbs sampler can be used to further improve the estimates of the model posterior
probabilities via Rao–Blackwellization, at no extra cost.

Key Words: Gibbs sampler; Metropolis-Hastings algorithm; Mixture distribution;
Rao-Blackwellization; Reversible jump; Singular measures.

1. INTRODUCTION

Mixtures of mutually singular distributions arise quite often in statistics. For example,
one could model a process that truly is a mixture of a discrete process and a continuous
process. One could also be interested in model selection where the dimension of the param-
eter space varies, giving rise to singularities in the prior distribution. It seems thatmixtures
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of mutually singular distributions are often avoided because of the measure-theoretic diffi-
culties. Perhaps one reason is that the derivation of the density (i.e., the Radon–Nikodym
derivative) is not as intuitive as when the distribution is purely discrete or continuous.
However, the difficulty is not great and the goal of this article is to introduce an easily used
framework that would facilitate the use of such mixtures. We are particularly interested in
Markov chain Monte Carlo methods where the target distribution is of this form. We focus
on Bayesian inference, where the target distribution is a posterior distribution, though the
method is more general.

The Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970) is a method
for constructing a reversible Markov chain with a specified invariant distribution. The
Metropolis–Hastings algorithm has been widely used in Bayesian inference to approxi-
mate posterior quantities of interest (Geman and Geman 1984; Gelfand and Smith 1990).
In most applications, the Metropolis–Hastings algorithm is used when the dominating mea-
sure is the Lebesgue measure, the counting measure, or a product of these. However, the
algorithm works for any target distribution with aσ -finite dominating measure (Tierney
1994, 1998)

Even though the theory of MCMC can be used with general dominating measures such
as sums of mutually singular distributions, this is rarely done in practice. Simple mix-
tures of mutually singular distributions such as a point mass and a continuous distribution
(with respect to the Lebesgue measure) have been used in Bayesian variable selection
(Smith and Kohn 1996; Geweke 1996; George and McCulloch 1997). This approach was
not considered in an earlier paper byGeorge and McCulloch(1993). Such mixtures also
arise with Dirichlet processes in Bayesian density estimation (Escobar and West 1995;
Neal 2000) and identification of regeneration times in MCMC simulation (Brockwell and
Kadane 2005). There is a need for a general formulation for MCMC computations with
mixtures of mutually singular distributions. Note that the term “mixture of mutually singu-
lar distributions” was not used in these previous formulations, perhaps because they were
not fully general, considering only point masses.

Here we are interested in more complicated situations where we have several distribu-
tions of different dimensions. These include Bayesian model selection where some of the
parameters are allowed to lie in a hyperplane, or more generally in a submanifold ofRn.
There has been a great deal of work on MCMC algorithms for Bayesian model selection.
Madigan and York(1995) andRaftery et al.(1997) integrated over the parameter space
analytically and made the MCMC move only in the model space; the resulting method
is called MCMC model composition, or MC3. This avoids the issue of mutually singu-
lar distributions, but is not applicable to all such problems.Carlin and Chib(1995) used
a product space approach to keep the dimension of the parameter space fixed. Following
the pioneering work ofGrenander and Miller(1994) andPhillips and Smith(1995) based
on jump diffusions,Green(1995) showed how to construct a reversible jump MCMC al-
gorithm to handle cases where the dimension of the parameter space is allowed to vary.
Petris and Tardella(2003) introduced a geometric approach to transdimensional MCMC
and showed that it can be used to formulate the problem as a mixture of distributions with
components supported by subspaces of different dimensions. In this article, we show that



MARKOV CHAIN MONTE CARLO WITH MIXTURES OF DISTRIBUTIONS 951

reversible jump can be viewed in terms of a mixture of mutually singular distributions. Our
formulation is more general thanPetris and Tardella(2003) as it can deal with nonnested
models, and it is computationally easier as there is no need to transform the parameters.
In addition, using three examples, we show how the Gibbs sampler can be used within our
framework.

The article is organized as follows. In Section2, we introduce some notation and show
how one can derive densities for mixtures of mutually singular distributions. In Section3,
we briefly review the Metropolis–Hastings algorithm and show how it can be used to form
an ergodic chain with a mixture of mutually singular distributions as the invariant distribu-
tion. In Section4, we use three examples to demonstrate the methodology introduced and
compare various Metropolis–Hastings algorithms including the Gibbs sampler. In Section
5, we compare our formulation with the reversible jump approach and show that the two
are closely related. Finally, in Section6 we discuss possible extensions and the limitations
of our formulation.

2. DENSITIES FOR MIXTURES OF MUTUALLY SINGULAR
DISTRIBUTIONS

In this section, we show how one can derive densities for a mixture of singular distribu-
tions. Without loss of generality, we let our sample space be then-dimensional Euclidean
spaceRn, or a subset of it. We denote then-dimensional Lebesgue measure byλn and the
Dirac measure concentrated atx by δx. We will say that a probability measure5 is dom-
inated by aσ -finite measureν, if 5 admits a density with respect toν. In other words, if
we can write5(dx) = d5/dν(x)ν(dx), whered5/dν denotes the density (also known
as the Radon–Nikodym derivative) of5 with respect toν. In cases where the dominating
measure to be used is clear from the context, we will just use lower-case letters (e.g.,π , q)
to denote the densities of the corresponding probability measures denoted in capital letters
(e.g.5, Q).

Before introducing the main result, we first recall that two measuresν1 andν2 are said
to be mutually singular, denoted byν1 ⊥ ν2, if there exists a (measurable) setA such that
ν1(A) = 0 andν2(Ac) = 0 whereAc denotes the complement of A. Basically, the two
measures are supported on disjoint subsets. Similarly, a countable collection of measures
νi , i ∈ I are said to be mutually singular ifνi ⊥ ν j for eachi, j ∈ I , i 6= j . Finally,
we will say that two distributions are mutually singular if the corresponding probability
measures are mutually singular.

The following theorem, based on the Radon-Nikodym theorem (Billingsley 1995, p.
422), gives a way of explicitly writing down densities for mixtures of mutually singular
distributions.

Theorem 1. Let5, 5i , i ∈ I , be probability measures such that5 =
∑

i∈I wi5i ,
wi ∈ [0, 1],

∑
i∈I wi = 1 and5i is dominated byνi , where theνi ’s are mutually singular

σ -finite measures. Then the density (Radon-Nikodym derivative) of5 with respect toν ≡
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∑
i∈I νi is given by

d5

dν
(x) =

∑

i∈I

wi
d5i

dνi
(x)1Si (x),

where the Si ’s are sets such thatνi (Sc
i ) = 0 andν j (Si ) = 0, i 6= j .

The proof is given in Appendix A.1. If we letπ andπi be the densities of5 and5i

with respect toν andνi , respectively, then Theorem 1 can be written as

π(x) =
∑

i∈I

wiπi (x)1Si (x).

Thus, the theorem says that the densityπ with respect to the global dominating measure
ν, can be expressed as a mixture of the “componentwise” densitiesπi . In general, the
componentwise densitiesπi are known or are easy to derive, and thereforeπ can easily
be derived. For example, ifνi is the Lebesgue measure,πi is simply the usual Lebesgue
density. Note, however, that the indicators1Si are crucial to get a proper density. They are
there to make sure that a set does not contribute to more than one component, which would
not be legitimate since theνi ’s (and thus the5i ’s) are mutually singular. If a set is counted
more than once, the density might not even integrate to one! A direct consequence of this is
that if x ∈ Si , thenπ(x) = wiπi (x), and even ifI is large we only have to evaluate a single
πi . The setsSi given in Theorem1 need to be derived on a case-by-case basis because they
depend on the supports of the measuresνi . However, as we will see in the example below
and the ones explored in Section4, their derivation will be clear from the context. It is also
possible to get an explicit (and unique) derivation using the notion of Hausdorff measures
(Gottardo and Raftery 2004).

Example 1: Mixture of a point mass and a continuous random variable.Let X1 be a
discrete random variable equal to zero with probability one; thus its induced probability
measure is the Dirac mass at zero51 ≡ δ0. Let X2 be a continuous random variable with
probability measure52 dominated by the Lebesgue measureλ; thus X2 admits a density
with respect to the Lebesgue measure. Define a third random variableY equal toX1 with
probability(1− w) and toX2 with probabilityw.

The probability measure ofY can be written as5 = (1− w)51 + w52. Applying
Theorem1 we obtain the density of5 with respect to(δ0+ λ), namely

d5

d(δ0+ λ)
(x) = (1− w)

d51

dδ0
(x)1S1(x)+ w

d52

dλ
(x)1S2(x) a.e. δ0+ λ,

where “a.e.δ0 + λ” means almost everywhere with respect to the measureδ0 + λ, that
is, everywhere except on a set that has(δ0 + λ)-measure equal to zero. IfY is equal to
zero, we know that it comes from the first component, whereas if it is not, it must come
from the continuous distribution. Thus, natural choices forS1 andS2 are{0} andR \ {0},
respectively. It follows that the density ofY can be written as

π(x) ≡
d5

d(δ0+ λ)
(x) = (1− w)1{0}(x)+ w f (x)1R\{0}(x) a.e. δ0+ λ,
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where f (x) is the Lebesgue density ofX2. Note that it is crucial to remove{0} fromR in
the second indicator function for the density to be a valid density with respect to(δ0+ λ).
If we did not do that, the density evaluated at 0, which corresponds to the probability that
Y is zero, would be(1− w)+ w f (0) and not 1− w.

3. MARKOV CHAIN MONTE CARLO WITH MIXTURES OF
MUTUALLY SINGULAR DISTRIBUTIONS

We now consider Markov chain Monte Carlo algorithms for mixtures of mutually sin-
gular distributions. We show how it is possible to use the regular Metropolis–Hastings and
Gibbs sampler algorithms, where Theorem1 is used to derive the required densities.

Suppose that we wish to sample from a distribution for a variablex with associated
probability measure5(dx) dominated by aσ -finite measureν. We useπ to denote its
density, so that5(dx) = π(x)ν(dx). In this article, we shall be concerned with a posterior
distribution with densityπ(x|y), or more generally a full conditionalπ(x|y, z)when blocks
of variables are updated in turns, wherey are the data andz are the variables that are being
conditioned upon.

From now on, we useπ(x) to denote the target distribution, in this caseπ(x|y, z). One
of the most widely used methods for generating such chains is the Metropolis–Hastings
algorithm. MCMC methods have been widely used to generate (dependent) samples from
distributions where the normalizing constant is unknown or intractable. Most applications
deal with distributions where the dominating measure is either the Lebesgue measure, the
counting measure, or a product of those. Not much attention has been given to measures
that are not absolutely continuous with respect to the Lebesgue measure or to the counting
measure.

To avoid special cases, we assume thatπ(x) > 0 for eachx in the sample space. In
Markov chain Monte Carlo, one constructs a Markov chain with invariant distributionπ .
Following the notation ofTierney(1994), let Q be a Markov transition kernel of the form

Q(x, dx′) = q(x, x′)ν(dx′),

and define

α(x, x′) =






min
{
π(x′)q(x′,x)
π(x)q(x,x′) , 1

}
, if π(x)q(x, x′) > 0

1, if π(x)q(x, x′) = 0.
(3.1)

Note that, in this definition, bothq andπ are densities with respect toν, which in our case
will be the sum of several mutually singular measures. If the chain is currently at a point
Xn = x, then a new candidatex′ is generated according to the distributionQ(x, ·) and
the new point is accepted with probabilityα(x, x′). If the associated Metropolis–Hastings
kernel, denoted byK , is5-irreducible, Harris-recurrent and aperiodic, the Markov chain
formed will converge to the unique stationary distributionπ with respective probability
measure5 (Tierney 1994). Note that the formulation given here includes the Gibbs sam-
pler (Geman and Geman 1984; Gelfand and Smith 1990), where new observations are
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drawn from the full conditional and the acceptance probability is equal to one. Most appli-
cations concern cases where the dominating measure is the Lebesgue measure, the count-
ing measure, or a product of those. However, the general results inTierney(1994) apply
to more general distributions. This was emphasized in a more recent paper (Tierney 1998),
where the author described very general conditions under which the Metropolis–Hastings
algorithm is reversible.

Thus, the result applies to mixtures of mutually singular distributions. The main dif-
ficulty is that the choice of the proposal becomes limited, as mixture components put all
their mass on different parts of the parameter space. For example, the usual random walk
Metropolis algorithm will not be available in general as symmetric proposals do not exist.
This last point will become clearer in Example 2.

Using the notation introduced in Theorem1, we assume that the target distribution is
of the form5 =

∑
i∈I wi5i , where5i is dominated byνi , and theνi ’s are mutually sin-

gularσ -finite measures. Thus5 is dominated byν =
∑

i νi . In a Bayesian context, such
singularities would occur when the prior itself is a mixture of mutually singular distribu-
tions, whose density with respect toν can be written asπ(x|z) =

∑
i wiπi (x|z)1Si using

Theorem1. Thus, using Bayes theorem it follows that

π(x|y, z) ∝ L(y|x, z)π(x|z)

= L(y|x, z)
∑

i

wiπi (x|z)1Si (x)

=
∑

i

wi L(y|x, z)πi (x|z)1Si (x)

=
∑

i

wi ciπi (x|z, y)1Si (x), (3.2)

whereπi is the “componentwise” full conditional ofx given (y, z) and thatx belongs to
componenti (i.e., x ∈ Si ), andci is its normalizing constant, namelyci =

∫
x L(y|x, z)

πi (x|z)νi (dx). Because eachπi 1Si integrates to one with respect toν it is easy to see that
the global normalization constant is

∑
i wi ci , and it follows that

π(x|y, z) =
∑

i

w∗i πi (x|z, y)1Si , (3.3)

wherew∗i = ciwi /(
∑

i ciwi ). This implies that the posterior5 is a mixture of mutually
singular distributions. It also implies that if eachci is analytically available andπi can be
sampled from directly, one can sample from5 by first selecting a componenti at random
with probabilityw∗i and then sampling from5i . So, if 5 is a full conditional, and all
componentwise full conditionals (the5i ’s) are explicitly available, Gibbs sampling can be
used. This will be illustrated with three examples in the next section.

If the full conditional is not available, the Metropolis–Hastings algorithm could be used
instead. In order for the Metropolis–Hastings kernelK to be5-irreducible, it is necessary
to construct a5-irreducible transition kernelQ. In practice, assuming thatx belongs to
componenti , it will be convenient to write the kernelQ as

Q(x, dx′) =
∑

j∈I

pi j Q j (x, dx′), (3.4)
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where theQ j ’s are mutually singular transition kernels in the sense thatQ j (x, dx′) =
qj (x, x′)ν j (dx′), andpi j is the probability of proposing a move to componentj from com-
ponenti . In (3.4), pi j is a between-component move andQ j is a move within component
j . The5-irreducibility of Q and the associated Metropolis–Hastings kernel will depend on
both P ≡ (pi j ) and theQ j ’s, and will need to be verified for each case. However, as with
traditional MCMC, this is usually not hard to verify. In our framework, it will be enough
to show that there is a positive probability that the chain will reach (i) any component of
the mixture and (ii) any set of positive mass (with respect to5) within that component,
from anywhere in the state space, in a finite number of steps. Note that the Gibbs sampler
as given in (3.3) is a special case of this wherepi j ≡ w∗j andQ j ≡ 5 j .

To fully establish the convergence of the Metropolis–Hastings Markov chain with ker-
nel K , one needs to show that the resulting kernel is also aperiodic and Harris recurrent.
Aperiodicity is easily verified and is usually satisfied for the Metropolis–Hastings algo-
rithm even when used as a Gibbs sampler (Tierney 1994; Roberts and Tweedie 1996).
Standard MCMC results can be used to verify Harris recurrence (Tierney 1994; Chan and
Geyer 1994; Roberts and Tweedie 1996; Roberts and Rosenthal 2004).

4. APPLICATIONS

In this section, we consider three examples that are applications of the Metropolis–
Hastings algorithm for Bayesian computation with mixtures of mutually singular distribu-
tions. From now on, we denote by N(µ, σ 2) the Gaussian distribution with meanµ and
varianceσ 2. The corresponding density evaluated atx is denoted by N(x|µ, σ 2).

Example 2: Testing a normal mean.Consider the simple Bayesian linear model,

yj = µ+ ε j , (4.1)

(ε j |ψ) ∼ N(0, ψ−1).

We might be interested in testing if the meanµ is equal to zero. In order to do so, we
need to specify a prior distribution that allows the parameterµ to be equal to zero. We use
the prior

µ ∼ (1− w)δ0+ wN(0, ψ−1
µ ), (4.2)

which is a mixture of a point mass at 0 and a Gaussian distribution. Using Theorem1 and
Example 1, its density with respect to(δ0+λ) is (1−w)1{0}(µ)+wN(µ|0, ψ−1

µ )1R\{0}(µ),
whereδ0 is the Dirac mass at zero andλ is the one-dimensional Lebesgue measure.

We let the prior for the precisionψ be Gamma(ξ1, ξ2), which has meanξ1/ξ2 and
varianceξ1/ξ2

2 . The hyperparametersψµ, ξ1 andξ2 will be kept fixed. Here the target dis-
tribution can be expressed (up to a normalizing constant) in terms of its densityπ(µ,ψ |y)
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with respect to the product measure(δ0+ λ)× λ as

π(µ,ψ |y) ∝ L(µ,ψ |y)π(µ)π(ψ)

∝ ψ J/2 exp(−
ψ

2

J∑

j=1

(yj − µ)
2)

×

[

(1− w)1{0}(µ)+ w
(
ψµ

2π

)1/2

exp(−
ψµ

2
µ2)1R\{0}(µ)

]

×ψξ1−1 exp(−ξ2ψ).

Note that here we give the distribution ofπ(µ,ψ |y) explicitly (up to a normalizing con-
stant), for illustration. However, in practice one does not need to do this, and one would
simply updateµ andψ alternatively. The update forψ presents nothing complicated, as
the dominating measure is the Lebesgue measure, and its full conditional distribution is a
Gamma distribution whether or notµ is zero. Therefore we shall be concerned only with
the update ofµ conditional onψ andy.

The prior density forµ is of the formw11{0}(µ)+w2N(µ|0, ψ−1
µ )1R\{0}(µ). Thus, we

can use (3.3) with w1 = (1− w), w2 = w, π1(µµµ|ψ) = 1 andπ2(µµµ|ψ) = N(µ|0, ψ−1
µ ).

Now we only need to derive both componentwise full conditionalsπ1(µ|y, ψ) andπ2(µ|y, ψ).
In the case of the first component, we know thatµ = 0, and it follows that

π1(µ|y, ψ) ∝ L(y|0, ψ) · 1,

and the normalizing constant isc1 = L(y|0, ψ). Similarly, the componentwise full condi-
tional,π2, is given by

π2(µ|y, ψ) ∝ L(y|µ,ψ)

√
ψµ

2π
exp

(
−
ψµ

2
µ2
)
,

which is just the posterior distribution of a normal mean when the prior is Gaussian. Thus,
the normalizing constant,c2 =

∫
L(y|µ,ψ)

√
ψµ/(2π) exp

(
−0.5ψµµ2

)
dµ, is available

analytically. After straightforward calculation ofc2, the full conditional can be obtained
using (3.3) and is given by

(µ|ψ, y) ∼ (1− w∗)δ0+ w∗N

(

ψ
∑

i

yi /(nψ + ψµ), (nψ + ψµ)
−1

)

, (4.3)

where

w∗ = 1−
1− w

1− w + w
√
ψµ/(nψ + ψµ) exp(0.5(ψ

∑
yi )2/(nψ + ψµ))

.

Using this full conditional, a new value forµ can be generated by first selecting a compo-
nent at random with respective probabilities 1− w∗ andw∗, and then simulating a newµ
from the componentwise full conditional for the selected component. If the first component
is selected we simply setµ to zero, and if the second is selected we generate a new value
from the corresponding Gaussian distribution.
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In some other settings (e.g., non-Gaussian likelihood and/or prior), the componentwise
full conditional π2 might not be explicitly available and the Metropolis–Hastings algo-
rithm provides a good alternative. In order to use Metropolis–Hastings , we need to define
an irreducible Markov transition kernel (proposal),Q(µ, dµ′) = q(µ,µ′)ν(dµ′), that is
absolutely continuous with respect toν = δ0 + λ, whereδ0 is the Dirac measure concen-
trated at 0, andλ is the Lebesgue measure. In other words, we have to make sure that we
propose a move to zero as well as to the remainder of the real line. This can be done using
(3.4), which we specify with the density

q(µ,µ′) = (1− pi )1{0}(µ′)+ pi q
∗(µ,µ′)1R\{0}(µ

′), (4.4)

wherepi (i = 0 if µ = 0 andi = 1 if µ 6= 0) is the probability of proposing a move to
the continuous component from componenti . In other words, with probability 1− pi we
propose a move to zero, and with probabilitypi we propose a value according toq∗, the
density of a kernel absolutely continuous with respect to the Lebesgue measure. For the
Metropolis-Hastings algorithm, the acceptance probability is given by

α(µ,µ′) = min

{
π(µ′)q(µ′, µ)

π(µ)q(µ,µ′)
, 1

}
.

In this case it is clear that we cannot find a symmetric proposalq, as this would require
that the mass going to zero be the same as the mass leaving zero. The proposal given by
(4.4) is clearly not symmetric asq(0, µ′) 6= q(µ′, 0) for µ′ 6= 0. Any other proposal will
have the same problem because of the singularity between the two measuresδ0 andλ.

We now compare the performance of the Gibbs sampler to two other kernels based on
the Metropolis–Hastings algorithm. The first kernelK1 is a generalization of the random
walk Metropolis kernel with proposal density given by

q1(µ,µ
′) = 0.5 · 1{0}(µ′)+ 0.5N(µ′|µ, σ 2

1 )1R\{0}(µ
′),

whereσ 2
1 is a fixed number. Fromµ, this proposes 0 with probability 0.5, and proposes a

random walk step with probability 0.5. The second kernel,K2, is the concatenation of two
Metropolis–Hastings kernels, with proposal densities

q21(µ, µ̃) =

{
N(µ̃|µ̂, σ 2

2 )1R\{0}(µ̃) if µ = 0

1{0}(µ̃) if µ > 0,

whereµ̂ is the sample mean andσ 2
2 is a fixed number, and

q22(µ̃, µ
′) =

{
1{0}(µ′) if µ̃ = 0

π2(µ
′)1R\{0}(µ′) if µ̃ > 0,

whereπ2 is the componentwise full conditional ofµ for the nonzero component. Fromµ,
this proposes 0 ifµ 6= 0 and a nonzeroµ′ if µ = 0. In the latter case, this nonzeroµ′ can
be simulated in two steps. The first step based onq21 proposes̃µ from a N(µ̂, σ 2

2 ) density
whereµ̂ is the sample mean andσ 2

2 is a fixed number. If this is accepted, the second step is
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a componentwise Gibbs step based on the full conditional for the component with nonzero
µ. This last step, known as a within-model move in the reversible jump literature, is not
necessary for the Markov chain to be ergodic but greatly improves the sampler. It will be
convenient when comparing to the reversible jump formulation (Section5).

We randomly generated 10 observations from a Gaussian distribution with variance 1
and mean 0.5, as follows:

0.575, 1.808, 0.532,−0.168, 0.529, 0.888,−1.368,−0.512, 2.667, 0.874.

We fitted the model given by Equations (4.1) and (4.2) usingw = 0.5, that is, each compo-
nent is equally likely a priori. We fixedψµ = 0.01, ξ1 = 1 andξ2 = 0.05, corresponding
to fairly noninformative priors. Table1 summarizes the results. The variance proposals
σ 2

1 = 0.25 andσ 2
2 = 1.2 were chosen to maximize the proportion of moves between

components. This was done by tuning the proposal variances using several pilot runs.
The true posterior probability of the model with mean zero is 0.867, conventionally

viewed as positive but not strong evidence for the null model (Kass and Raftery 1995).
In each case, the null model posterior probability (model with mean zero) can be easily
estimated from the MCMC output as the proportion ofµ’s equal to zero. However, note
that in (4.3), 1− w∗ corresponds to the probability ofµ = 0 givenψ andy, and we can
write

Pr(µ = 0|y) = Eµ[1[µ=0]] = EψEµ[1[µ=0]|ψ ] = Eψ [Pr(µ = 0|y, ψ)] = Eψ [1− w∗],

whereET is the expectation with respect to the distribution ofT |y. Thus, in the case of the
Gibbs sampler, one can obtain a more efficient estimate by Rao–Blackwellization when
averaging the 1−w∗ values computed at each iteration at no extra cost. As a consequence
we get four different estimates fromK1, K2, Gibbs and Gibbs with Rao–Blackwellization.

All four methods considered did well in estimating the posterior probability, with ac-
curate estimates based on 10,000 iterations, and low variability of the estimates. The al-
gorithm based on the proposalK2 performed better than the one based onK1. It moved
between components almost twice as often, not surprisingly sinceK2 forces moves be-
tween components. The Gibbs sampler with the simple estimate did essentially as well
as Metropolis–Hastings with proposalK2 in estimating the posterior probability, and it
used much less computer time. Note that the proposalK2 combines two different move
types, thus this is not a fair comparison with the Gibbs sampler and this is reflected in
the CPU time. Generally speaking, the Metropolis–Hastings algorithm is computationally
more expensive than the Gibbs sampler because it requires more evaluations of the target
distribution. Finally, the Gibbs sampler with Rao–Blackwellization performed best both in
terms of variability and computing time. Overall, therefore, the Gibbs sampler performed
best among these three methods for this example.

Example 3: Robust Bayesian variable selection in regression.Variable selection is an
important problem whose purpose is to select a group of variables that best predict an out-
come variable. Given a dependent variableY and a set of potential regressorsX1, . . . ,X p,
we wish to compare models of the formY = β0+Xi1βi1+· · ·+Xiqβiq , whereXi1, . . . ,Xiq
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Table 1. Comparison of the estimated model posterior probabilities computed with each algorithm. The esti-
mates were computed from 10,000 iterations with 1,000 burn-in iterations. The standard deviations
were computed by dividing a chain of 10 million iterations into 1,000 batches of 10,000 iterations
each. The “truth” was obtained from 10 million iterations on the basis of which the estimates from
the three algorithms agreed to within three digits. PMBC is the percentage of time the chain moved
from one component to an other. In the case of the Gibbs sampler, RB refers to estimates computed via
Rao–Blackwellization.

MH (K1) MH (K2) Gibbs
Truth Est. sd Est. sd Est. sd RB-Est. RB-sd

π(µ = 0|y) 0.867 0.858 0.0054 0.870 0.0031 0.862 0.0034 0.8670.0005

PMBC(%) 13 25 24
CPU (µs/iter) 4.9 5.0 1.3

is a selected subset ofX1, . . . ,X p. For this problem we take an approach similar to that
of George and McCulloch(1997). However, our model explicitly tries to take account of
outliers, by usingt-distributed errors. We assume a standard linear model to describe the
relationship between the response and dependent variable and the set of predictors, namely

yi = β0+
p∑

j=1

Xi j β j +
εi√
$ i

,

εi ∼ N(0, ψ−1),

($i |ν) ∼ Ga(ν/2, ν/2),

where theβi ’s are the unknown regression coefficients and the$i ’s are independent of
theεi ’s. Since the$i ’s are independent of theεi ’s, we haveεi /

√
$i ∼ t(ν,0,ψ−1), that is,

the errors have at distribution withν degrees of freedom and scale parameterψ−1. The
advantage of writing the model in this way is that, conditioning on the$i , the sampling
errors are again Gaussian, but with different precisions.

In order to allow each variable to be in and out of the model, we use a mixture of a
Gaussian distribution and a point mass at zero for the prior of each regression coefficient,
as follows:

βk ∼ (1− w)δ0+ wN

(

0,
S2

Y

S2
Xk

σ 2
β

)

,

wherew is the prior probability for each variable of being in the model,S2
Xk

is the empirical
variance of thekth predictor,S2

Y is the empirical variance of the response variables and
σ 2
β is a common variance parameter. The prior for the variance parameterσ 2

β is taken to
be uniform on the interval [0, 1]; arguments for priors of this kind are given byRaftery
et al. (1997). The prior for the scaling parameter of thet-distribution,ψ is taken to be
improper,π(ψ) ∝ ψ−1. We also tried a spread-out proper prior forψ and the results
were almost identical. The prior for the interceptβ0 is taken to be Gaussian with a large
variance centered at the least squares estimate for the full model with all variables,β̂0,
namely N(β̂0, 20 se(β̂0)

2). Finally, the prior for the degrees of freedomν is uniform on



960 R. GOTTARDO AND A. E. RAFTERY

the set{1, 2, 4, 8, 16, 32} as suggested byBesag and Higdon(1999). For eachβk we use
w = 0.5 which makes every model equally likely a priori.

As in Example 2, the full conditional ofβk can be derived explicitly. All we need is to
derive both componentwise full conditionalsπ1(βk| · · · ) andπ2(βk| · · · ) for the first and
second components, respectively, whereβk| · · · meansβk conditioning on everything else
in the model. In the case of the first componentβk = 0, and it follows that

π1(βk| · · · ) ∝ L(y|β0, βk = 0, βββ−k, ψ) · 1

and the normalizing constant isc1 = L(y|βk = 0, βββ−k, ψ), whereβββ−k is the vector of all
regression coefficients except thekth one. Similarly, the componentwise full conditional,
π2, is given by

π2(βk| · · · ) ∝ L(y|β0, βββ,ψ)

√
ψβk

2π
exp

(
−
ψβk

2
β2

k

)
,

whereψ−1
βk
= S2

Y/S
2
Xk
σ 2
β , which is again a Gaussian distribution. As in Example 2, the

normalizing constant,c2 =
∫

L(y|β0, βββ,ψ)
√
ψβk/(2π) exp

(
−0.5ψβkβ

2
k

)
dβk, is again

available analytically. After straightforward calculation ofc2, the full conditional can be
obtained using (3.3) and is given by

(βk| . . . ) ∼ (1− w
∗
k)δ0+ w

∗
kN



ψ
∑

i

r ik/(ψ
∑

i

$i X2
ik + ψβk ), (ψ

∑

i

$i X2
ik + ψβk )

−1



 ,

where

w∗k = 1−
1− w

1− w + w
√
ψβ/(ψ

∑
i wi X2

ik + ψβk ) exp(0.5(ψ
∑

rik)2/(ψ
∑

i $i X2
ik + ψβk ))

,

with
rik = $i (yi − β0−

∑

j 6=k

β j Xi j )Xik .

As in Example 2, in some nonconjugate settings (e.g., non-Gaussian likelihood and/or
prior), the componentwise full conditionalπ2 might not be explicitly available and the
Metropolis–Hastings algorithm provides a good alternative. We now compare the
Metropolis–Hastings algorithm with the kernelsK1 and K2 as defined in the previous
example. For a givenβk, the mean of the continuous component of the proposalq21 was
set to the least squares estimate of the corresponding coefficient based on the full model.
The width of each proposal was chosen to maximize the proportion of moves between
components.

To illustrate the variable selection method, we use the Stack Loss data ofBrownlee
(1965), previously considered by many authors includingDaniel and Wood(1980), Atkin-
son(1985) and, in a Bayesian framework, byHoeting et al.(1996). It consists of 21 days
of operation from a plant for the oxidation of ammonia as a stage in the production of
nitric acid. The response is called “stack loss,” defined as the percentage of unconverted
ammonia that escapes from the plant. There are three independent variables,X1,X2,X3.
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Table 2. Comparison of the estimated posterior inclusion probabilities of each regression coefficient for Ex-
ample 3. Estimates were computed from 10,000 iterations with 1,000 burn-in iterations. The standard
deviations were computed by dividing a chain of 10 million iterations into 1,000 batches of 10,000 itera-
tions each. The “truth” was obtained from ten billion iterations on the basis of which the estimates from
the three algorithms agreed to within three digits. PMBC (percent moves between components) is the
percentage of time the chain moved from one component to an other. The Gibbs sampler performed bet-
ter than the Metropolis–Hastings samplers. RB refers to estimates computed viaRao–Blackwellization.

Truth MH (K1) MH (K2) Gibbs
Est. sd Est. sd Est. sd RB-Est.RB-sd

5(β1 6= 0|y) 1.000 1.000 0.015 1.000 0.005 1.000 0.005 1.000 0.004
5(β2 6= 0|y) 0.839 1.000 0.315 0.912 0.131 0.859 0.118 0.858 0.118
5(β3 6= 0|y) 0.141 0.244 0.230 0.182 0.093 0.097 0.085 0.0970.085

PMBC % (β1) 0.0 0.0 0.0
PMBC % (β2) 0.4 0.5 1.0
PMBC % (β3) 1.1 1.9 2.5

CPU (µs/iter) 67 68 45

The airflow X1 measures the rate of operation of the plant. The nitric oxides produced
are absorbed in a counter-current absorption tower:X2 is the inlet temperature of cooling
water circulating through coils in this tower andX3 is proportional to the concentration of
acid in the tower. Small values of the response correspond to efficient absorption of the
nitric oxides. The general consensus with the Stack Loss data is that the predictorX3 (acid
concentration) should be dropped from the model and that observations 1, 3, 4, and 21 are
outliers.

As in the previous example, the posterior inclusion probability for each regression co-
efficient, defined as the posterior probability that the coefficient is not equal to zero, can be
easily estimated from the MCMC output as the proportion of zeros. Again, in the case of
the Gibbs sampler one can obtain a more efficient estimate by Rao–Blackwellization when
averaging the 1− w∗ values computed at each iteration.

The algorithms are compared in Table2. This time, the Gibbs sampler outperformed
the other two algorithms in terms of standard error for the estimated posterior inclusion
probabilities. This is not surprising. Variables move in and out of the model over the course
of the MCMC run, changing the relative estimates of theβ ’s and making it hard to construct
an efficient proposal. The Gibbs sampler is automatic and depends on the current value
of the other coefficients currently in the model. The average number of moves between
components is higher for the Gibbs sampler than for the other two algorithms, and the
estimated variances for the estimate of the posterior probabilities are smaller. Finally, the
computing time is significantly reduced. Note that this time the improvement from the RB
estimates is not great. This is due to the fact that, in this model, there are more parameters
than in the previous one and the marginalization ofβ represents only a small portion of the
overall number of parameters.

In this example, we are usually interested in the posterior probabilities of all 23 = 8
possible models. These can easily be computed from the posterior samples of theβk’s, and
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Table 3. Estimated posterior model probabilities for theStack LossData. The total posterior probability for the
other models visited was less than0.01.

Models 1 1,2 1,3 1,2,3
Post. prob. 0.13 0.72 0.02 0.13

are given in Table3. The posterior probabilities are consistent with the general consensus
about the data.

The posterior mode of the number of degrees of freedom,ν, is 4, suggesting that the
observations are much heavier tailed than Gaussian. The posterior weights,$ , from the
model are summarized in Table4. It shows that observations 1, 3, 4, and 21 are down-
weighted by our model.

Finally, even though we have chosen to update each regression coefficient in turn, it
would be possible to update theβk’s in blocks of 2 or more. In particular, the full condi-
tionals can be derived explicitly and the Gibbs sampler could be used. For example, the
full conditional of any two regression coefficients,βββ j,k = (β j , βk), is now a mixture of
four mutually singular distributions of the form,

(βββ j,k| . . . ) ∼ w
∗
1δ0δ0+w

∗
2N
(
µ∗j , ψ

∗
j
−1
)
δ0+w

∗
3δ0N

(
µ∗k, ψ

∗
k
−1
)
+w∗4N2

(
µµµ∗j,k, 999

∗
j,k
−1
)
,

wherew∗1, w
∗
2, w

∗
3, w

∗
4, µ∗j , µ

∗
k, ψ∗j , ψ

∗
k , andµµµ∗j,k, 999

∗
j,k are constants depending on the

data and the parameters that are being conditioned upon. The first component sets both re-
gression coefficients to zero, the second (resp. third) setsβk (resp.β j ) to zero while gener-
ating a newβ j (resp.βk) from the componentwise full conditional of [β j |β j > 0, βk = 0]
(resp. [βk|β j = 0, βk > 0]), and the last component generates new regression coefficients
from the componentwise full conditional of [(β j , βk)|β j > 0, βk > 0]. See Appendix A.2
for details. Similarly, the full conditional of more than twoβ ’s can be obtained but the
number of components grows exponentially with the numbers ofβ ’s jointly updated.

Example 4: Three-way comparison in gene expression data.We now consider an ap-
plication that arises in the analysis of gene expression microarray data. DNA microarrays
allow the monitoring of thousands of genes simultaneously under different biological or ex-
perimental conditions. One of the main tasks with microarrays is the identification of genes
that are expressed differentially under the different conditions.Hedenfalk et al.(2001) con-

Table 4. Estimated posterior weights, that is, posterior means of the$ ’s, associated with each observation of
the Stack Loss Data. Observations with small weights are downweighted. Observations 1, 3, 4, and 21
have smaller weights, suggesting that they might beoutliers.

Obs. 1 2 3 4 5 6 7 8 9 10 11
Weight 0.78 1.08 0.74 0.59 1.13 1.05 1.09 1.16 1.08 1.161.15

Obs. 12 13 14 15 16 17 18 19 20 21
Weight 1.12 0.96 1.01 1.14 1.21 1.19 1.20 1.15 1.040.49
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Table 5. Log transformed measurements of one gene of the BRCA dataset. Each row corresponds to a different
condition, and each row entry to a different tumorsample.

BRCA1 BRCA2 SPORADIC

−2.74 −1.51 1.47
−2.18 0.14 −0.81
−1.74 0.10 −1.69
−1.94 0.55 −1.06

0.29 −0.45 −1.32
−1.18 −0.67 −2.00
−1.40 −0.38 −1.18

−0.60

ducted a study to examine breast cancer tissues from patients carrying mutations in the
predisposing genes, BRCA1 or BRCA2, or from patients not expected to carry a heredi-
tary mutation. They examined 22 breast cancer tumor samples: 7 tumors with BRCA1, 8
tumors with BRCA2 and 7 SPORADIC tumors, that is, tumors with neither mutation. The
goal of the experiment was to study the expression patterns of 3,226 genes under the three
conditions and to detect genes whose expression changed in at least one of the conditions.
For illustrative purposes, we show the results for one gene. A complete analysis would re-
quire fitting a similar model to each gene; this was done byGottardo et al.(2006) in more
general settings of gene expression experiments. The measurements for this gene in the
three samples are given in Table5.

In order to detect differential expression we consider the following model:

yci = µc + εci ,

(εci |ψεc) ∼ N(0, ψ−1
εc
),

whereµc represents the mean expression level of the gene under conditionc, i = 1, . . . , nc

andc = 1, 2, 3 (BRCA1, BRA2, SPORADIC). We wish to test the null hypothesisµ1 =
µ2 = µ3. In this example the alternative hypothesis is more complex due to the number
of possible patterns. The prior distribution needs to include all such possible patterns. We
therefore consider the following prior, whose density is

(µµµ|ψψψµµµ,w) ∼ w1N(µ1|0, ψ
−1
µ123

)1[µ1=µ2=µ3]

+w2N(µ1|0, ψ
−1
µ1
)N(µ2|0, ψ

−1
µ23
)1[µ1 6=µ2=µ3]

+w3N(µ2|0, ψ
−1
µ2
)N(µ1|0, ψ

−1
µ13
)1[µ1=µ3 6=µ2]

+w4N(µ3|0, ψ
−1
µ3
)N(µ1|0, ψ

−1
µ12
)1[µ1=µ2 6=µ3]

+w5N(µ1|0, ψ
−1
µ1
)N(µ2|0, ψ

−1
µ2
)N(µ3|0, ψ

−1
µ3
)1[µ1 6=µ2 6=µ3], (4.5)

whereψψψµµµ = (ψµ1, ψµ2, ψµ3, ψµ12, ψµ13, ψµ23, ψµ123) is the vector of precisions andw
is the vector of probabilities for the five patterns constrained to sum to one. This defines a
proper distribution with respect to the followingσ -finite measure onR3, namely

ν(·) = λ1(1 ∩ ·)+ λ2(Pµ1 ∩ ·)+ λ2(Pµ2 ∩ ·)+ λ2(Pµ3 ∩ ·)+ λ3(·),
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where1 is the lineµ1 = µ2 = µ3, Pµ1 is the planeµ2 = µ3, Pµ2 is the planeµ1 =
µ3, Pµ3 is the planeµ1 = µ2 andλk denotes thek-dimensional Lebesgue measure. In
this case, we defined the distribution directly in terms of the density given by (4.5). The
target distribution isπ(µµµ,ψ |y), but as before the update forψ does not present anything
complicated and we are thus only concerned withµµµ.

This time the prior density forµµµ is a mixture of five singular Gaussian distributions,
and given the Gaussian likelihood, the full conditional can once again be derived explicitly.
Using (3.3), we need to derive each componentwise full conditionalπi , i = 1, . . . , 5. Here
we show only how to deriveπ2; otherπi ’s can be obtained in a similar fashion. For the
second component, given thatµ1 6= µ2 = µ3, we have

π2(µµµ|y, ψ) ∝ L(y|µ1, µ2, ψ)

√
ψµ1ψµ23

2π
exp

(
−
ψµ1

2
µ2

1−
ψµ23

2
µ2

2

)

∝ N(µ1|µ
∗
1, ψ

∗
1
−1)N(µ2|µ23

∗, ψ∗23
−1),

where the normalizing constantc2 is given by

c2 =
∫

µ1

∫

µ2

L(y|µ1, µ2, ψ)
√
ψµ1ψµ23/(2π) exp(−0.5ψµ1µ

2
1− 0.5ψµ23µ

2
2)dµ1dµ2,

and the parametersµ∗1, ψ
∗
1 andµ23

∗, ψ∗23 are defined in Appendix A.3. Note thatµ3 does
not appear in the likelihood as it is equal toµ2. Similarly, each componentwise full condi-
tional can be obtained and the full conditional is again a mixture of five mutually singular
Gaussian distributions with new means, precisions and proportions; see Appendix A.3.

Thus, one can simply generate a newµµµ by first selecting a new component at random
according to the new proportions, and then simulatingµµµ from the corresponding Gaussian
distribution while imposing the respective constraint. For example, if the second compo-
nent is selected, then new values forµ1, µ2 are generated from the Gaussian distribution
above whileµ3 is set equal toµ2.

In nonconjugate settings the full conditional might not be available and the Metropolis–
Hastings algorithm is an alternative. Here, it is harder to construct an efficient proposal for
the Metropolis–Hastings algorithm than in the last example because of the greater number
of mutually singular components. To try to maximize the between-component acceptance
rate, we used a proposal based on local moves. The local move structure is described by
the graph given in Figure1. We use a proposal of the form given by Equations (3.4), with
pi j > 0 if there is an edge betweeni and j (Figure1). We consider only one kernel, which
is similar to the kernelK2 of Examples 2 and 3, adapted to the local move structure.

From the current value ofµµµ, a new component is randomly chosen from among all
the accessible components, based on Figure1. Given the new component, new values are
generated forµµµ from a Gaussian proposal centered at the least squares estimates for the
corresponding component. The width of the proposal was taken to be the same for all the
Gaussian proposals, and its value was chosen by maximizing the proportion of moves be-
tween components. For example, given that the currentµµµ is from the first component, that
is,µ1 = µ2 = µ3, we first select one of the three accessible components with probability
1/3 each. Then we generate new values forµµµ, independently of the current values, from
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µ1 = µ2 = µ3

µ1 != µ2 = µ3 µ3 != µ1 = µ2µ2 != µ1 = µ3

µ1 != µ2 != µ3

Figure 1. Local move graph for the three-way comparison proposal.

a Gaussian proposal centered at the constrained least squares estimates. For example, if
the second component is chosen, then the constraint isµ2 = µ3. We have chosen such
an independence proposal for simplicity, but it would be possible to derive more efficient
proposals. As withK2, within a given component of the mixture each parameter is updated
using a componentwise Gibbs step based on the full conditional for that component.

Similarly to the two previous examples, the model posterior probabilities can be easily
estimated from the MCMC output as the proportion of time spent in the corresponding
model/component. As before, in the case of the Gibbs sampler one can obtain a more
efficient estimate by Rao–Blackwellization when averaging thew∗ values at each iteration,
as given in Appendix A.3. Table6 summarizes the estimates of the posterior probabilities
for each component using the Metropolis–Hastings algorithm and the Gibbs sampler. The
estimates of the probabilities agree well but the standard deviations are much smaller for
the Gibbs sampler. The average number of moves between components is much greater for
the Gibbs sampler than for Metropolis–Hastings, indicating better mixing. Additionally,
the Gibbs sampler required less computing time.

Note that we have chosen to update the components ofµµµ jointly, both for efficiency
and to give an example of a block Gibbs update. However, it would be possible to update
each parameter component in turn as in Example 3.

5. RELATIONSHIP WITH THE REVERSIBLE JUMP SAMPLER

Green(1995) introduced a Markov chain Monte Carlo method for Bayesian model de-
termination for the situation where the dimensionality of the parameter vector is not fixed.
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Table 6. Comparison of the model posterior probabilities for the five models computed with each algorithm in
Example 4. The estimates were computed from 10,000 iterations with 1,000 burn-in iterations. The
standard deviations were computed by dividing a chain of 10 million iterations into 1,000 batches of
10,000 iterations each. The truth was estimated from 10 million iterations on the basis of which the
estimates from the three algorithms agreed to within three digits. PMBC (percent of moves between
components) is the percentage of time the chain moved from one component to an other. The estimates
of the posterior probabilities agree well. The standard deviations are smaller for the Gibbs sampler. RB
refers to estimates computed via Rao-Blackwellization. For ease of comparison and clarity, all standard
deviations are multiplied by 104.

Truth MH Gibbs RJ
Est. sd Est. sd RB-Est. RB-sd Est. sd

5(µ1 = µ2 = µ3|y) 0.085 0.089 90 0.087 30 0.087 20 0.089 90
5(µ1 6= µ2 = µ3|y) 0.023 0.027 40 0.023 20 0.021 4 0.025 30
5(µ2 6= µ2 = µ3|y) 0.850 0.826 130 0.847 40 0.851 20 0.843 120
5(µ1 = µ2 6= µ3|y) 0.007 0.009 20 0.008 10 0.007 5 0.008 10
5(µ1 6= µ2 6= µ3|y) 0.035 0.050 100 0.038 20 0.035 0.3 0.03440

PMBC (%) 6 24 8
CPU (µs/iter) 12 7 13

Following the notation ofGreen(1995), we assume that we have a countable collection of
models,{Mk : k ∈ K}. ModelMk has a vectorθθθk of unknown parameters assumed to lie
in Rnk , where the dimensionnk may vary from model to model. Bayesian inference about
k andθθθk is based on the joint posteriorπ(k, θθθk|y), which can be decomposed as

π(k, θθθk|y) ∝ π(y|θθθk, k)π(θθθk|k)p(k).

Using this formulation, the sample space can be represented byS= ∪k∈K{k} × Rnk .
Let x = (k, θθθk), and letπ(x) ≡ π(x|y) denote the the target distribution. Even though
the dimension ofx is allowed to change,Green(1995) showed that it is still possible to
use the Metropolis–Hastings algorithm to form an irreducible and aperiodic Markov chain
with stationary distributionπ .

We now describe the reversible jump method in terms of random numbers as described
in a more recent paper (Green 2003). At some current statex, we generater random num-
bersu from a known joint densityg, and then form the proposed new state as some suitable
deterministic function of the current state and the random numbers:x′ = h(x, u). The re-
verse transformation will be made with the aid of random numbersu′ generated from some
probability distributiong′, giving x = h′(x′, u′). Assuming that the transformation from
(x, u) to (x′, u′) is a diffeomorphism,Green(1995) showed that a valid choice for the
acceptance probability in the usual Metropolis–Hastings algorithm is given by

α(x, x′) = min

{
1,
π(x′)g′(u′)
π(x)g(u)

∣
∣
∣
∣
∂(x′, u′)
∂(x, u)

∣
∣
∣
∣

}
, (5.1)

whereπ(x) ≡ π(k, θθθk|y).
The reversible jump formulation was introduced to handle cases where the dimension

of the parameter vectorθθθ can change from model to model. In Section3, we showed how
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reversible jump can also be viewed as a general Metropolis–Hastings algorithm where
one fixes the number of parameters to be the same and allows some of the parameters to
vanish or to lie in a hyperplane, reducing the dimension of the support. One example of
this is provided by nested models with linear constraints on the parameters, and MCMC
with mutually singular distributions could be applied to that case. This is also the case in
Example 2, as we will show below. The Jacobian term present in (5.1) results from the
change of variable induced by the diffeomorphism when a new value is proposed. If one
designs a move that involves a change of variable, one should include the Jacobian term in
(5.1) for the detailed balance condition to be satisfied (Green 1995).

Thinking about the problem in terms of mutually singular distributions allows us to use
standard MCMC algorithms without worrying about the dimension matching. For example,
we can use the usual Gibbs sampler when the full conditional is available. This is not
possible with the reversible jump formulation, as pointed out byGreen(1995) and Robert
and Casella (1999, p. 287). We have shown that if one considers the right dominating
measure, it is easy to establish that the Gibbs sampler is irreducible.

Example 2: Testing a normal mean (continued).In this example we have two com-
peting models,M0 : µ = 0 andM1 : µ 6= 0. For the first modelθ0 = (ψ), and for the
second model we have one more parameter,θθθ1 = (µ,ψ). In the notation ofGreen(1995),
the sample space isS= {0} ×R∪ {1} ×R2. Asψ is common to the two models, we shall
be concerned only with the update ofθθθ conditional onψ . At the current statex = (k, θθθk),
we can generate a new valuex′ according to

x′ =

{
0 if k = 1

(1, u) if k = 0,

whereu is a random deviate with distributiong. In this case the acceptance probability
reduces to

α(x, x′) =

{
1∧ r (x, x′) if k = 1

1∧ r (x′, x)−1 if k = 0,
(5.2)

where

r (x, x′) =
f (y|ψ)(1− w)g(µ)

f (y|µ,ψ)N(µ|0, ψ−1
µ )w

. (5.3)

On the other hand, following our framework, we could use the prior mixture distri-
bution given by (4.2), whose density is(1− w)1{0} + wN(µ|0, ψ−1

µ )(1− 1{0}), and the
proposal

q(µ,µ′) =

{
1{0}(µ′) if µ 6= 0

g(µ′) if µ = 0,

which is absolutely continuous with respect to(δ0+λ). It is easy to see that the acceptance
probability is the same as the one given by (5.2); the two formulations are equivalent.
Thinking about the problem with a common dominating measure allows us to use the
usual Metropolis–Hastings algorithm and the Gibbs sampler.
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Usually, in reversible jump algorithms, there are two main types of moves: between-
model moves and within-model moves. Even though the within-model moves are not al-
ways necessary for the algorithm to be ergodic, they can greatly improve the performance
of the sampler. The Metropolis–Hastings algorithms used in Examples 2 and 3 could be
seen as reversible jump algorithms, whereq21 is the between model proposal,q22 is the
within model proposal, andg(u) is N(u; µ̂, σ 2) as in the definition ofq21. In Example 2,
where it was easy to construct an efficient proposal, the reversible jump performed slightly
better than the Gibbs sampler (with mutually singular distributions) in terms of mixing, but
took substantially more computer time for the same number of iterations and was not as
accurate as Gibbs with Rao–Blackwellization. Overall, for the same amount of computer
time, the Gibbs sampler was more efficient. In Example 3, reversible jump performed rel-
atively poorly compared to the Gibbs sampler, with much bigger standard deviations and
much more computer time. We now turn back to Example 4 where it might be possible to
design better moves using the reversible jump formulation.

Example 4: Three-way comparison (continued).In this example we have five compet-
ing models,

M1 : µ1 = µ2 = µ3

M2 : µ1 6= µ2 = µ3

M3 : µ1 = µ3 6= µ2

M4 : µ1 = µ2 6= µ3

M5 : µ1 6= µ2 6= µ3,

which correspond to the five components given by the nodes of the local move graph (Fig-
ure1). In a reversible jump framework, each model would be viewed as having a different
number of parameters: the first model has one parameter, the second has two parameters,
and so on. The parameter vectors for the five models can be written as

θθθ1 = (µ123)

θθθ2 = (µ1, µ23)

θθθ3 = (µ2, µ13)

θθθ4 = (µ3, µ12)

θθθ5 = (µ1, µ2, µ3),

and the sample space is given byS= ∪i {i } ×222i , where2221 = R,2222 = 2223 = 2224 = R2

and2225 = R3.
Similarly to Example 3, ifg as used in (5.1) is the proposal used in the Metropolis–

Hastings algorithm with mutually singular distribution, that is, Gaussian centered at the
least squares estimates, one can show that the acceptance probability of the reversible jump
is the same as in the Metropolis-Hastings algorithm, and so the two algorithms are equiva-
lent in this case.

One of the strengths of reversible jump is the ability to design elaborate moves, which
might lead to the inclusion of a Jacobian term in the acceptance ratio. In this example, we
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use the common split-merge move (Richardson and Green 1997), where some parameters
are merged to form a new one. Again, we use the local move graph to jump from one model
to the other.

A move between model 1 and model 2 would be made as follows,

x′ =

{
(1, µ1+µ23

2 ) if k = 2

(2, µ123− u, µ123+ u) if k = 1,

whereu is a random deviate with distributiong. In this case the acceptance probability
reduces to

α(x, x′) =






1∧ r (x, x′) if k = 2

1∧ r (x, x′)−1 if k = 1,

where

r (x, x′) =
f (y|ψ,µ123)w1N(µ123|0, ψ−1

µ123
)

f (y|ψ,µ1, µ23)w2N(µ1; 0, ψ
−1
µ1 )N(µ23|0, ψ

−1
µ23)

p12g((µ1− µ23)/2)

p21

1

2
,

andpi j is the probability of proposing a move from modeli to model j . Note the Jacobian
term in the acceptance ratio due to the change of variable induced by the merge move.
The acceptance ratio for a move between 1 and 3 (or 4) would be the same with obvious
changes in notation.

Similarly, a move between 2 and 5 would be as follows:

x′ =

{
(2, µ1,

µ2+µ3
2 ) if k = 5

(5, µ1, µ23− u, µ23+ u) if k = 2,

whereu is a random deviate with distributiong. In this case the acceptance probability
reduces to

α(x, x′) =






1∧ r (x, x′) if k = 5

1∧ r (x, x′)−1 if k = 2,

where

r (x, x′) =
f (y|ψ,µ1, µ23)w2N(µ1|0, ψ−1

µ1
)N(µ23|0, ψ−1

µ23
)

f (y|ψ,µ1, µ2, µ3)w5N(µ1|0, ψ
−1
µ1 )N(µ2|0, ψ

−1
µ2 )N(µ3|0, ψ

−1
µ3 )

×
p25g((µ2− µ3)/2)

p52

1

2
.

The acceptance ratio for a move between 5 and 3 (or 4) would be the same with obvious
changes in notation. Here, we chooseg to be a Gaussian distribution with mean 0 and
varianceσ 2, with σ 2 chosen to maximize the proportion of moves between components.
As with traditional reversible jump algorithms, within a given model each parameter is
updated using a Gibbs step (as full conditionals are available). Table6 shows the results
obtained with the merge-split algorithm (last two columns). The performance of the algo-
rithm is better than that of the Metropolis–Hastings algorithm with a proposal of the form
(3.4). However, the improvement is not great and the Gibbs sampler with mutually singular
distributions still does far better with much less computing time.
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6. DISCUSSION

We have introduced a framework for the use of MCMC algorithms with mixtures
of mutually singular distributions. We showed how one can use the usual Metropolis–
Hastings algorithm to form an ergodic chain with stationary distribution5 =

∑
i∈I wi5i

where the5i ’s are mutually singular distributions. We have analyzed three examples in
which the method was easy to apply.

However, because of the singularity between the different components, the choice of
a good proposal is harder than in the usual setting. The same problem arises with the re-
versible jump formulation and there has been a great deal of work on efficient construction
of reversible jump proposal distributions (Green and Mira 2001; Brooks et al. 2003). Us-
ing a simple example we have shown the relationship between our formulation and the
reversible jump formulation. Indeed it was possible to derive an algorithm with the same
acceptance probability. Which formulation is to be preferred will depend on the applica-
tion. Our formulation is convenient in the sense that the number of parameters remains the
same and we do not have to worry about dimension matching.

When full conditionals are available, the Gibbs sampler can be used and can bring great
improvement. Using the Gibbs sampler, no tuning is necessary, which can be a consider-
able advantage in problems where the number of parameters is large. This was illustrated
in the gene expression problem, Example 4. In that example we used only one gene, but in
practice one would want to use the same algorithm for thousands of (conditionally inde-
pendent) genes. Both computation and tuning would be a serious problem. In some cases
where the full conditional is not available, it might be available for a distribution that
approximates the target distribution. The full conditional of the approximate distribution
could be used as a proposal in a Metropolis–Hastings algorithm for the target. This could
potentially lead to a high acceptance rate; seeGottardo et al.(2006) for an application. In
the past few years there has been some progress towards automatic transdimensional algo-
rithms (Green 2003; Hastie 2004), and we believe that the Gibbs sampler with mutually
singular distributions is a step in that direction.

It might be hard to write the prior as a mixture of mutually singular distributions in
some complex model selection problems where there is a large difference of dimension
between the models. Moreover, full conditionals might not be available and good proposals
might be hard to derive. The reversible jump formulation allows for clever moves between
models by introducing a Jacobian term in the acceptance ratio. For example, in the mixture
problem with an unknown number of components,Richardson and Green(1997) used
moment matching conditions to move from one model to the other. It would be hard to
formulate this problem in terms of mutually singular distributions. Bayesian analysis of
mixture models with an unknown number of components is a problem where it is hard
to devise moves with high acceptance rates. There has been some effort to try to create
algorithms with better properties (Stephens 2000; Capṕe et al. 2003; Brooks et al. 2003).

In this article, we have estimated each model posterior probability as the proportion of
time spent in that model. This is what is commonly done in transdimensional MCMC. In
the case of the Gibbs sampler we have seen that a simple Rao–Blackwellization step can
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improve the estimates. Other methods have also been proposed for getting better estimates
of posterior model probabilities from reversible jump output; seeBartolucci et al.(2006).

Our formulation is different from the product space approach (Carlin and Chib 1995;
Besag 1997; Godsill 2001; Dellaportas et al. 2002). In our approach we also keep the
number of parameters fixed but we allow the dimension of the support of the distribution
to vary. We only need to store as many parameters as in the reversible jump formulation.
With our formulation, even though the number of parameters across models is the same,
there is some redundancy in the parameters. Instead of varying the number of parameters,
we vary the dimension of the support of the distribution. This is different from the product
space approach where one needs to introduce pseudo-priors in order to keep the parameters
that are not in the model currently visited. Our formulation is also more general than that
of Petris and Tardella(2003) as (1) the Gibbs sampler can be used, and (2) it can deal with
nonnested models. In the gene expression example, if the prior was restricted to the second
(µ1 6= µ2 = µ3) and third (µ2 6= µ3 = µ1) components, their formulation could not be
used because the models are not nested, whereas ours could.

A. APPENDIX

A.1 PROOF OF THEOREM 1

Proof: Sinceνi ⊥ ν j for i 6= j , we know that there exist setsSi such thatνi (Sc
i ) = 0

andν j (Si ) = 0. Using the assumption that5i is dominated byνi , we have by the Radon–
Nikodym Theorem,

5i (A) =
∫

A

d5i

dνi
(x)νi (dx)

=
∫

A

d5i

dνi
(x)1Si (x)νi (dx)

=
∫

A

d5i

dνi
(x)1Si (x)(

∑

k∈I

νk)(dx).

The result follows from the fact that5 =
∑

i∈I wi5i and the linearity of the integral
operator. 2

A.2 FULL CONDITIONAL FOR TWO REGRESSION COEFFICIENTS

When two regression coefficientsβ j , βk, are jointly updated, the prior used is of the
form,

5(β j , βk|σ
2
β ) = [(1− w j )δ0+ w j N(0, ψ

−1
β j
)][(1− wk)δ0+ wkN(0, ψ−1

βk
)]

= (1− w j )(1− wk)δ0δ0

+(1− w j )wkδ0N(0, ψ−1
βk
)

+w j (1− wk)N(0, ψ
−1
β j
)δ0

+w jwkN(0, ψ−1
β j
)N(0, ψ−1

βk
),
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whereψ−1
β j
= S2

Y/S
2
X j
σ 2
β . Thus we can write the prior as a mixture of four mutually

singular distributions with respective weightsu1 = (1− w j )(1− wk), u2 = (1− w j )wk,
u3 = w j (1− wk) andu4 = w jwk. Again, given the full conjugacy of the prior to the
likelihood, the full conditional can be derived explicitly and is of the form,

(βββ j,k| . . . ) ∝ u1c1δ0δ0

+ u2c2N
(
µ∗j , ψ

∗
j
−1
)
δ0

+ u3c3δ0N
(
µ∗k, ψ

∗
k
−1
)

+ u4c4N2

(
µµµ∗j,k, 999

∗
j,k
−1
)
, (A.1)

whereψ∗j = (ψ
∑

i $i X2
i j + ψβ j )

−1 andµ∗j = ψ
∗
j
−1(ψ

∑
i r i j ), similarly forψ∗k andµ∗k

replacing the indexj with ak. Also

ri j = $i (yi − β0−
∑

l 6= j,k

βl Xil )Xi j ,

c1 =
(
ψ

2π

)n/2

exp



−0.5ψ
∑

i

$i (yi − β0−
∑

l 6= j,k

βl Xil )
2



 ,

c2 = c1

√
ψβ j

ψ∗j
exp

(

0.5ψ∗j
−1(ψ

∑

i

r i j )
2

)

,

c3 = c1

√
ψβk

ψ∗k
exp

(

0.5ψ∗k
−1(ψ

∑

i

r ik)
2

)

,

999∗j,k = D j,k + ψX̃t
j,kX̃ j,k,

µµµ∗j,k = 999
∗
j,k
−1X̃t

j,kR j,k,

c4 = c1

√
ψβ jψβk

|999∗j,k|
exp

(
−0.5ψR̃t

j,kX̃ j,k999
∗
j,k
−1X̃t

j,kR̃ j,k

)
,

whereRj,k =
√
ψ(Ỹ− X̃t

−{ j,k}βββ−{ j,k}), D j,k = diag(ψβ j , ψβk), X̃ j,k is the matrix formed

with the j th andkth columns ofX̃, X̃−{ j,k} is the matrix formed by removing thej th and
kth columns ofX̃, and finallyỸ (resp.X̃) is obtained by multiplying each element (resp.
each row) by the corresponding

√
$ i . Then, the full conditional is obtained by normalizing

(A.1) so that the normalized weights, thew∗’s, sum up to one. In this case, the global
dominating measure can be written asν = δ0× δ0+ δ0×λ+λ× δ0+λ×λ, whereν1×ν2

represents the product measure ofν1 with ν2.
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A.3 FULL CONDITIONAL IN THE THREE-WAY COMPARISON

In Example 4, the full conditional is again available, and is given by

(µµµ|ψψψµµµ,w) ∝ w1k123N(µ1|µ
∗
123, ψ

∗
123
−1)1[µ1=µ2=µ3]

+ w2k1k23N(µ1|µ
∗
1, ψ

∗
1
−1)N(µ2|µ23

∗, ψ∗23
−1)1[µ1 6=µ2=µ3]

+ w3k2k13N(µ2|µ
∗
2, ψ

∗
2
−1)N(µ1|µ13

∗, ψ∗13
−1)1[µ1=µ3 6=µ2]

+ w4k3k12N(µ3|µ
∗
3, ψ

−1
3 )N(µ1|µ

∗
12, ψ

∗
12
−1)1[µ1=µ2 6=µ3] (A.2)

+ w5k1k2k3N(µ1|µ
∗
1, ψ

∗
1
−1)N(µ2|µ

∗
2, ψ

∗
2
−1)N(µ3|µ

∗
3, ψ

∗
3
−1)1[µ1 6=µ2 6=µ3]

where

ψ∗c = ncψ + ψµc, µ∗c = ψψ
∗
c
−1

nc∑

i=1

yci ,

ψ∗sr = (ns+ nr )ψ + ψµsr , µ∗sr = ψψ
∗
rs
−1(

ns∑

i=1

ysi +
nr∑

i=1

yri ),

and
ψ∗123= (n1+ n2+ n3)ψ + ψµ123, µ∗123= ψψ

∗
123
−1
∑

i, j

yi j .

The constantski , ksr , k123 are given by

ki =

√
ψµi

ψ∗i
exp





−0.5ψ

ni∑

j=1

y2
i j + 0.5ψ∗i

−1



ψ
ni∑

j=1

yi j





2




,

ksr =

√
ψµsr

ψ∗sr
exp





−0.5ψ




ns∑

j=1

y2
s j +

nr∑

j=1

y2
r j



+ 0.5ψ∗sr
−1ψ2




ns∑

j=1

ys j +
nr∑

j=1

yr j





2





and

k123=

√
ψµ123

ψ∗123
exp





−0.5ψ

∑

i, j

y2
i j + 0.5ψ∗123

−1ψ2




∑

i, j

yi j





2




.

It follows that the full conditional is again a mixture of five mutually singular distributions,
whose weights,w∗’s, can be obtained by normalizing (A.2).
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