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Abstract: The authors consider the problem of simultaneous transformation and variable selection for linear
regression. They propose a fully Bayesian solution to the problem, which allows averaging over all models
considered including transformations of the response and predictors. The authors use the Box–Cox family
of transformations to transform the response and each predictor. To deal with the change of scale induced
by the transformations, the authors propose to focus on new quantities rather than the estimated regression
coefficients. These quantities, referred to as generalized regression coefficients, have a similar interpretation
to the usual regression coefficients on the original scale of the data, but do not depend on the transformations.
This allows probabilistic statements about the size of the effect associated with each variable, on the original
scale of the data. In addition to variable and transformation selection, there is also uncertainty involved in
the identification of outliers in regression. Thus, the authors also propose a more robust model to account
for such outliers based on a t-distribution with unknown degrees of freedom. Parameter estimation is carried
out using an efficient Markov chain Monte Carlo algorithm, which permits moves around the space of all
possible models. Using three real data sets and a simulated study, the authors show that there is considerable
uncertainty about variable selection, choice of transformation, and outlier identification, and that there is
advantage in dealing with all three simultaneously. The Canadian Journal of Statistics 37: 361–380; 2009
© 2009 Statistical Society of Canada

Résumé: Nous considérons le problème de la selection de transformations et de variables pour la régression
linéaire. Nous proposons une approcheBayesienne à ce problème qui nous permet de faire lamoyenne de tous
lesmodèles considerés y compris les transformations de type Box-Cox de la résponse et des prédicteurs. Pour
prendre en considération le changement d’unité induit par les transformations, nous proposons d’examiner
et d’estimer de nouvelles quantités à la place des coéfficients de regréssion. Ces quantités nouvelles, que
nous appellons coefficients de régressions generalisés, peuvent être interpretés comme les coéfficients de
régression dans l’unité originale des données, et ne dependent donc pas des transformations sélectionées.
En particulier, cela nous permet de faire de l’inference sur la taille des effets associés avec chaque variable,
et ce, dans l’unité original des données. En plus des transformations, nous considérons aussi le problème
de la détection de valeurs abérrantes, ainsi que l’incertitude associée à cette détection. Pour modéliser ces
données abérrantes, nous utilisons une loi de t avec un nombre de degrés de liberté inconnu. L’estimation des
paramêtres est faite en utilisant un algorithmMCMC efficace qui nous permet de traverser l’espace constitué
de tous les modèles possibles. En utilisant trois jeux de données réelles ainsi que des données simulées, nous
montrons que l’incertitude associée au choix de variables, de transformations et de données abérrantes est
considérable, et qu’il est important que les trois sélections soient considérées en meme temps. La revue
canadienne de statistique 37: 361–380; 2009 © 2009 Société statistique du Canada
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1. INTRODUCTION

Variable selection in linear regression is an important problem, whose purpose is to select a
set of variables that best predict an outcome variable. Given a dependent variable Y and a set
of potential independent variables X1, . . . , Xp, we wish to compare models of the form Y =
β0 + Xj1βj1 + · · · + Xjqβjq + ε, where Xj1 , . . . , Xjq is a selected subset of X1, . . . , Xp. For
this problem, it is common to assume a standard linear model to describe the relationship between
the response and independent variables, namely

Yi = β0 +
q∑

k=1

xijk
βjk

+ εi, (1)

where the βjq ’s are unknown regression coefficients and εi follows a normal distribution with
constant variance ψ−1. In many cases, such assumptions (common variance, additive error struc-
ture, normal distribution) might be unrealistic and one solution is to look for transformations of
the outcome variable and/or regressors so that (1) is appropriate after transformation.

Box & Cox (1964) discussed the power transformation family of models. In particular, they
gave methods for estimating the parameters in the nonlinear model

h(Y , λ) = Aβ + ψ−1/2ε, (2)

where ε follows a standard normal distribution, ψ is the precision, that is, the reciprocal of the
variance, A is a known design matrix, β is a vector of parameters, and

h(Y , λ) =
{

(Yλ − 1)/λ if λ �= 0
log(Y ) otherwise.

Note that this transformation is valid only if Y > 0. There exist several methods for es-
timating the unknown parameters such as maximum likelihood (Box & Cox, 1964) and
Bayesian approaches (Box & Cox, 1964; Perrichi, 1981; Sweeting, 1984; Hinkley & Runger,
1984).

There has been some discussion about the correct way to make inference about the re-
gression parameter β when the transformation parameter λ is unknown (Bickel & Doksum,
1981; Box & Cox, 1982; Hinkley & Runger, 1984). Bickel & Doksum (1981) showed that
the variance of β̂ is greatly inflated when λ is estimated from the data compared to the case
where it is known. Box & Cox (1982) and Hinkley & Runger (1984) argued that linear pa-
rameters have meaning only with reference to a particular scale and thus recommended tak-
ing a conditional approach, in which inferences from the regression model are conditional on
a single selected value of λ. Chen & Lockhart (1997) obtained the Fisher information ma-
trix and its inverse for all the unknown parameters, namely β, ψ−1, and λ. They showed that
the asymptotic distributions of (ψ̂−1, β̂) conditionally and unconditionally on λ were differ-
ent and concluded that conditioning on λ was one step short of performing valid analyses.
Chen, Lockhart & Stephens (2002) extended these results and argued that inference about the
parameter ψ1/2β is preferable over inference about the original β, as the asymptotic distribu-
tion of the estimators has better properties. In this article, we consider a different parameter for
inference.

Carroll & Ruppert (1981) and Taylor (1986) proposed restricting attention to the predictive
distribution of new observations, which can be defined independently of the scale. They studied
the properties of the conditional median and conditional mean, respectively. They showed that
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there is some cost in estimating λ but that the cost is not severe. However, their approach ignored
the regression coefficients, which themselves are often of interest, because they summarize the
relationship between the dependent and independent variables.

To avoid scaling issues, Box&Cox (1964) and Smith&Kohn (1996) considered standardizing
the transformation so that the scale of the transformed data is approximately the same for each
λ, but Dagenais & Dufour (1994) argued against this as there is no clear interpretation of the
parameters after such standardization.

Variable selection and choice of transformation are often done sequentially, and the re-
sulting model depends on the order in which they are performed. It would seem more ap-
propriate to do them simultaneously. Since both can be viewed as model selection problems,
we can unify them within a Bayesian framework, which would allow us to get more real-
istic measures of uncertainty by averaging over all models considered. Hoeting, Raftery &
Madigan (2001) proposed a simultaneous approach to variable selection and transformation
based on a power transformation for the outcome variable and change-point transformations
for the independent variables. The change-point transformation has the advantage of not in-
ducing a change of scale. However, the power transformation does, and Hoeting, Raftery &
Madigan (2001) did not have to consider this scaling issue. They used an approximate algo-
rithm based on Bayes factors to estimate the cut-points of the change-point transformation and so
did not average over all transformations considered. They used the Markov chain Monte Carlo
(MCMC) model composition (MC3) of Madigan & York (1995) to perform variable selection.
This can be efficient but it also requires one to integrate out all the model parameters analyt-
ically. Geweke (1996) and George & McCulloch (1997) showed that this integration can be
avoided.

Hoeting & Ibrahim (1998) proposed taking a predictive Bayesian viewpoint as the basis for
variable and transformation selection. They used the Box–Cox family of transformations, but did
not have to worry about scaling issues as they did not average over all transformations considered
but instead selected the best one. Their variable selection approach requires one to compute
all possible models, which may not be practical even for moderate sized problems. Liu et al.
(2003) also considered the problem of transformation and variable selection, but in the context of
clustering, and thus were not concerned with scaling issues.

In this article, we introduce a Bayesian model for variable and transformation selection
in linear regression. Our transformation selection approach is based on the Box–Cox fam-
ily of transformations but could be generalized to other types of transformation. Parame-
ter estimation is carried out using an efficient MCMC algorithm, which allows us to move
around the space of all possible models (including transformations). To deal with the change
of scale induced by the transformations, we focus on new quantities, which we call general-
ized regression coefficients. These have a similar interpretation to the usual regression coef-
ficients on the original scale of the data, but do not depend on the transformations selected.
Finally, in addition to variable and transformation selection, there is also uncertainty asso-
ciated with the identification of outliers in regression. We include the identification of out-
liers in our methodology; our approach is based on t-distributions with unknown degrees of
freedom.

Section 2 starts by describing our basic model and prior specification for variable and trans-
formation selection, and then extends it to deal with outliers. Section 2 also discusses our solution
to the scaling problem. In Section 3, we introduce the MCMC algorithm used for parameter es-
timation. In Section 4, we illustrate our methodology using three real data sets and a simulated
one. In Section 5, we evaluate the predictive performance of our model compared to models that
do not include transformation and outlier selection. Finally, in Section 6 we discuss our findings
and possible extensions.
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2. A MODEL FOR VARIABLE AND TRANSFORMATION SELECTION

Given a dependent variable Y and a set of potential regressors X1, . . . , Xp, we wish to compare
models of the form g(Y ) = β0 + gj1 (Xj1 )βj1 + · · · + gjq (Xjq )βjq + ε, where Xj1 , . . . , Xjq is a
selected subset of X1, . . . , Xp, and g and the gjq ’s are transformations from a predefined set of
real functions, T. Here the set of possible transformations T is a parametric family, T = {gθ : θ ∈
� ⊂ Rd}. When the response is transformed, a Jacobian term enters into the likelihood for the
untransformed response, and so we require gθ to be a diffeomorphism for each θ in �. Note that
this assumption is not required for the independent variables; see, for example, Hoeting, Raftery
& Madigan (2001) where the authors used a change-point transformation for the independent
variables. Here, for simplicity, we assume that the set of possible transformations is the same for
the outcome variable and the independent variables.

We use the Box–Cox family of transformations, which we define as

T = {gλ(x) ≡ (xλ − 1)/λ : λ ∈ � ⊂ R},
where � is a given subset of R. Note that the methodology presented here could be extended to
other parametric transformations. In particular, if the data are not positive, then one could use the
shifted power transformation of Box & Cox (1964) or the extended power transformation family
of Bickel & Doksum (1981). The idea of transforming the independent variables was proposed
by Box & Tidwell (1962).

2.1. A Basic Model
We now assume that a standard linear model can be used to describe the relationship between the
transformed response and independent variables, namely

gλ(Yi) = β0 +
p∑

j=1

gλj (xij)βj + εi, (3)

(εi|ψ) ∼ N(0, ψ−1),

where the βi’s are the unknown regression coefficients, and λ and λj’s are the transformation
parameters.

In order to allow each variable to be either in or out of the model, we model each regression
coefficient as a mixture of a Normal distribution and a point mass at zero, as follows:

(βj|λ, λj, σβ) ∼ (1 − w)δ0 + wN


0,

S2
gλ(Y )

S2
gλj

(Xj)
σ2

β


 , (4)

where w is the prior probability of being in the model for each variable, S2
z denotes the empirical

variance of z, and σ2
β is a common variance parameter. Note that the prior distribution for the

regression coefficients is allowed to depend on the scales of the variables; this is to account for the
change of scale induced by the transformations.We do not view this as being in contradiction with
the Bayesian paradigm, but rather as an approximation to the prior information of an investigator
who knows something, but not much, about the problem at hand. The prior distributions of the
regression coefficients are as spread out as they can reasonably be given the marginal standard
deviations of the variables. Note that data-dependent priors have been used by other researchers
in this context (Box & Cox, 1964; Sweeting, 1984).

The parameter w is assumed to have a Beta distribution, Beta(w0κ0, (1 − w0)κ0), where
w0 and κ0 are fixed hyperparameters. The mean of this distribution is w0 and the variance is
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w0(1 − w0)/(1 + κ0) so that w0 can be seen as a “best guess” for w, whereas κ0 controls the
spread around this prior guess. Putting a prior on w allows us to estimate the proportion of
variables, which can be seen as a Bayesian solution to the multiple testing problem arising when
the number of variables to be included is large (Scott & Berger, 2006). Throughout this article
we use w0 = 0.5 and κ0 = 4, that is, a fairly noninformative Beta (2,2) prior. Note that this prior
makes every model (marginally) equally likely a priori.

The prior for the variance parameter σ2
β is taken to be uniform in the interval [0, 1]. The

rationale for this is as follows. If all the variables are standardized by dividing by their standard
deviations, then (4) implies that the prior variance of βj is σ2

β. On this scale, βj rarely exceeds 1 in
absolute value. It never does so when P = 1, by the Cauchy–Schwarz inequality, and empirical
evidence that it rarely does so when P > 1 was given by Raftery, Madigan & Hoeting (1997).
Thus, σ2

β = 1 will almost always be more than large enough to cover the range of values of
βj , and much smaller values can easily be appropriate. Thus, a U[0, 1] prior for σ2

β covers the
range of possibilities fairly well. The results are typically insensitive to reasonable changes in this
prior.

The prior for the scaling parameter ψ is taken to be improper, π(ψ) ∝ ψ−1. The prior for the
intercept β0 is (β0|λ) ∝ 1/Sgλ(Y ), to account for the change of scale induced by λ. Our rational
for this prior follows from an idea used in Box & Cox (1964). Suppose that for a fixed value
λ1, the transformation over the range of observation is nearly linear, gλ(y) ≈ const + lλgλ1 (y),
where lλ is a rescaling constant (depending on λ). Suppose furthermore that for λ1, the regressors
have little effect on the response, that is, E[gλ1 (Y )|X] ≈ β0, and using the approximate linear
relationship E[gλ(Y )|X] ≈ lλβ0. Choosing λ1 = 1, a simple estimate for lλ is Sgλ(Y ). The prior
for λ only reflects the Jacobian term coming from the linear transformation. Again, this prior is
data dependent and is in the spirit of the one used in Box & Cox (1964). While simple, this prior
accounts for the change of scale induced by the transformation of the response variable. We have
found this prior to give reasonable results in practice. Finally, we used a uniform prior on [−1, 1]
for the transformation parameters λ and λj’s.

2.2. A Robustified Model
It has been shown that transformation selection can be heavily influenced by the presence of a few
outliers (Carroll & Ruppert, 1982, 1985; Cook & Wang, 1983; Atkinson, 1988; Hinkley & Wang,
1988; Cheng, 2005). As with transformation and variable selection, the order in which outlier and
transformation selection are done tends to lead to different answers. Thus, once again, we wish to
do everything simultaneously, and our approach is based on t distributions with unknown degrees
of freedom. We introduce a more robust version of (3), as follows:

gλ(Yi) = β0 +
p∑

j=1

gλj (xij)βj + εi√
�i

, (5)

(εi|ψ) ∼ N(0, ψ−1),

(�i|ν) ∼ Gamma(ν/2, ν/2),

where the βi’s are the unknown regression coefficients and the �i’s are independent of the εi’s.
Since the �’s are independent of the ε’s, we have εi/

√
�i ∼ t(ν,0,ψ−1), that is, the errors have a

t distribution with ν degrees of freedom and scale parameter ψ−1. Note that conditionally on the
�i, the likelihood is again Gaussian and the �i can be interpreted as weights, a small value for
�i would downweight the influence of yi in the likelihood calculation.

The prior for the degrees of freedom, ν, is taken to be uniform on the set
{1, 2, . . . , 10, 20, . . . , 100}. All other priors remain the same. As we will see in Section 4, the
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accommodation of outliers can have a substantial influence on both variable and transformation
selection.

2.3. Generalized Regression Coefficients
In regression analysis, the βj’s themselves are also of interest as they summarize the relationship
between the dependent variable and the independent variables. One difficultywith transformations
is that the scale, and thus the interpretation, of each βj depends on the transformations currently
being applied. As a result, the usual MCMC posterior summaries for the βj’s, such as means and
standard deviations, are meaningless. As a solution we focus on a different quantity, which is
defined independently of the transformation and has a similar interpretation to βj on the original
scale of the response and independent variables. When there is no transformation it is equal to βj .

On the original scale (i.e., when no transformation is applied), we have, for each observation
(omitting the observation index i),

med(Y ) = β0 +
∑

j

βjXj,

and as a result d[med(Y )]/dXj = βj . Similarly, after transformation of Y and X,

med
(

Yλ − 1
λ

)
= β0 +

∑
j βj(X

λj

j − 1)

λj

.

Thus by invariance of the median we get

med(Y ) =

1 + λ


β0 +

∑
j βj(X

λj

j − 1)

λj





1/λ

,

and so

d[med(Y )]
dXj

= βjX
λj−1
j


1 + λ


β0 +

∑
j βj(X

λj

j − 1)

λj





1/λ−1

.

The quantity d[med(Y )]/dXj does not depend on the transformations and has a similar inter-
pretation to βj on the original scale. Thus we use the sample average of values of this quantity,
namely

βG
j ≡ 1

n

∑
i

βjX
λj−1
ij


1 + λ


β0 +

∑
j βj(X

λj

ij − 1)

λj





1/λ−1

, (6)

as a measure of the marginal change in Y when Xj is varied, all else equal. This has a similar
interpretation across transformations, and it is equal to βj on the original scale of the data. We
call the quantity in (6) the generalized regression coefficient, as it generalizes the usual regression
coefficient in the presence of transformations. The generalized regression coefficients can easily
be estimated from the MCMC output.

Note that the quantity 1 + λ{β0 +∑j βj(X
λj

ij − 1)/λj} might be negative, in which case (6)
is not defined. However, this is unlikely to happen in practice since the observations are required
to be positive. In fact, the probability of 1 + λ{β0 +∑j βj(X

λj

ij − 1)/λj} being negative goes
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to zero as the sample size increases. The generalized regression coefficients, given by (6), were
all well defined for all the examples analysed here. However, if βG

j is not defined for a few
possible values of the βk parameters, one solution would be to find the posterior distribution of
βG

j conditional on its being well defined.

3. PARAMETER ESTIMATION AND MCMC COMPUTATION

3.1. MCMC Algorithm
It can be difficult to devise good MCMC algorithms in the context of transformation and variable
selection due to the change of scale induced by the transformation at each iteration (Smith&Kohn,
1996). Here, we introduce an efficient algorithm that accommodates such changes of scale. The
basic idea is to rescale the regression coefficients and the error variancewhile shifting the intercept
every time a new transformation parameter is proposed in order to increase the acceptance rate.
Our MCMC algorithm cycles through the following steps:

1. Block update (λ, β0, β, ψ) by Metropolis-Hastings.
2. Update β0 by Gibbs sampling.
3. For j = 1 to p:

(a) If βj > 0 block update (λj , β0, βj , ψ) by Metropolis-Hastings.
(b) Update βj by Gibbs sampling.

4. Update σ2
β by Metropolis-Hastings.

5. Update ψ by Gibbs sampling.
6. Block update 
 and ν by Gibbs sampling (for the model with t distributed errors).

Formove 1, we first randomly select a candidate transformation λ∗ using a symmetric proposal
centred at the current value λ. Based on this selected value, we then carry out a deterministic
update for the βj , β0, and ψ: first we rescale βj to β∗

j in light of Equation (4), and then choose
β∗
0 and ψ∗ to be those that maximize the likelihood ratio over the set of possible transformations

β∗
0 = β0 + δ and ψ∗ = αψ, where δ and α are constants in R and R+, respectively. We then

use the Metropolis-Hastings algorithm to decide whether or not to accept these new candidate
values; see the Appendix for more details. Rescaling the regression coefficients and variance, and
shifting the intercept is not, in theory, necessary. However, it noticeably increases the acceptance
rate and the overall performance of the MCMC algorithm. This implies that the intercept and the
regression coefficients are updated several times in each MCMC cycle.

Move 3a is similar to move 1, and is thus described in the Appendix with the other moves.

3.2. Posterior Model Probability and Rao-Blackwellization
In each case, the posterior model probability can be estimated from the MCMC output as the
proportion of time spent in the corresponding model. The marginal posterior probability that
the coefficient for each predictor does not equal zero, namely Pr(βj �= 0|y), can be obtained by
summing the posterior model probabilities across models for each predictor. However, note that
in (7), w∗

j corresponds to the probability that βj �= 0 given everything else in the model. Thus,
one can obtain more efficient estimates by Rao-Blackwellization when averaging the w∗

k values
computed at each iteration at no extra cost.

4. EXAMPLES

We now give results for three real data examples and a simulated example. All results from our
method were obtained using an MCMC algorithm based on one million iterations thinned by 100
after a burn-in period of 1,000 iterations.
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Figure 1: Histograms ofMCMC samples from the posterior distributions of the transformation parameters,
λ and λk’s for the Hald data.

4.1. The Hald Data
We first apply our methodology to the Hald cement data. These data have been analysed by
many researchers; see, for example, Cook (1977), George & McCulloch (1993), and Hoeting &
Ibrahim (1998). A full description of the data can be found in Draper & Smith (1981). There
are four predictors, each one measuring the percentage composition of a particular ingredi-
ent in samples of cement concrete. The response is the heat evolved in calories per gram of
cement.

Here we use model (3), as it has been noted that the Hald data were well-behaved with no
influential observations (Cook, 1977). This was also confirmed by fitting the robust model (5),
and observing a large estimated number of degrees of freedom. Figure 1 shows histograms of
the marginal posterior distribution of the transformation parameters for the response and the
most significant variables. There is evidence that the second independent variable, X2, needs to
be transformed and some evidence that the outcome variable needs to be transformed as well.
These results are in agreement with the estimated transformation parameters given by Hoeting
& Ibrahim (1998) even though these authors did not consider transformation of the outcome
variable. However, there is substantial uncertainty about the transformations, and such uncertainty
is naturally taken into account with our approach, which is not the case for the approach of Hoeting
& Ibrahim (1998).

Figure 2 shows that there are obvious changes of scale in the regression coefficients induced
by the transformations. As a result, the usual ergodic averages from the MCMC output are mean-
ingless, as explained in Section 2. The bottom graphs of Figure 2 show the trace plots of the
generalized regression coefficients. The trace plot looks much better, with no obvious changes of
scale, and the usual MCMC estimates can now be used. This fact is also illustrated in Figure 3
where it can be seen that the sampled values for β2 clearly depend on the transformation param-
eters λ and λ2. However, the generalized regression coefficients at each iteration do not depend
on the transformation parameters.

The posterior model probabilities are given in Table 1 and are in broad agreement with
previous results (George & McCulloch, 1993; Hoeting & Ibrahim, 1998). Note that the
exact posterior model probabilities computed by George & McCulloch (1993) and Hoet-
ing & Ibrahim (1998) differ from ours. This is because the models used are slightly dif-
ferent and because we consider transformations of both the outcome and the independent
variables.
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Figure 2: Trace plots of the regression coefficients, βk’s (top row), and the generalized regression coeffi-
cients (bottom row) for the Hald data. Note the y-axis scales: the regression coefficients show large changes

of scale, while the generalized regression coefficients do not.

4.2. The US Crime Data
We now turn to the US crime data (Ehrlich, 1973), a larger data set with 47 observations and
15 independent variables and so potentially 215 = 32, 768 different models. The variable names
are given in Table 2. Ehrlich’s analysis concentrated on the relationship between crime rate and
predictors 14 and 15 (probability of imprisonment and average time served in state prisons). In his
original analysis, Ehrlich (1973) focused on two regression models, consisting of the predictors
(9, 12, 13, 14, 15) and (1, 6, 9, 10, 12, 13, 14, 15), respectively, which were chosen in advance
based on theoretical grounds.

After logarithmic transformations of the data, Raftery, Madigan & Hoeting (1997) stated that
standard diagnostic checking (e.g., Draper & Smith, 1981) did not reveal any gross violations
of the assumptions underlying normal linear regression. Thus, we use the model with Gaussian
errors given in (3). We consider transformation of all variables except X2, which is binary.

Figure 4 shows histograms of the marginal posterior distribution of each transformation pa-
rameter. The histogram for the transformation parameter of the outcome variable, λ, supports
the logarithmic transformation originally used by Ehrlich (1973). However, our analysis suggests
that independent variables 13 and 14 might need to be transformed. Again, there is a great deal
of uncertainty about the transformation; and this uncertainty is naturally taken into account. As
with the Hald data, there are obvious changes of scale in the regression coefficients induced by
the transformations; see trace plots in Supplementary Material.
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Figure 3: Scatter plots of one regression coefficient, β2 (top row), and the generalized regression coef-
ficients, βG

2 (bottom row), as a function of the transformation parameters λ and λ2 for the Hald data. Each
point corresponds to a specific MCMC sample. The regression coefficients are heavily dependent on the
transformation parameters, while such dependence is absent for the generalized regression coefficients.

Table 1: Estimated posterior model probabilities for the Hald data.

X1 X2 X3 X4 Probability

• • 0.478

• • • 0.205

• • • 0.137

• • • • 0.132

• • 0.023

• • • 0.013

0.988 0.959 0.288 0.374 1

Only models with posterior probabilities greater than 0.01 are displayed. The marginal
posterior probabilities of each variable being included in the model are shown in the last
row.

The marginal posterior model probabilities of inclusion computed from our model are given
in Table 2. For comparison, we have also included the posterior probabilities computed byMCMC
model composition as described in Raftery, Madigan & Hoeting (1997). Overall the probabilities
are in broad agreement. For example, the most significant variables are the same (and in the
same order), all with probability greater than 0.8. However, the results are slightly different
because we consider variable transformation, which they did not, and because we estimate the
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Table 2: Estimated marginal posterior probabilities (MPP) of inclusion for the crime data.

Predictor MPP MC3 Step. Ehrlich’s Models

X1: Percentage of males age 14–24 71 79 ∗ ×
X2: Indicator variable for southern state 41 17

X3: Mean years of schooling 87 98 ∗
X4: Police expenditure in 1960 79 72 ∗
X5: Police expenditure in 1959 70 50

X6: Labor force participation rate 30 6 ×
X7: Number of males per 1,000 females 36 7

X8: State population 38 23

X9: Number of non-Whites per 1,000 people 67 62 + ×
X10: Unemployment rate of urban males age 14–24 31 11 ∗ ×
X11: Unemployment rate of urban males age 35–39 51 45 ∗
X12: Wealth 52 30 ∗ + ×
X13: Income inequality 98 100 ∗ + ×
X14: Probability of imprisonment 83 83 ∗ + ×
X15: Average time served in state prisons 43 22 + ×

TheMC3 columns correspond to theMCMCmodel composition results presented in Hoeting, Raftery &Madi-
gan (1996). The last three columns indicate the predictors selected by stepwise regression (∗) and the predictors
included in the two models considered by Ehrlich. + corresponds to Ehrlich model 1 and × corresponds to
Ehrlich model 2.

proportion of independent variables to be included in the model. Raftery, Madigan & Hoeting
(1997) considered every model equally likely a priori, which implicitly fixes the proportion of
independent variables to be included in the model at 0.5. In our case, the estimated posterior mean
for the proportion parameter w is 0.57, which suggests that more variables should be included.
We have also included the models selected by Ehrlich as well as the best model obtained by
stepwise regression. Most of the variables selected by the three models agree with our marginal
posterior probabilities. All the model posterior probabilities computed by our model were less
than 5%, and we do not show them here, given the large number of models. This indicates that,
as noted by Raftery, Madigan & Hoeting (1997), there is a great deal of uncertainty and that
selecting one model is not ideal. This will be illustrated in Section 5 where we will compare the
predictive performance of several models including stepwise regression when there is no model
averaging.

4.3. The Scottish Hill Racing Data
Our third example involves data supplied by the Scottish Hill Runners Association. This example
has been used by many researchers to illustrate the influence of outliers in linear regression
(Atkinson, 1986, 1988; Hoeting, Raftery & Madigan, 1996). Here, we use it to illustrate the
influence of outliers on both variable and transformation selection. The purpose of the study was
to investigate the relationship between record times of 35 hill races and two predictors: distance,
defined as the total length of the race measured in miles, and climb, defined as the total elevation
gained in the race, measured in feet; see Atkinson (1986) for further details.
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Figure 4: Histograms of the posterior distributions of the transformation parameters, λ and λk’s, for the
crime data. Only λk’s for which the corresponding posterior probability for the regression coefficient of

being nonzero is greater than 0.8 are displayed.

In particular, Atkinson (1986) and Hadi (1990) concluded that races 7 and 18 are outliers.
After they removed observations 7 and 18, their methods indicated that observation 33 is also an
outlier. Thus, they concluded, observations 7 and 18 mask observation 33.

We start by fitting the Gaussian model (3). The top graphs of Figure 5 show histograms
of the marginal posterior distribution of each transformation parameter for the model with
Gaussian errors. All three histograms, except perhaps that of λ1, clearly suggest transforma-
tion of the corresponding variables. The bottom graphs of Figure 5 show histograms of the
marginal posterior distribution of each transformation parameter for the model with t errors.
Now, there is not much evidence that the first independent variable X1 should be transformed
and less evidence that the outcome variable should be transformed as well. From the Gaus-
sian model, the posterior mean of λ is 0.12 and a 95% credible interval is (–0.34, 0.52), while
from the t model the posterior mean of λ is 0.48 and a 95% credible interval is (0.33, 0.64).
This suggests that transformations for both X1 and Y are heavily influenced by the presence of
outliers.

Table 3 shows the estimated posteriormedians of the�i’s, which can be interpreted asweights.
Observations 18, 19, and 24 have small weights, suggesting that they are outliers. In particular, the
corresponding 90% credible intervals do not contain 1 whereas all other intervals contain 1. On
the other hand, observation 7 is slightly downweighted while observation 33 is not downweighted
at all, suggesting that transformations of the response and the independent variables are enough to
accommodate such outliers. For comparison, we fitted the same model without transforming the
independent variables, and observations 7, 18, and 33 had the three smallest weights, all smaller
than 0.4 (results not shown). Note, however, that transformations of the independent variables
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Figure 5: Histograms of the transformation parameters, λ and λk’s, for the Scottish hill race data for the
Gaussian model (top) and t model (bottom).

were not considered by Atkinson (1986). Overall, this indicates that transformation selection and
treatment of outliers affect one another, and suggests that the two should be done simultaneously.

Finally, the posteriormodel probabilities are given in Table 4. There are substantial differences
between theGaussian and tmodels.After accounting for potential outliers the posterior probability
of X1 being included in the model increased substantially.

In the three previous examples considered, the true answer is unknown. We have also used
simulated data to evaluate the performance of our methodology when the truth is known, under

Table 3: Posterior weights, that is, posterior medians of the �’s, associated with each observation of the
Scottish hill race data.

Obs. 1 2 3 4 5 6 7 8 9 10 11 12

Weight 0.80 0.98 0.89 1.01 1.05 0.74 0.51 1.08 1.08 0.93 0.73 0.66

Obs. 13 14 15 16 17 18 19 20 21 22 23 24

Weight 0.94 0.61 0.90 0.90 0.93 0.03 0.28 1.08 1.00 0.68 0.96 0.30

Obs. 25 26 27 28 29 30 31 32 33 34 35

Weight 0.92 0.96 0.98 0.97 0.90 0.42 0.99 0.92 0.95 1.10 0.73

Observations with small weights are downweighted. Observations 18, 19, and 24 have the smallest weights and
are highlighted in bold, suggesting that they might be outliers.
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Table 4: Estimated posterior model probabilities for the Scottish hill race Data.

Gaussian t

X1 X2 Prob. X1 X2 Prob.

• • 0.359 • • 0.765

• 0.641 • 0.235

0.359 1.000 1 0.767 1.000 1

Only models with posterior probabilities greater than 0.01 are displayed. The marginal
posterior probabilities are given by the last row.

various model missspecifications. The simulation details and results of the simulation study are
shown in on-line Supplementary Material.

5. ASSESSMENT OF PREDICTIVE PERFORMANCE

In addition to variable selection, it is of interest to look at the predictive performance of our
approach compared to others. We use the predictive ability of the selected models for future
observations to measure the effectiveness of a model selection strategy. Our specific objective is
to compare the quality of the predictions based on model averaging with the quality of predictions
based on any single model that an analyst might reasonably have selected. For comparison with
other standard variable selection techniques, we included the same variants as in our simulation
study (see SupplementaryMaterial), namely transformation (T), outlier selection (O), and variable
selection (VS). In order to be fair, when no transformation was selected, the transformation for
the response was set to the maximum likelihood estimate of the Box–Cox parameter from the full
model. Finally, we have included the simple normal model on the transformed response where the
variable to be included were first selected by stepwise regression based on that same transformed
response as previously described.

To measure performance, we randomly split the complete data set into two subsets. A 50/50
split was chosen here so that each portionwould contain enough data to be a representative sample.
We ran our model using half of the data, called the training data, and evaluated the prediction
performance using the remaining half of the data, called the test data. A calibration plot was used
to determine if the predictions were well calibrated. A model is well calibrated if, for example,
70% of the observations in the test data set are less than or equal to the 70th percentile of the
posterior predictive distribution. The calibration plot shows the degree of calibration for different
models for various posterior percentiles.

For each percentile considered, the performance was measured by the absolute differ-
ence between the posterior percentile and the proportion of observation that falls below that
same value. A well-calibrated model would have an expected absolute difference of zero.
Here, we used four random splits and the prediction performance was averaged over the
four splits. Predictive performance was assessed for the crime data, the racing data, and two
simulated data sets. The Hald data contained only 13 observations and thus was excluded
here.

For the crime and racing data (Figure 6), our robust model performed best for most percentile
values (shaded grey areas). It can be seen that taking into account the transformation and
variable selection uncertainty was important. Outlier selection was also important, particularly
for the Racing data where there are several outliers. We have also looked at the impact of model
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Figure 6: Predictive performance curves for each different variants of our model: transformation selection
(T), outlier selection (O), variable selection (VS) and stepwise on both the crime data (top) and racing data
(bottom). For each percentile value, the performance was measured by the absolute difference between the
posterior percentile and the proportion of observation that falls below that same value. The smaller the
absolute difference, the better the performance. Areas shaded in grey show where our robust model with
transformation selection (T+VS+O) performs the best. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

mis-specification on the calibration plots as shown in on-line Supplementary Material. The
simulations along with the real data suggest that the price of including transformation and outlier
selection when there are no transformations and no outliers is not great, but that the converse is not
true.
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6. DISCUSSION

We have introduced a unified approach to the problems of choice of transformations, variable
selection, and outlier identification in regression. Using three real examples and a simulated one,
we have shown that there can be considerable uncertainty about each of these three modeling
choices, and that all three should be done simultaneously. The approach deals with the change
of scale induced by each transformation and makes inference (including probabilistic statements)
about the size of the effect associated with each predictor.

Similar to Box & Cox (1964) and Hinkley & Runger (1984), our prior formulation for the
regression coefficients relies on the transformation parameters to accommodate any change
of scale. We have found a data-dependent prior based on the scales of the variables to work
well in practice, but other prior formulations have been proposed (Perichi, 1981; Sweeting,
1984).

Here we chose a continuous prior for the Box–Cox transformation parameters. For scientific
reasons, such as interpretation of the transformation parameters, an investigator might want to
restrict each transformation to a finite number of values. Our approach can be adapted to the
case where the parameters are restricted to a finite set. However, we have found our MCMC
algorithm to mix poorly in the discrete case due to the possible large difference in likelihood
between two very different transformation parameters. It would be possible to derive more ef-
ficient algorithms to overcome this problem, such as simulated tempering algorithms (Geyer,
1991; Marinari & Parisi, 1992). However, we have introduced new parameters that we call
generalized regression coefficients, which have the same interpretation as the regression coef-
ficients on the original scale of the data. Thus, using our approach one can make inference
about the effect of each variable on the original scale, whose interpretation remains valid re-
gardless of the transformation selected. In addition, as pointed out by Carroll (1982) in the
context of maximum likelihood inference, restricted (discrete) and unrestricted inferences can
lead to significantly different answers, and in such a case the unrestricted approach might be
preferable. Finally, in order to test if a transformation should be used, it could be possible to
use a mixture of a point mass at one and a continuous distribution for the prior of the trans-
formation parameter. However, as with the discrete prior, this would significantly increase the
complexity of our MCMC algorithm, and our simulation suggests that it would not necessarily
improve predictive performance. It could have advantages from the point of view of interpretation,
however.

We have focused here on Box–Cox transformations, because they remain the most used trans-
formations in regression analysis and because previous literature has studied the assessment of
uncertainty when such transformations are used, which is also our concern. Peter McCullagh,
in his discussion of Chen, Lockhart & Stephens (2002), has pointed out a more fundamental
reason for focusing on power transformations, namely that they are the only transformations
that are consistent under aggregation. However, the essence of our methodology is also ap-
plicable to other approaches to accommodating nonlinearity in regression, particularly those
that have a parametric flavour, including fractional polynomials (Royston & Altman, 1994) and
spline regression (Hansen & Kooperberg, 2002). The basic idea of a generalized regression
coefficient, defined as d[med(Y )]/dXj , seems potentially even more generally applicable, in-
cluding nonparametric approaches such as generalized additive models (Hastie & Tibshirani,
1990).

We used a univariate update Gibbs proposal for the regression coefficient, which we found to
workwell in the examples explored here. However, for very large problemswithmulticollinearity,
an algorithm that performs block updates might be desirable. For example, this could be done by
adding an extra step to our MCMC scheme such as the block update described in Nott & Green
(2004) or in Gottardo & Raftery (2008).
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APPENDIX: MCMC ALGORITHM

The rescaled coefficients used inmove 1 are defined as β∗
j = Sgλ∗ (Y )/Sgλ(Y )βj . Then the candidate

values β∗
0 and ψ∗, which maximize the likelihood ratio over the set of possible transformations

β∗
0 = β0 + δ and ψ∗ = αψ, where δ and α are given by

δ =
∑

i �i{gλ∗ (yi) − gλ(yi) −∑j(β
∗
j − βj)gλj (Xij)}∑

i �i

and

α =
∑

i �i{gλ(yi) − β0 −∑j βjgλj (Xij)}2∑
i �i{gλ∗ (yi) − β∗

0 −∑j β∗
j gλj (Xij)}2 .

Note that these are given for the t-distributed model, and the corresponding estimates for the
Gaussian model can be obtained by setting �i ≡ 1. The Metropolis-Hastings algorithm is used to
decide whether or not to accept the move. The proposal induces a Jacobian term in the acceptance
ratio equal to α

∏
{j:βj �=0}[Sgλ∗ (Y )/Sgλ(Y )], due to the change of scale in β and ψ.

For move 3a, we first select a candidate transformation λ∗
j using a symmetric proposal centred

at the current value λj . Based on this candidate value, we carry out a deterministic update for βj

given by β∗
j = Sgj(Xj)/Sg∗

j
(Xj)βj and β∗

0 and ψ∗ by maximizing the likelihood ratio over the set
of possible transformations β∗

0 = β0 + δ and ψ∗ = αψ, where δ and α are constants inR andR+,
respectively. Straightforward calculations lead to the optimal values

δ =
∑

i �i{βjgλj (Xij) − β∗
j gλ∗

j
(Xij)}∑

i �i

and

α =
∑

i �i{gλ(yi) − β0 −∑j βjgλj (Xij)}2∑
i �i{gλ(yi) − β∗

0 −∑k �=j βkgλk
(Xik) − β∗

j gλ∗
j
(Xij)}2 .

We then use the Metropolis-Hastings algorithm to decide whether or not to accept these new
candidate values. Again this proposal induces a Jacobian term in the acceptance ratio equal to
αSgλj

(Xj)/Sg∗
λj

(Xj), due to the change of variable.

The Gibbs sampler step 3b is performed using the full conditionals for the βk’s given by

(βj| . . .) ∼ (1 − w∗
j )δ0 + w∗

jN


 ψ

∑
i rij

ψ
∑

i �igλj (Xij)2 + ψβj

,

(
ψ
∑

i

�igλj (Xij)2 + ψβj

)−1

 ,

(7)
where

w∗
j = 1 − 1 − w

1 − w + w
√

ψβ/(ψ
∑

i
�igλj

(Xij)2 + ψβj
) exp(0.5(ψ

∑
rij)2/(ψ

∑
i
�igλj

(Xij)2 + ψβj
))

,
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the residual rij is defined by

rij = �i(gλ(yi) − β0 −
∑
k �=j

βkgλk
(Xik))gλj (Xij),

and ψβj = (S2
gλ(Y )/S2

gλj
(Xj)σ

2
β)

−1. All other updates are straightforward, involving Gibbs or ran-
dom walk type proposals, and are not described here.

On-Line Supplementary Material

Additional Supplementary Material can be downloaded at http://www.rglab.org/download/
BayesianVSandT Supp.pdf.
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