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We consider the problem of online prediction when it is uncertain what the best prediction model to use
is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the
parameters of each model is combined with a Markov chain model for the correct model. This allows the
“correct” model to vary over time. The state space and Markov chain models are both specified in terms
of forgetting, leading to a highly parsimonious representation. As a special case, when the model and
parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging,
which we call recursive model averaging (RMA). The method is applied to the problem of predicting the
output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found
that when only a small number of physically motivated models were considered and one was clearly best,
the method quickly converged to the best model, and the cost of model uncertainty was small; indeed
DMA performed slightly better than the best physical model. When model uncertainty and the number of
models considered were large, our method ensured that the penalty for model uncertainty was small. At
the beginning of the process, when control is most difficult, we found that DMA over a large model space
led to better predictions than the single best performing physically motivated model. We also applied
the method to several simulated examples, and found that it recovered both constant and time-varying
regression parameters and model specifications quite well.
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1. INTRODUCTION

We consider the problem of online prediction when it is un-
certain what the best prediction model to use is. Online pre-
diction is often done for control purposes and typically uses a
physically based model of the system. Often, however, there are
several possible models and it is not clear which is the best one
to use.

To address this problem, we develop a new method called
Dynamic Model Averaging (DMA) that incorporates model un-
certainty in a dynamic way. This combines a state–space model
for the parameters of each of the candidate models of the system
with a Markov chain model for the best model. Both the state
space and Markov chain models are estimated recursively, al-
lowing the identity of the best model to change over time. Both
the state space and Markov chain models are specified using
versions of forgetting, which allows a highly parsimonious rep-
resentation. The predictive distribution of future system outputs
is a mixture distribution with one component for each physical
model considered, and so the best prediction is a weighted av-
erage of the best predictions from the different models.

The physical theory underlying the prediction or control
problem is often somewhat weak, and may be limited essen-

tially to knowing what the inputs are that could potentially in-
fluence the output of a system. In that case we consider a model
space consisting of all possible combinations of inputs that are
not excluded by physical considerations.

The DMA methodology combines various existing ideas, no-
tably Bayesian model averaging, hidden Markov models, and
forgetting in state–space modeling. Bayesian model averaging
(BMA) (Leamer 1978; Raftery 1988; Hoeting et al. 1999; Clyde
and George 2004) is an established methodology for statisti-
cal inference from static datasets in the presence of model un-
certainty, and has been particularly well developed for linear
regression when there is uncertainty about which variables to
include (Raftery, Madigan, and Hoeting 1997; Fernández, Ley,
and Steel 2001; Eicher, Papageorgiou, and Raftery 2009). BMA
usually addresses the problem of uncertainty about variable se-
lection in regression by averaging over all possible combina-
tions of regressors that are not excluded by physical considera-
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tions. BMA is restricted to static problems, however. An exten-
sion to dynamic updating problems was proposed by Raftery
et al. (2005) in the context of probabilistic weather forecasting,
using a sliding window estimation period consisting of a spec-
ified previous number of days. DMA is a recursive updating
method rather than a windowing one.

The idea of the hidden Markov model is that there is an un-
derlying unobserved discrete-valued process whose value af-
fects the system state and which evolves according to a Markov
chain. The idea seems first to have been proposed indepen-
dently by Ackerson and Fu (1970) for the case where the noise
in a Kalman filter is a Gaussian mixture, and by Harrison and
Stevens (1971) for modeling time series that can have outliers
and jumps in level and trend. The latter has been extended to the
dynamic linear model (Harrison and Stevens 1976; West and
Harrison 1989) and the multiprocess Kalman filter (Smith and
West 1983). The basic idea has since been widely used, often
under different names, in different disciplines including speech
recognition (Rabiner 1989) and genomics (Eddy 1998, 2004).
In economics, the Markov switching model of Hamilton (1989)
is widely used for time series in which the autoregressive pa-
rameters switch between different regimes. Markov switching
models are also widely used for tracking moving or maneuver-
ing objects, particularly in aerospace engineering (Li and Jilkov
2005). An important unifying framework is the conditional dy-
namic linear model (CDLM) of Chen and Liu (2000), which
includes several earlier proposals as special cases.

To specify DMA, we postulate the existence of a hidden
Markov chain on the model space. This differs from many other
hidden Markov applications because the definition of the state
itself, and not just its value, depends on the current value of
the chain. As a result, our method is not a special case of the
CDLM, although it is related to it.

One of the difficulties with hidden Markov models is the need
to make inference about the full sequence of hidden values of
the chain, and the resulting computational explosion. Various
approximations have been proposed, including finite-memory
approximations (Ackerson and Fu 1970; West and Harrison
1989), the interacting multiple model (IMM) algorithm of Blom
and Bar-Shalom (1988), which is popular in tracking applica-
tions (Mazor et al. 1998), the particle filter (Gordon, Salmond,
and Smith 1993), also known as sequential importance sam-
pling, and the ensemble Kalman filter (Evensen 1994). The fact
that in our case the state vector has a different definition for each
candidate model allows us to use a very simple approximation
in which each model is updated individually at each time point.
We show that this is equivalent to an age-weighted version of
BMA, which makes it intuitively appealing in its own right.

As a special case, when the model and parameters do
not change, DMA is a recursive implementation of standard
Bayesian model averaging, which we call recursive model av-
eraging (RMA).

In many previous hidden Markov applications there is con-
siderable information about the evolution of the state. In the
rolling mill application that motivated our work, there is con-
siderable physical knowledge about the rolling mill itself, but
little physical knowledge about how the regression model and
its parameters (which define the system state in our setup) are
likely to evolve. All that can be assumed is that the parame-
ters are likely to evolve gradually in time, and that the model is

likely to change infrequently. As a result, rather than specify the
state–space model fully, which is demanding and for which ad-
equate information is not available, we specify the evolution of
the parameters and the model by exponential forgetting (Fagin
1964; Jazwinsky 1970; Kulhavý and Zarrop 1993).

We illustrate the methodology by applying it to the predic-
tion of the outgoing strip thickness of a cold rolling mill, ul-
timately for the purpose of either human or automatic control.
The system input and three adjustable control parameters are
measured, and the system output is measured with a time de-
lay. While there is considerable understanding of the physics
of the rolling mill, three plausible models have been proposed,
of which two are physically motivated. We first implemented
DMA for these three models, one of which turned out to be
clearly best. DMA converged rapidly to the best model, and the
performance of DMA was almost the same as that of the best
model—DMA allowed us to avoid paying a penalty for being
uncertain about model structure.

We then extended the set of models to allow for the possibil-
ity of each of the inputs having an effect or not, yielding a much
bigger model space with 17 models. In this case we found that
DMA performed better than the best physical model in the ini-
tial, most unstable period when control is most difficult, and
comparably over the rest of the period, when prediction er-
rors were generally stable. Thus, even in this case with a larger
model space, DMA allowed us to avoid paying a penalty for
model uncertainty, and indeed allowed us to use the model un-
certainty to increase the stability of the predictions in the early
unstable period.

To assess how well the method recovered time-varying and
constant regression parameter values and model specifications,
we also applied it to four simulated examples closely modeled
on the rolling mill problem.

The rest of the paper is organized as follows. In Section 2 we
describe the rolling mill problem that motivated our research. In
Section 3 we describe the dynamic model averaging methodol-
ogy, and in Section 4 we show the results of single-model and
DMA prediction for the rolling mill. In Section 5 we give the
results of applying our method to four simulated examples. In
Section 6 we discuss limitations, possible extensions and alter-
natives to the proposed methodology.

2. THE ROLLING MILL PROBLEM

The problem that motivated our methodology is that of pre-
dicting the output of a reversing cold rolling mill. A cold rolling
mill is a machine used for reducing the thickness of metal strips;
a schematic drawing is shown in Figure 1. Metal is passed
through a gap and subjected to the rolling force. The strip thick-
ness is measured by diamond-tipped contact meters on both
sides of the rolling mill, providing measurements of the in-
put and output thickness. A target thickness is defined, and this
needs to be achieved with high accuracy depending on the nom-
inal thickness. In our case a typical tolerance was ±10 microns.
We are dealing here with a reversing rolling mill which reduces
the strip thickness in several passes, alternating the rolling di-
rection.

The output that we want to predict is the output strip thick-
ness which is, under normal conditions, securely controlled us-
ing automatic gauge control (Ettler and Jirovský 1991). This
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Figure 1. Schematic drawing of a reversing cold rolling mill.

control method can be improved manually by actions of the
operators, potentially supported by a decision-support system
(Quinn et al. 2003; Ettler, Kárný, and Guy, 2005).

Reliable thickness prediction can improve control, particu-
larly under adverse conditions that the automatic gauge control
system is not designed to handle. These can arise at the begin-
ning of a pass of the material through the rolling mill, when
the thickness meters often do not operate for a period because
there is a danger that they may be damaged. Adverse conditions
can also arise for welded strips and for strip parts with uneven
surfaces.

Important variables that can be adjusted to achieve the target
are the size of the rolling gap governed by the roll positioning
system, the rolling force, the input and output rolling speeds
and—possibly—strip tensions. Rolling forces can be of the or-
der of 106 N, and rolling speeds of the order of 0.1–8.0 m/s.
The rolling gap cannot be reliably measured, but the roll posi-
tion is available instead, measured against the mill frame. This
position differs from the gap mainly because of frame elonga-
tion during rolling.

Modern rolling mill control systems allow every sample
processed to be archived. Data collection is triggered by
the strip movement. In our case, data samples are recorded
every 4 cm, so that the sampling period varies according to
the strip speed. For instance, if the speed is 1 m/s, the sampling
period is 40 milliseconds. This imposes constraints on the com-
plexities of online data processing, which must be completed
well within the sampling period. These constraints are a key
element of the problem, and imply that the methods used must
be computationally efficient.

Our goal is to predict the output thickness for the piece of
the strip just leaving the rolling gap. We wish to do this online,
either to provide guidance to human operators controlling the
system in real time in situations that preclude the use of au-
tomatic gauge control, or as an additional input to the control
system. This is essentially a regression problem. However, an
important complicating aspect of the data collection system is
the time delay problem, illustrated in Figure 2.

Current values of the regressors are available for the piece
of the strip in the rolling gap. However, the system output—the
output strip thickness—is measured only with a delay d, which

in our case was d = 24 samples. The task thus consists of pre-
dicting the output thickness, given the input thickness and other
measured data at the gap. But data for estimating the regression
relationship are available only with a delay d.

The data that we analyze come from a strip of length about
750 m that yielded 19,058 samples. The roll position was con-
trolled by automatic gauge control with feedback. The data
from the first 1000 samples are shown in Figure 3. Figure 3(a)
shows the deviations of the input and output thicknesses from
their nominal values, which are 1398 and 1180 microns, respec-
tively. (The input was about 200 microns thicker than the de-
sired output, allowing a margin for the rolling mill to do its work
of thinning the material.) Initially the output was too thick, and
gradually converged to a relatively stable situation after about
600 samples. Figure 3(b) shows the roll position, Figure 3(c) the
ratio of the input to the output rolling speeds, and Figure 3(d)
the rolling force. The gradual adjustment of the controlled vari-
able by the feedback controller can be seen. The two outliers in
the rolling speed ratio at samples 42 and 43 provide a challenge
to the system.

3. DYNAMIC MODEL AVERAGING (DMA)

We first consider the situation where a single, physically
based regression-type model is available for prediction. We will
review a standard state–space model with forgetting for adap-
tive estimation of the regression parameters and prediction with

Figure 2. Measurement time delay. A measurement is made every
time the material moves by a length �, equal to one sample. The output
thickness currently at the gap is not measured until the material has
moved a distance L beyond the gap. The measurement time delay is
d ≈ L/� samples, where d is a natural number.
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(a) (b)

(c) (d)

Figure 3. Data from the rolling mill: first 1000 samples. (a) Input and output thickness deviations from their nominal values (in microns);
(b) roll position (in microns); (c) ratio of input to output rolling speeds; (d) rolling force at the gap (in MN).

time delay. This is essentially standard Kalman filtering, but we
review it here to fix ideas and notation. We will then address the
situation where there is uncertainty about the model structure
and several plausible models are available. For concreteness,
we will use the rolling mill terminology.

3.1 The One-Model Case

Let yt be the deviation of the output thickness of sample t
from its target value, and let xt = (xtj : j = 1, . . . , ν) be the cor-
responding vector of inputs. Typically xt1 = 1, corresponding
to the regression intercept, and xt will also include the input
thickness and other inputs and possibly also a past value of the
output; the latter would lead to an ARX model (Ljung 1987).

The observation equation is then

yt = xT
t θt + εt, (1)

where a superscript T denotes matrix transpose, θt is a vector of
regression parameters, and the innovations εt are distributed as

εt
iid∼ N(0,V), where N(μ,σ 2) denotes the normal distribution

with mean μ and variance σ 2. The regression parameters θt are
allowed to evolve according to the state equation

θt = θt−1 + δt, (2)

where the state innovations δt are distributed as δt
ind∼ N(0,Wt).

Inference is done recursively using Kalman filter updat-
ing. Suppose that θt−1|Yt−1 ∼ N(θ̂t−1,�t−1), where Yt−1 =
{y1, . . . , yt−1}. Then

θt|Yt−1 ∼ N(θ̂t−1,Rt), (3)

where

Rt = �t−1 + Wt. (4)
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Equation (3) is called the prediction equation.
Specifying the ν × ν matrix Wt completely is demanding,

and often little information for doing so is available. Instead we
follow Fagin (1964) and Jazwinsky (1970) and specify it using
a form of forgetting. This consists of replacing (4) by

Rt = λ−1�t−1, (5)

where λ is called the forgetting factor and is typically slightly
below 1. The resulting model is a properly defined state–space
model, with Wt = a�t−1, where a = (λ−1 − 1). As pointed out,
for example, by Hannan, McDougall, and Poskitt (1989), es-
timation in this model is essentially age-weighted estimation
where data i time points old has weight λi, and the effective
amount of data used for estimation, or the effective window
size, is h = 1/(1 − λ). This suggests that forgetting may be
roughly comparable to windowing (Jazwinsky 1970), in which
the last h available samples are used for estimation and are
equally weighted. A windowing method like this was used in
the multimodel context by Raftery et al. (2005).

Inference is completed by the updating equation,

θt|Yt ∼ N(θ̂t,�t). (6)

In (6),

θ̂t = θ̂t−1 + Rtx
T
t (V + xT

t Rtxt)
T et, (7)

where et = yt − xT
t θ̂t−1 is the one-step-ahead prediction error,

and

�t = Rt − Rtxt(V + xT
t Rtxt)

−1xT
t Rt. (8)

The inference process is repeated recursively as the measure-
ments on a new sample become available. It is initialized by
specifying θ̂0 and �0; we will discuss their values for the rolling
mill problem in Section 4.

The information available for predicting yt is d samples old
because of the time-delay problem, and so we use

ŷt = xT
t θ̂t−d−1. (9)

The observations innovations variance V needs to be speci-
fied by the user. Here we estimate it by a recursive method of
moments estimator, using the fact that the one-step-ahead pre-
dictive distribution of yt is given by

yt|Yt−1 ∼ N(xT
t θ̂t−1,V + xT

t Rtxt). (10)

It follows that

V∗
t = 1

t

t∑
r=1

[(yt − xtθ̂t−1)
2 − xT

t Rtxt]

is a consistent estimator of V in the sense that V∗
t −→ V as

t −→ ∞ in probability under the model defined by (1) and (2).
It is not guaranteed, however, that V∗

t > 0. This leads us to de-
fine the recursive moment estimator

V̂t =
{

At if At > 0,

V̂t−1 otherwise,

where

At =
(

t − 1

t

)
V̂t−1 + 1

t
(e2

t − xT
t Rtxt).

3.2 The Multi-Model Case

We now consider the case where multiple models, M1, . . . ,

MK are considered and there is uncertainty about which one
is best. We assume that each model can be expressed in the
form of Equations (1) and (2), where the state vector, θt, and
the predictor vector, xt, for each model are different. They can
be of different dimensions and need not overlap. The quantities
specific to model Mk are denoted by a superscript (k). We let
Lt = k if the process is governed by model Mk at time t. We
rewrite (1) and (2) for the multimodel case as follows:

yt|Lt = k ∼ N
(
x(k)T

t θ
(k)
t ,V(k)), (11)

θ
(k)
t |Lt = k ∼ N

(
θ

(k)
t−1,W(k)

t
)
. (12)

We assume that the model governing the system changes in-
frequently, and that its evolution is determined by a K × K tran-
sition matrix Q = (qk
), where qk
 = P[Lt = 
|Lt−1 = k]. The
transition matrix Q has to be specified by the user, which can be
onerous when the number of models is large. Instead we again
avoid this problem by specifying the transition matrix implicitly
using forgetting.

Estimation of θ
(k)
t in general involves a mixture of Kt terms,

one for each possible value of Lt = {L1, . . . ,Lt}, as described
by Ackerson and Fu (1970) and Chen and Liu (2000), for exam-
ple. This number of terms rapidly becomes enormous, making
direct evaluation infeasible, and many different approximations
have been described in the literature. Here we are interested in
prediction of the system output, yt, given Yt−1, and this depends
on θ

(k)
t only conditionally on Lt = k. This leads to a simple ap-

proximation that works well in this case, consisting of simply
updating θ

(k)
t conditionally on Lt = k for each sample.

In this multimodel setup, the underlying state consists of the
pair, (θt,Lt), where θt = (θ

(1)
t , . . . , θ

(K)
t ). The quantity θ

(k)
t is

defined only when Lt = k, and so the probability distribution of
(θt,Lt) can be written

p(θt,Lt) =
K∑

k=1

p
(
θ

(k)
t |Lt = k

)
p(Lt = k). (13)

The distribution in (13) is what we will update as new data be-
come available.

Estimation thus proceeds analogously to the one-model case,
consisting of a prediction step and an updating step. Suppose
that we know the conditional distribution of the state at time
(t − 1) given the data up to that time, namely

p(θt−1,Lt−1|Yt−1) =
K∑

k=1

p
(
θ

(k)
t−1|Lt−1 = k,Yt−1)

× p(Lt−1 = k|Yt−1), (14)

where the conditional distribution of θ
(k)
t−1 is approximated by a

normal distribution, so that

θ
(k)
t−1|Lt−1 = k,Yt−1 ∼ N

(
θ̂

(k)
t−1,�

(k)
t−1

)
. (15)

The prediction step then involves two parts: prediction of the
model indicator, Lt, via the model prediction equation, and con-
ditional prediction of the parameter, θ

(k)
t , given that Lt = k, via

the parameter prediction equation. We first consider prediction
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of the model indicator, Lt. Let πt−1|t−1,
 = P[Lt−1 = 
|Yt−1].
Then the model prediction equation is

πt|t−1,k ≡ P[Lt = k|Yt−1]

=
K∑


=1

πt−1|t−1,
qk
. (16)

To avoid having to explicitly specify the transition matrix, with
its K2 elements, we replace (16) by

πt|t−1,k = πα
t−1|t−1,k + c∑K


=1 πα
t−1|t−1,
 + c

. (17)

In (17), the exponent α is a forgetting factor, which will typi-
cally be slightly less than 1, and c is a small positive number,
introduced to avoid a model probability being brought to ma-
chine zero by aberrant observations; we set this to c = 0.001/K.
Equation (17) increases the uncertainty by flattening the distri-
bution of Lt. This is a slight generalization of the multiparame-
ter power steady model introduced independently by Peterka
(1981) and Smith (1981), generalizing the one-dimensional
steady model of Smith (1979). Although the resulting model
does not specify the transition matrix of the Markov chain ex-
plicitly, Smith and Miller (1986) argued that this is not a de-
fect of the model, since the data provide information about
πt−1|t−1,k and πt|t−1,k, but no additional information about
Q. Exponential forgetting has been used for updating discrete
probabilities in a different two-hypothesis context by Kárný and
Andrýsek (2009).

With forgetting, the parameter prediction equation is

θ
(k)
t |Lt = k,Yt−1 ∼ N

(
θ̂

(k)
t−1,R(k)

t
)
, (18)

where R(k)
t = λ−1�

(k)
t−1.

We now consider the updating step, which again has two
parts, model updating and parameter updating. The model up-
dating equation is

πt|t,k = ωtk

/ K∑

=1

ωt
, (19)

where

ωt
 = πt|t−1,
f
(yt|Yt−1). (20)

In (20), f
(yt|Yt−1) is the density of a N(x(
)T
t θ̂

(
)
t−1,V(
) +

x(
)T
t R(
)

t x(
)
t ) distribution, evaluated at yt.

The parameter updating equation is

θ(k)|Lt = k,Yt ∼ N
(
θ̂

(k)
t ,�

(k)
t

)
, (21)

where θ̂
(k)
t is given by (7) and �

(k)
t is given by (8), in each case

with the superscript (k) added to all quantities. This process is
then iterated as each new sample becomes available. It is ini-
tialized by setting π0|0,
 = 1/K for 
 = 1, . . . ,K, and assigning

values to θ
(k)
0 and �

(k)
0 .

The model-averaged one-step-ahead prediction of the system
output, yt, is then

ŷDMA
t =

K∑
k=1

πt|t−1,kŷ(k)
t

=
K∑

k=1

πt|t−1,kx(k)T
t θ̂

(k)
t−1. (22)

Thus the multimodel prediction of yt is a weighted average of
the model-specific predictions ŷ(k)

t , where the weights are equal
to the posterior predictive model probabilities for sample t,
πt|t−1,k . For the rolling mill problem with delayed prediction,
we take the predicted value of yt to be

ŷDMA
t =

K∑
k=1

πt−d|t−d−1,kŷ(k)
t

=
K∑

k=1

πt−d|t−d−1,kx(k)T
t θ̂

(k)
t−d−1. (23)

One could also project the model probabilities into the future
and allow for model transitions during the delay period by re-
placing πt−d|t−d−1,k in (23) by παd

t−d|t−d−1,k , but we do not do
this here.

We call the method dynamic model averaging (DMA), by
analogy with Bayesian model averaging for the static linear re-
gression model (Raftery, Madigan, and Hoeting 1997).

3.3 Connection to Static Bayesian Model Averaging

Standard Bayesian model averaging (BMA) addresses the
static situation where the correct model Mk and its parame-
ter θ(k) are taken to be fixed but unknown. In that situation,
the BMA predictive distribution of yn+d given Yn is

p(yn+d|Yn) =
K∑

k=1

p(yn+d|Yn,Mk)p(Mk|Yn),

where p(Mk|Yn) is the posterior model probability of Mk. If, as
here, all models have equal prior probabilities, this is given by

p(Mk|Yn) = p(Yn|Mk)∑K

=1 p(Yn|M
)

,

where p(Yn|Mk) = ∫
p(Yn|θ(k),Mk)p(θ(k)|Mk)dθ(k) is the in-

tegrated likelihood, obtained by integrating the product of the
likelihood, p(Yn|θ(k),Mk), and the prior, p(θ(k)|Mk), over the
parameter space. See Hoeting et al. (1999) and Clyde and
George (2004) for reviews of BMA.

Dawid (1984) pointed out that the integrated likelihood can
also be written as follows:

p(Yn|Mk) =
n∏

t=1

p(yt|Yt−1,Mk), (24)

with Y0 defined as the null set. The posterior model probabili-
ties in BMA can be expressed using Bayes factors for pairwise
comparisons. The Bayes factor for Mk against M
 is defined as
the ratio of integrated likelihoods, Bk
 = p(Yn|Mk)/p(Yn|M
)
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(Kass and Raftery 1995). It follows from (24) that the log Bayes
factor can be decomposed as

log Bk
 =
n∑

t=1

log Bk
,t, (25)

where Bk
,t = p(yt|Yt−1,Mk)/p(yt|Yt−1,M
) is the sample-
specific Bayes factor for sample t.

In the dynamic setup considered in the rest of the paper, it
follows from (17), (19), and (20) that when c = 0 in (17),

log

(
πn|n,k

πn|n,


)
=

n∑
t=1

αn−t log Bk
,t, (26)

where Bk
,t is defined as in (25). Thus our setup leads to the
ratio of posterior model probabilities at time n being equal to
an exponentially age-weighted sum of sample-specific Bayes
factors, which is intuitively appealing.

When α = λ = 1 there is no forgetting and we recover the so-
lution for the static situation as a special case of DMA, as (25)
and (26) are then equivalent. In this case, the method is recur-
sive but not dynamic, and could be called recursive model av-
eraging (RMA). This may have computational advantages over
the standard computational methods for BMA. To our knowl-
edge this also is new in the literature.

4. RESULTS FOR THE ROLLING MILL

For the rolling mill problem, the four candidate predictor
variables of the deviation of the output thickness from its tar-
get value for sample t, yt, are:

ut: the deviation of the input thickness from

its nominal value for sample t,

vt: the roll position (in microns),

wt: the ratio of the output rolling speed

to the input rolling speed, and

zt: the rolling force applied to sample t.

In previous work, three models have been used, the first two
of which are physically motivated (Ettler, Kárný, and Nedoma
2007). The third model was based on exploratory empirical
work. All three have the regression form (1).

The first of these models is based on the gauge meter princi-
ple which has been used in this area for several decades (e.g.,
Grimble 2006). It works with the stretching of the mill housing
during rolling. The output thickness satisfies the equation

Yt = vt + f (zt), (27)

where f (z) is the nonlinear stretch function, depending on the
rolling force z. If the stretch function is approximated by a lin-
ear function of the rolling force, the gauge meter principle leads
to predicting output thickness as a linear function of the roll po-
sition and the rolling force. In our implemention of this model
we generalize Equation (27) by allowing vt to have a coefficient
different from 1, yielding a more flexible model.

The second physically motivated model is based on the mass
flow principle, which is commonly used for rolling mill control

(e.g., Maxwell 1973). This follows from the continuity of mate-
rial flow through the mill. It says that the ratio of input thickness
to output thickness is equal to the ratio of output rolling speed
to input rolling speed. This implies that output thickness can be
predicted using the product of the input thickness and the ra-
tio of the speeds. The ratio of the speeds is also included as a
regressor in its own right to allow for the fact that a constant
has been subtracted from the input thickness and to give some
additional flexibility.

The predictors to which the three models correspond are as
follows:

M1: x(1)
t = (1, vt, zt),

M2: x(2)
t = (1,wt,utwt),

M3: x(3)
t = (1,ut, vt,wt).

We considered prediction using each of these models individu-
ally, and DMA based on the three models.

The theory underlying the physically based models does not
exclude the possibility of removing any one of the four predic-
tors from the model. To explore what happens when the model
space is larger, we therefore considered all possible combina-
tions of the four predictors; this yielded 24 = 16 models. We
considered DMA with 17 models: these 16 models, together
with model M2 which also includes the interaction term (utwt).
The full list of models is shown in Table 1.

To initialize the process, θ̂
(k)
0 and �

(k)
0 need to be specified

for each model Mk. In general this should be done using exter-
nal information, including the machine specifications and data
on the rolling mill from other strips that have been run through;
such data will generally accumulate rapidly. We did not have
such data readily available, and to approximate this we used the
data themselves to specify a prior distribution that was spread
out relative to the precision available in the data. We speci-
fied θ̂

(k)
0 = 0 for each k, and �

(k)
0 = diag(s2(k)

1 , . . . , s2(k)
μk ). We

Table 1. List of Prediction Models Used. The first three models are
the physically motivated ones. The remaining 14 are the empirical

models considered. See text for the definitions of the variables

Variables

# ut vt wt zt (utwt)

1 – � – � –
2 – – � – �
3 � � � – –

4 – – – – –
5 – – – � –
6 – – � – –
7 – – � � –
8 – � – – –

9 – � � – –
10 – � � � –
11 � – – – –
12 � – – � –
13 � – � – –

14 � – � � –
15 � � – – –
16 � � – � –
17 � � � � –
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(a) (b)

Figure 4. Posterior model probabilities for the three initially considered models. The correspondence between models and line types is the
same in both plots. (a) Samples 26–200; (b) all samples, 26–19,058.

used s2(k)
j = Var(yt)/Var(x(k)

t,j ) for j = 2, . . . , νk. The rationale
for this is that, in linear regression, a regression coefficient for
an input variable X is likely to be less than the standard devia-
tion of the system output divided by the standard deviation of X.
This is always the case when there is just one input variable, by
the Cauchy–Schwarz inequality, and empirical evidence sug-
gests that it holds more generally; see, for example, figure 1 in
Raftery, Madigan, and Hoeting (1997).

The prior variance of the intercept term, s2(k)
1 , is trickier. We

fitted a static linear regression model to the full dataset and used
s2(k)

1 = β̂2
0 + Var(yt), where β̂0 is the estimated intercept. The

resulting initial distributions proved to be amply spread out rel-
ative to the estimates, and the results were not sensitive to rea-
sonable modifications to them.

We also needed to specify the forgetting factors, λ for the
parameters and α for the models. In experiments we found that
there was no gain from using different forgetting factors, and so
we used λ = α, leaving just one forgetting factor to be specified.
We used λ = α = 0.99 for all our experiments. We found that
our results were relatively insensitive to modest changes in this
value, in the range 0.97 to 0.995.

The evolution of posterior model probabilities for the three-
model case is shown in Figure 4. This is a case where one of
the models (M3) is clearly superior to the other two (M1 and
M2). DMA quickly picks this up, and from Figure 4(a) we see
that the posterior probability of M3 rapidly grows close to 1
once enough data have been collected to allow a comparison.
However, this is not an absorbing state, and the other models
occasionally become important, as can be seen from the plot
for all 19,058 samples in Figure 4(b). Thus DMA is similar but
not identical to prediction based solely on M3 in this case.

The relative performance of the different methods is shown
in Table 2. For all the better methods, the prediction errors had
stabilized by around sample 200. A key issue for controlling
the rolling mill is how quickly prediction stabilizes after the
initial transient situation. Thus we report performance results
for the initial period, samples 26–200 (the first 25 samples can-
not be predicted using the inputs because of the time delay of
24 samples), and the remaining samples 201–19,058. We re-
port the mean squared value of the prediction error, MSE, the
maximum absolute prediction error, MaxAE, and the number
of samples for which the prediction error was greater than the
desired tolerance of 10 microns.

Table 2. Sample statistics of prediction errors

Samples 26–200 Samples 201–19,058

Method MSE MaxAE #AE>10 MSE MaxAE #AE>10

Observed 2179.8 68.8 175 30.6 43.1 1183

Model 1 243.6 38.3 86 26.2 31.1 989
Model 2 345.5 41.7 118 26.8 41.4 914
Model 3 77.5 27.3 46 20.7 31.1 523

DMA—3 models 76.1 26.3 45 20.7 31.1 520
DMA—17 models 68.9 22.0 42 20.6 31.1 519

NOTE: MaxAE is the maximum absolute error. “#AE>10” is the number of errors above 10 microns in absolute value. The first line of the table refers to the deviations of the observed
system output from the target value. Models 1, 2, and 3 are the three initially considered models described in the text.
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Table 2 shows that M3 was much better than M1 or M2 for
both periods, particularly the initial period. For the initial pe-
riod, DMA with three models was slightly better than M3 on
all three criteria we report, while for the stable period DMA
was essentially the same as M3. Thus DMA allows us to avoid
paying a penalty for our uncertainty about model structure in
this case. Indeed, it even yields slightly more stable predictions
in the initial unstable period, perhaps because it allows some
weight to be given to the simpler models, M1 and M2 at the very
beginning, before enough data has accumulated to estimate the
more complex M3 accurately.

We now consider what happens when the space of candi-
date models is much larger, and 17 models are considered. Fig-
ure 5(a) shows the evolution of the posterior model probabili-
ties in the initial unstable period. Only four models (M3, M15,
M16, and M17) have more than negligible weight past the first
25 samples or so, and so, even with a large model space, DMA
yields a relatively parsimonious solution. In the initial unstable
period, the relatively simple model M15 had high weight, and in
the later stable period, the more complex models M16 and M17
had more weight, as can be seen from Figure 5(b).

Table 2 shows, strikingly, that DMA with 17 models achieved
significantly better performance in the initial unstable period
than either M3 or DMA with three models, on all three criteria.
This may be because it allows weight to be put on simple, parsi-
monious models in the early period before stable data has accu-
mulated to estimate more complex models reliably. In the later
stable period, DMA with 17 models did slightly better than both
DMA with three models, and than M3 on its own. Thus DMA
yielded clear gains in the initial unstable period and smaller
ones in the later stable period. It allowed us to avoid paying a
price for model uncertainty, even when the model space was
larger. Overall, including all possible combinations of regres-
sors led to better performance.

In order to investigate why DMA with 17 models did so well
in the initial unstable period, Figure 6(a) shows the prediction
errors for M3 and DMA with 17 models. Figure 6(b) shows the

absolute prediction error for DMA minus the absolute predic-
tion error for M3 (so that positive values correspond to DMA
doing better). Up to sample 50, there are large positive val-
ues, and in samples 50–100 there are consistent nonnegligible
positive values. In samples 100–200 the differences are much
smaller. This provides support for our conjecture: in essence,
DMA does better in the initial unstable period because it is more
adaptive than a single model, even a good one such as M3, and
being adaptive is more important during the initial unstable pe-
riod than later.

It is important for a real-time application such as this that
methods run fast. Our experiments were run in the interpreted
statistical language R on a 2005 Apple Powerbook G4 laptop.
Computer time scaled roughly linearly with the number of sam-
ples times the number of models. DMA took about 2 millisec-
onds per model per sample. It seems reasonable to expect that
running it on newer hardware would speed it up by a factor of
at least 4, and that implementing the method in a more effi-
cient, compiled language would speed it up by a factor of 10 or
more, suggesting speeds of about 0.05 milliseconds per model
per sample with good hardware and software in 2008. If one
requires that computations take no more than 20 milliseconds
per sample, this suggests that with an efficient implementation,
DMA could be used for the rolling mill with up to about 400
models. It is thus well within the range of practical application.
Note that these time constraints preclude the use of methods
that are much more computer-intensive than the ones described
here.

5. SIMULATED EXAMPLES

In the previous section, we assessed our method on the basis
of its predictive performance for the rolling mill data, which
is what matters most for the application at hand. We now use
four simulated examples, closely modeled on the rolling mill
data, to assess the method’s ability to recover the generating

(a) (b)

Figure 5. Posterior model probabilities for all 17 models. The legends are the same in both plots. (a) Samples 1–175; (b) samples 1–2000.
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(a) (b)

Figure 6. Comparison of prediction errors for the best of the three initially considered models and for DMA: (a) Prediction errors for
Model 3, and for DMA based on all 17 models. (b) Absolute prediction errors for Model 3 minus absolute prediction errors for DMA. Initial
period, samples 26–200.

mechanism, including whether it favors the right model and can
track changing parameter values and model specifications.

In all four simulated examples, the length of the dataset
(19,058 samples) and the predictor variables, ut, vt, wt, and zt

are the same as in the rolling mill example. Only the system
output, yt, is different.

In the first three simulated examples, the generating model
remains constant over time. It is Model 15, which includes ut

and vt. However, the analyst does not know what the generating
model is, and so there is model uncertainty. In the first example,
the regression parameters also remain constant over time. In the
second example, a regression parameter changes smoothly over
time, and in the third example a regression parameter changes
abruptly.

The first three simulation examples are as follows, where βut,
βvt, βwt, and βzt are the regression parameters for ut, vt, wt, and
zt for sample t:

• Simulation 1 (constant parameters): βut = 0.35, βvt = 0.8,
βwt = βzt = 0.

• Simulation 2 (smooth change in βut):

βut =
{

0.6 − 0.4t/12,000 if t < 12,000

−0.2 + 0.4t/12,000 otherwise,

βvt = 0.8, βwt = βzt = 0.
• Simulation 3 (abrupt change in βut at sample 12,000):

βut = 0.6 for t < 12,000, βut = 0.2 for t ≥ 12,000, βvt =
0.8, βwt = βzt = 0.

The results for the first simulated example are shown in Fig-
ure 7. The upper plot shows estimates and 95% confidence in-
tervals for βut and the lower plot shows the posterior model
probabilities for samples 11,000–13,000. The estimates of βut

remain close to the true value, and the confidence interval con-
tains the true value most (99.6%) of the time. The high coverage

of the confidence intervals reflects the fact that the model antic-
ipates changes in the regression parameter, and so is wider than
needed to capture a constant parameter.

Model 15 is the true generating model, and its posterior
model probability is shown by the solid lines in the lower plot of
Figure 7. It has the highest posterior probability among all the
17 models most (73%) of the time. Models 3, 16, and 17 have
nonnegligible posterior probabilities much of the time also.
Model 15 is nested within each of Models 3, 16, and 17, and so
they are also “correct,” in the sense that they include the gen-
erating mechanism as a special case. The other 13 models are
incorrect in that they do not include the generating mechanism.
The posterior model probabilities of the 13 incorrect models are
all shown in grey, and are small throughout.

For Simulation 2, the method tracks the value of the smoothly
changing βut well, as shown in Figure 8. For Simulation 3, the
method adapts quickly to the abrupt change at sample 12,000
(Figure 9). In both these cases, the posterior model probabilities
perform well, similarly to Simulation 1.

Simulation 4 features a change of generating model at sample
12,000, from Model 15 containing ut and vt, to Model 3, which
also includes wt. Figure 10 shows the results. The upper plot
shows that the change in βwt from 0 to 50 at sample 12,000 is
well captured. The lower plot shows the posterior model proba-
bilities. Model 15 (solid) was the generating model for the first
12,000 samples, and it had the highest posterior probability for
most (69%) of these samples. Model 3 (dashed) was the gen-
erating model for the remaining 7058 samples, and it had the
highest posterior probability for most (65%) of these samples.

Another way of looking at the posterior model probabilities
is given by Figure 11. This shows the log posterior odds for
Model 3 (containing ut, vt, and wt) against Model 15 (contain-
ing just ut and vt). This can thus be viewed as showing a mea-
sure of the evidence for an effect of wt; when it is positive it
favors an effect, and when it is negative it favors no effect. In
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Figure 7. Simulated example 1. Upper plot: Estimates (solid line),
95% confidence intervals (dotted) and true values (thick black) of the
regression parameter for ut . Lower plot: Posterior model probabilities
for samples 11,000–13,000. The true model is Model 15, containing ut
and vt , and its posterior model probability is shown as a solid line.

the first 12,000 samples, when there is no effect of wt, the pos-
terior odds favor the no-effect hypothesis 81% of the time, and
in the remaining samples, when there is an effect of wt, the pos-
terior odds favor the hypothesis of an effect 79% of the time.

It is conventional to view Bayesian posterior odds as provid-
ing evidence “worth no more than a bare mention” when they
are between 1/3 and 3, namely when the log posterior odds is
less than 1.1 in absolute value (Jeffreys 1961; Kass and Raftery

Figure 8. Simulated example 2. Upper plot: Estimates (solid line),
95% confidence intervals (dotted) and true values (thick black) of the
regression parameter for ut . Lower plot: Posterior model probabilities
for samples 11,000–13,000. The true model is Model 15, containing ut
and vt , and its posterior model probability is shown as a solid line. The
legend is as in Figure 7.

1995). By this measure, the posterior odds made the wrong
choice less than 1% of the time.

6. DISCUSSION

We have introduced a new method for real-time prediction
of system outputs from inputs in the presence of model uncer-
tainty, called dynamic model averaging (DMA). It combines a
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Figure 9. Simulated example 3. Upper plot: Estimates (solid line),
95% confidence intervals (dotted) and true values (thick black) of the
regression parameter for ut . Lower plot: Posterior model probabilities
for samples 11,000–13,000. The true model is Model 15, containing ut
and vt , and its posterior model probability is shown as a solid line. The
legend is as in Figure 7.

state–space model for the parameters of the regression mod-
els used for regression with a Markov chain describing how
the model governing the system switches. The combined model
is estimated recursively. In experiments with data from a cold
rolling mill with measurement time delay, we found that DMA
led to improved performance relative to the best model consid-
ered in previous work in the initial unstable period, and that it
allowed us to avoid paying a penalty for not knowing the correct

Figure 10. Simulated example 4: Upper plot: Estimates (solid line),
95% confidence intervals (dotted), and true values (thick solid) of the
regression parameter for ut . Lower plot: Posterior model probabilities
for samples 11,000–13,000. The true model up to sample 12,000 is
Model 15, containing ut and vt , shown as a solid line. After sample
12,000, the true model is Model 3, containing ut , vt , and wt , shown as
a dashed line.

model even when model uncertainty was considerable. Includ-
ing all possible combinations of predictors gave better results
than restricting ourselves to a small number of physically moti-
vated models. Four simulated examples modeled on the rolling
mill data indicated that the method was able to track both time-
varying and constant regression parameters and model specifi-
cations quite successfully.
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Figure 11. Simulation example 4: Log posterior odds for Model 3
(ut , vt , wt) against Model 15 (ut , vt) for samples 11,000–13,000. When
the log posterior odds are below zero (shown by the thin horizontal
line) Model 15 is favored, and when they are above zero, Model 3 is
favored. The log posterior odds measure evidence for an effect of wt .
Up to sample 12,000 (shown by the dashed vertical black line) the true
model is Model 15, and thereafter it is Model 3. The thick horizontal
lines show the average log posterior odds for samples 11,000–12,000
and samples 12,001–13,000, respectively.

The procedure is largely automatic: the only user-specified
inputs required are the forgetting factor and the prior mean and
variance, which can be based on machine specifications and
previous data. It would be possible to estimate the forgetting
factor from external data by choosing it so as to optimize per-
formance. It would also be possible to estimate it online so
as to optimize predictive performance over past samples, but
this would be more expensive computationally than the current
method and would effectively preclude its use in the present
application. Another possibility that would be suboptimal but
could be computationally feasible would be to select a small
predefined grid λj on it and make the model indices equal to
pairs (k, j). Then our proposed procedure would be applicable,
albeit with a larger model spece. We found that the method’s
performance was relatively insensitive to reasonable changes in
the forgetting factor.

One question that arises is how to check that the model fits
the data. For our purposes, the most relevant aspect of the model
is the predictive distribution f (yt|Yt−1) = ∑K

k=1 πt|t−1fk(yt|
Yt−1), where the notation is as in (20). One could detect devia-
tions from this in various ways. One way would be to form the
residuals (yt − ŷDMA

t ) using (22) and carry out standard residual
analysis on them. A refinement would be to form standardized
residuals by dividing these residuals by their predictive standard
deviation, namely the standard deviation of the model-averaged
predictive distribution, which is the mixture distribution given
by the right-hand side of Equation (22). This is the square root
of the model-averaged variance (Hoeting et al. 1999, p. 383).

A further refinement would lead to assessing deviations from
the model in terms of the observations and the predictive distri-
bution itself, using the tools discussed by Gneiting, Balabdaoui,
and Raftery (2007).

We have applied our method to model spaces of three and
17 models. For much bigger model spaces, however, it may not
be feasible to run all the models in parallel. Such large model
spaces do arise in regression problems, for example, with mod-
erate to large numbers of candidate regressors where all possi-
ble combinations are considered. It would be possible to modify
the method for this kind of situation. One way to do this would
be via an “Occam’s window” approach (Madigan and Raftery
1994), in which only the current best model and other mod-
els whose posterior model probability is not too much less than
that of the best model are “active,” and are updated. When the
posterior probability of a model relative to the best model falls
below a threshold, it is removed from the active group. Inactive
models are periodically assessed, and if their predictive perfor-
mance is good enough, they are brought into the active group.
Methods along these lines have been proposed in other contexts
under the name of model set adaptation (Li 2005; Li, Zhao, and
Li 2005).

We have used exponential forgetting for the parameters of
each model (Fagin 1964; Jazwinsky 1970), as specified by (5).
If this is used as the basis for an automatic control procedure,
however, there is a risk that �t may become degenerate because
the control process itself can induce high correlations between
system inputs and output, and hence high posterior correla-
tions between model parameters, which could lead to singular-
ity or near-singularity of �t. To avoid this, Kulhavý and Zarrop
(1993) proposed “Bayesian forgetting,” in which a prior distri-
bution is added to the recursion at each iteration. If the prior
distribution is Gaussian, this would amount to adding the prior
covariance matrix to Rt in (5), thus essentially regularizing the
updating process. We applied this in the present context and it
made no difference for our data. However, it could be worth-
while for a linearly controlled system.

Various alternatives to the present approach have been pro-
posed. Raftery et al. (2005) proposed a windowed version of
Bayesian model averaging, in which the predictive distribution
is a mixture with one component per candidate model, and is es-
timated based on a sliding window of past observations. Ettler,
Kárný, and Nedoma (2007) proposed several methods includ-
ing the predictors-as-regressors (PR) approach, which consists
of recursively estimating each candidate model as above, and
then running another recursive estimation with the predictors
from each model as regressors. Practical aspects of the ap-
proach were elaborated in Ettler and Andrýsek (2007).

The DMA model given by (11) and (12) that underlies
our work is related to the conditional dynamic linear model
(CDLM) (Ackerson and Fu 1970; Harrison and Stevens 1971;
Chen and Liu 2000) that has dominated work on adaptive hy-
brid estimation of systems that evolve according to a Kalman
filter model conditionally on an unobserved discrete process.
However, it is not a special case of the CDLM, because the
form of the state vector θ

(k)
t , and not just its value, depends on

the model Mk. The CDLM would be given by (11) and (12)
with θ

(k)
t replaced by θt, where θt is the same for all models

Mk. It could be argued that DMA could be recast as a CDLM
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by specifying xt to be the union of all regressors considered,
and θt to be the set of regression coefficients for these regres-
sors. In Equations (11) and (12), the νk-vector x(k)

t would then
be replaced by a ν-vector with zeros for the regressors that are
not present in Mk.

The difficulty with this is that the state Equation (12), now
in the form θt|Lt = k ∼ N(θt−1,W(k)

t ), would no longer be real-
istic. The reason is that when the model changes, for example
from a model with two correlated regressors to one with just
one of the two regressors, then there is likely to be a big jump
in θt, not a gradual change. To be realistic, the state equation
would thus have to involve both Lt and Lt−1, which would be
unwieldy when the number of models is not small. Our formu-
lation avoids this difficulty.
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