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Geostatistical Model Averaging for Locally Calibrated
Probabilistic Quantitative Precipitation Forecasting

William KLEIBER, Adrian E. RAFTERY, and Tilmann GNEITING

Accurate weather benefit many key societal functions and activities, including agriculture, transportation, recreation, and basic human and
infrastructural safety. Over the past two decades, ensembles of numerical weather prediction models have been developed, in which multiple
estimates of the current state of the atmosphere are used to generate probabilistic forecasts for future weather events. However, ensemble
systems are uncalibrated and biased, and thus need to be statistically postprocessed. Bayesian model averaging (BMA) is a preferred way of
doing this. Particularly for quantitative precipitation, biases and calibration errors depend critically on local terrain features. We introduce a
geostatistical approach to modeling locally varying BMA parameters, as opposed to the extant method that holds parameters constant across
the forecast domain. Degeneracies caused by enduring dry periods are overcome by Bayesian regularization and Laplace approximations.
The new approach, called geostatistical model averaging (GMA), was applied to 48-hour-ahead forecasts of daily precipitation accumulation
over the North American Pacific Northwest, using the eight-member University of Washington Mesoscale Ensemble. GMA had better
aggregate and local calibration than the extant technique, and was sharper on average.

KEY WORDS: Bayesian model averaging; Calibration; Ensemble prediction system; Gaussian process; Laplace approximation; Numer-
ical weather prediction; Probabilistic forecast; Regularization.

1. INTRODUCTION

Scientists have been forecasting the weather for well over
a century, and following the advent of numerical weather pre-
diction models, the forecasts have become increasingly accu-
rate. However, even with state-of-the-art numerical models,
there are still significant uncertainties in the forecasts. Imper-
fect representations of atmospheric physics, incomplete initial
and boundary conditions, and imperfect numerical schemes all
lead to point forecasts that are uncertain. Understanding and
quantifying the uncertainty in a forecast is crucial. The natural
alternative to a point forecast then is a probabilistic forecast that
takes the form of a predictive distribution over future weather
quantities and events (Gneiting 2008).

Probabilistic weather forecasts benefit many realms of soci-
ety. Dutton (2002, p. 1306) estimated that upward of $3 tril-
lion in annual private industry activities in the United States
are subject to weather-related risk. In this article, we focus on
quantitative precipitation, where probabilistic forecasting al-
lows for optimal decision making in a wealth of applications
(Krzysztofowicz 2001; Palmer 2002; Zhu et al. 2002). For ex-
ample, extreme precipitation can force the transportation indus-
try to cancel flights or reroute ships, and cause authorities to
salt roads or clear snow. In mountainous regions, sudden heavy
localized precipitation can lead to flash floods. Locally accu-
rate forecasts are also an important tool in agricultural planning,
such as to avoid unnecessary irrigation when anticipating pre-
cipitation events (Stern and Coe 1982; Katz and Murphy 1997).

William Kleiber is Post-Graduate Scientist, Institute for Mathematics Ap-
plied to Geosciences, National Center for Atmospheric Research, Boulder,
CO 80307-3000 (E-mail: wkleiber@uw.edu). Adrian E. Raftery is Professor of
Statistics and Sociology, Department of Statistics, University of Washington.
Tilmann Gneiting is Professor of Mathematical Statistics, Institut für Ange-
wandte Mathematik, Universität Heidelberg, Germany. We are indebted to Jeff
Baars, Chris Fraley, Cliff Mass, and McLean Sloughter for sharing their in-
sights and providing data. This research was sponsored by the National Science
Foundation under Joint Ensemble Forecasting System (JEFS) subaward S06-
47225 with the University Corporation for Atmospheric Research (UCAR), as
well as grants ATM-0724721 and DMS-0706745. Tilmann Gneiting further-
more acknowledges support by the Alfried Krupp von Bohlen und Halbach
Foundation.

In meteorology, the preferred way of producing a probabilis-
tic forecast is to run an ensemble of numerical weather predic-
tion models, in which multiple estimates of the current state
of the atmosphere and/or multiple physics options are used
to generate an estimate of the probability distribution of fu-
ture weather events (Palmer 2002; Gneiting and Raftery 2005).
However, operational ensemble prediction systems have bi-
ases, and typically they lack spread, and thus must be statis-
tically postprocessed to generate calibrated predictive distribu-
tions (Hamill and Colucci 1997). Raftery et al. (2005) intro-
duced Bayesian model averaging (BMA) as a way of doing this
for temperature and pressure, with more recent extensions to
quantitative precipitation (Sloughter et al. 2007), wind direc-
tion (Bao et al. 2010), and wind speed (Sloughter, Gneiting,
and Raftery 2010).

These postprocessing methods are globally calibrated, that
is, when verification data from many locations are aggregated,
the predictive distributions and the observations are statistically
compatible. There is no guarantee that a postprocessed predic-
tive distribution will be calibrated at any single location, and
Atger (2003) and Hamill and Juras (2006) warned that the ag-
gregation of validation data across the forecast domain can lead
to overestimates of the predictive performance.

Precipitation is highly affected by local terrain features such
as elevation and leeward or windward siting, and while numer-
ical models attempt to account for these dependencies, signif-
icant systematic bias remains. One way to guarantee local cal-
ibration is to fit the statistical model at an individual location,
or at many different locations separately (Thorarinsdottir and
Gneiting 2010). However, this approach does not explicitly gen-
erate predictive models between observation stations, and thus
does not apply on forecast grids, as is commonly required in
practice. In fact, there has been a recent call to generalize the
BMA work of Raftery et al. (2005) to “account for geographi-
cal variations” (Iversen et al. 2011, p. 513). In this light, Kleiber
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et al. (2011) introduced geostatistical model averaging (GMA)
to produce locally calibrated probabilistic forecasts of surface
temperature on forecast grids. Their methodology applies to any
meteorological variable for which Gaussian predictive distri-
butions are plausible, such as surface temperature or pressure.
Precipitation, however, is incompatible with any Gaussian as-
sumption, as it can take on nonnegative values only, and there
is a positive probability of exactly zero precipitation occurring.

In this article we introduce a GMA approach that generates
locally calibrated and sharp predictive distributions for quan-
titative precipitation from an ensemble of numerical weather
forecasts. The method builds on those of Sloughter et al. (2007),
who used BMA to globally calibrate precipitation forecasts, and
combines BMA with the ideas of Kleiber et al. (2011). We ap-
ply the GMA method to the eight-member University of Wash-
ington Mesoscale Ensemble (UWME; Grimit and Mass 2002;
Eckel and Mass 2005), where it captures the local behavior of
daily precipitation accumulation over the North American Pa-
cific Northwest. The region has many terrain features that make
weather forecasting in general especially difficult (Mass 2008).
In close proximity to the Pacific Ocean, weather systems en-
counter major mountain ranges with an elevation change from
sea level to well over 4000 meters. The Pacific Northwest thus
features extreme precipitation climates, with the rain forests of
the Olympic Peninsula receiving up to 5000 mm of precipi-
tation annually, while only a few dozen kilometers away the
city of Sequim, Washington averages only about 400 mm. The
Mount Baker area in the Cascade Mountains east of the town of
Bellingham, Washington owns the world record for the highest
seasonal total snowfall. Throughout the region, both rain and
snow contribute to precipitation accumulations, depending on
altitude and season, among other factors.

Operational probabilistic weather forecasting requires prob-
abilistic forecasts on a grid for forecast horizons ranging from
as little as three hours to up to several days ahead. The grid
currently used in UWME is at a spacing of 12 km, and in the
Pacific Northwest amounts to nearly 10,000 grid points. The
computational load required to generate 10,000 forecast distri-
butions is substantial, and as forecasts must be generated in real
time, fully Bayesian approaches to estimation that integrate out
parameter uncertainty are not feasible. We describe a two-step
estimation procedure that is fast to implement by fixing esti-
mated parameters, and whose forecasts are effective.

The article is structured as follows. Section 2 reviews the
gamma-point mass mixture model of Sloughter et al. (2007)
and the geostatistical approach of Kleiber et al. (2011) in the
simplified case in which only a single numerical precipitation
prediction is available. In Section 3 we complete the GMA
methodology so that it applies to the general case of an ensem-
ble prediction system. Section 4 reviews methods for assess-
ing predictive performance. Section 5 presents aggregate results
for probabilistic forecasts of daily precipitation accumulation
over the Pacific Northwest. In addition, an individual location
is studied in detail. In Section 6, we discuss extensions and pos-
sible directions for future research.

2. SINGLE FORECAST MODELS

In this section we combine the gamma-point mass mixture
model of Sloughter et al. (2007) and the geostatistical approach

of Kleiber et al. (2011) for the simplified case in which there
is only a single numerical quantitative precipitation forecast
available. In this context, we review the standard global model
of Sloughter et al. (2007), and introduce our geostatistical ap-
proach for postprocessing the numerical prediction. All subse-
quent models specify predictive densities for the variable ys,
the cube root of daily precipitation accumulation at site s, con-
ditionally on a numerical forecast, fs, for the (untransformed)
daily precipitation accumulation at this site. In modeling the
cube root of precipitation accumulation we follow Sloughter
et al. (2007), who used this transformation to linearize the re-
lationship between numerical forecasts and observations. Other
authors have considered more extreme transformations, such as
the fourth root (Hamill, Whittaker, and Wei 2004). Specifically,
we let

p(ys|fs) = P(ys = 0|fs)1[ys=0]
+ P(ys > 0|fs)g(ys|fs)1[ys>0], (1)

where the first term is a point mass at zero and g(ys|fs) is a
gamma density. The probability of precipitation, P(ys > 0|fs),
and the mean, μs, and variance, σ 2

s , of the gamma density
g(ys|fs) depend on the numerical forecast fs as described below.

2.1 Single Forecast Global Model

The global model of Sloughter et al. (2007) specifies the
probability of precipitation via the logistic regression equation

logit P(ys > 0|fs) = a0 + a1
(
f 1/3
s − f 1/3

) + a21[fs=0], (2)

where the parameters a0,a1, and a2 do not vary by location,
and f 1/3 is a global average over the forecasts in the training
period. Equation (2) is a slight variation on that introduced by
Sloughter et al. (2007) which does not include f 1/3; we include
this offset to aid direct comparisons to the geostatistical model,
discussed below. Conditionally on there being precipitation, we
model the cube root of the precipitation accumulation, ys, by a
gamma distribution with mean

μs = b0 + b1f 1/3
s (3)

and variance

σ 2
s = c0 + c1fs, (4)

where the parameters b0,b1, c0, and c1 do not depend on lo-
cation. The conversion from the predictive distribution for the
cube root to the predictive distribution for the original, non-
transformed precipitation accumulation, which is the quantity
typically required in practice, is straightforward.

For estimation, we follow Sloughter et al. (2007). The lo-
gistic regression parameters in Equation (2) are estimated by
maximum likelihood, using domain wide training data from a
sliding window training period, consisting of the most recent T
available days. Sloughter et al. (2007) recommended a 30-day
training period as a length that experimentally minimized both
domain averaged mean absolute error and continuous ranked
probability score. Typically over the training period both pos-
itive and vanishing daily precipitation accumulations are ob-
served, especially since training data are used from multiple
locations. The raw forecasts themselves include most of the
temporally varying dynamics of the atmosphere, but often the
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forecast bias evolves over time. Using a sliding training window
allows the statistical model to update to the temporally varying
bias, where a longer window will stabilize parameter estimates,
but a shorter period allows the statistical model to adjust better
to shifts in weather regimes.

The gamma mean and variance parameters in Equations (3)
and (4) are then estimated using only cases with positive precip-
itation accumulation. Specifically, b0 and b1 are estimated by
ordinary least squares regression, while c0 and c1 are estimated
by maximum likelihood, viewing the observation-forecast pairs
as independent. As the maximum likelihood estimates (MLEs)
are not available in closed form, we numerically optimize the
log-likelihood function via the limited memory quasi-Newton
bound constrained optimization method of Byrd et al. (1995), as
implemented in R (Ihaka and Gentleman 1996). Implementing
a full Bayesian hierarchical model is not an appealing option
in real time, nor likely to result in improved predictive perfor-
mance (Vrugt, Diks, and Clark 2008).

Turning now to forecasting, for any location s of interest,
the predictive distribution of the cube root of daily precipita-
tion accumulation, ys, conditional on the numerical forecast, fs,
is given by Equation (1) with the global parameter estimates
plugged in.

2.2 Single Forecast Geostatistical Model

We now introduce the single forecast geostatistical model
that allows the parameters to vary by location. Under the geo-
statistical model, the logistic regression equation for the proba-
bility of precipitation becomes

logit P(ys > 0|fs) = a0s + a1s
(
f 1/3
s − f 1/3

s
) + a2s1[fs=0], (5)

where f 1/3
s is now a local average over the forecasts in the train-

ing period, using only forecasts at site s. The motivation for in-

cluding the f 1/3
s term is to reduce correlation between a0s and

a1s, which facilitates our subsequent Bayesian regularization
approach. The mean and variance of the gamma component in
the predictive density (1) are now modeled as

μs = b0s + b1sf
1/3
s (6)

and

σ 2
s = c0s + c1sfs, (7)

where all parameters are location dependent. Note that the sin-
gle forecast global model is a special case of our geostatistical
model, where ais = ai for i = 0,1,2 and bis = bi with cis = ci
for i = 0,1, where, at location s, we re-center the logistic re-

gression by a1s(f
1/3
s − f 1/3).

We model all parameters a0s,a1s,a2s,b0s,b1s, c0s, and c1s
as independent spatial Gaussian processes. Each process has a
constant mean μpn, where p = a,b, c and n = 0,1 and possi-
bly 2, and a covariance function of the form

Cpn(s1, s2)

= Cov(pns1,pns2)

= τ 2
pn1[s1=s2] + ρ2

pn exp

(
−‖s1 − s2‖

rpn1
− |h(s1) − h(s2)|

rpn2

)
,

(8)

where h(s) is the elevation at location s. Here, τ 2
pn is the nugget

effect in geostatistical terminology, ρ2
pn is a variance param-

eter, rpn1 is a range parameter that corresponds to horizontal
distance, and rpn2 is a range parameter that corresponds to dif-
ferences in elevation. This form of second-order structure is de-
signed to reflect the fact that precipitation strongly depends on
elevation as well (Basist, Bell, and Meentemeyer 1994; Daly,
Neilson, and Phillips 1994).

Estimation proceeds in two steps, as the probabilistic fore-
casts must be produced in real time operationally, and im-
plementing a full Bayesian hierarchical model is not tenable,
nor likely to result in improved predictive performance (Vrugt,
Diks, and Clark 2008). First, we gather point estimates of
all forecasting parameters a0s,a1s,a2s,b0s,b1s, c0s, and c1s at
training stations. The hyperparameters governing the spatial
structure of each process are then estimated by maximum likeli-
hood, conditional on the point estimates. In our experience, the
spatial structures do not evolve substantially across time, and
hence the time-expensive likelihood estimation may be done
once on training data, and held fixed during the forecasting pe-
riod. Point estimates of the forecasting parameters are updated
at each time step, outlined next.

In estimating the parameters b0s,b1s, c0s, and c1s of the
model for the amount of precipitation, we follow the scheme
described in Section 2.1, except that the training data are not
aggregated across the domain, and each parameter is estimated
at every training station separately, using the most recent avail-
able T days of positive precipitation accumulation as training
data. As in the global model, our sliding training window of
length T allows the statistical parameters to update with tempo-
rally varying local biases and adjust for sudden shifts in weather
regimes.

To estimate the parameters a0s,a1s, and a2s that determine
the probability of precipitation, we proceed as follows. For the
global model, data are aggregated across all locations, and in
our experience there are sufficiently many observations of zero
as well as nonzero precipitation to avoid degeneracies in es-
timating the global logistic regression model. Moving to the
geostatistical model introduces this difficulty, especially during
the dry season when many weeks may pass without any rain
at a given station. Maximum likelihood estimation on a 30-day
training period, say, at a location with exclusively zero obser-
vations can result in poorly behaved, degenerate estimates. In
particular, after a string of days with no rain at a given location,
the maximum likelihood estimates are ±∞, as the maximizing
value of probability is either 0 or 1, depending on the context.
This problem is well known and has been addressed by several
authors, who generally suggest Bayesian methods of regulariz-
ing parameter estimates (Clogg et al. 1991; Fraley and Raftery
2007; Berrocal et al. 2010). Ideally we would like a regular-
ization procedure to agree with traditional logistic regression
estimates in well-behaved cases, and to shrink toward reason-
able values in poorly behaved cases. An ad hoc method is to in-
crease the length of the training period, so as to capture training
days with zero as well as nonzero precipitation accumulation.
Our experiences with this approach have been mixed (Kleiber
2010).

Here we take another approach that preserves the training pe-
riod, but replaces maximum likelihood by a Bayesian technique
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that imposes independent normal priors on a0s,a1s, and a2s, us-
ing the posterior mean as the plug-in estimate. The use of inde-
pendent priors can be relaxed, but in our experience works well
for predictive purposes. Hyperparameter choices depend on the
situation at hand and will be discussed later on in Section 5.

Genkin, Lewis, and Madigan (2007) noted that maximum
likelihood for logistic regression models with a large number
of predictors can fail, and recommended using a Laplace prior
to induce a sparse structure on the regression coefficients. Alter-
natively, Gelman et al. (2008) developed a Cauchy prior which
uses minimal knowledge, and can be applied universally. We
use informative normal priors due to the availability of a his-
torical data record, and have no need to induce sparsity on our
three coefficients. We avoid the Cauchy prior here as we have a
wealth of historical data which can inform the prior parameters
and shrink posterior means toward stable global estimates.

As we do not require full posterior distributions for the lo-
gistic regression parameters, we avoid sampling algorithms,
and instead use Laplace approximations to find the posterior
means (Tierney and Kadane 1986; Wong 2001), as described
in the Appendix. As an example, Figure 1 compares maximum
likelihood and Laplace-approximated posterior mean estimates
of a0s,a1s, and a2s at Vancouver International Airport, British
Columbia across 2008, based on training data from a sliding

window 30-day training period. The Bayesian approach reg-
ularizes the MLEs, while showing good agreement when the
latter is well behaved. Our use of independent normal priors is
important in the Laplace approximation, which depends on the
Hessian of the log-likelihood function. The Hessian, and subse-
quently our posterior mean approximations, would change if a
multivariate prior were used instead.

In the second stage of estimation, the spatial parameters that
define the Gaussian process structure of a0s, a1s, a2s, b0s, b1s,
c0s, and c1s are estimated by maximum likelihood conditional
on the above point estimates. To give an example, suppose that
at sites s = s1, . . . , sN , we have posterior mean estimates â0s

based on a historical data record. We view {â0s : s = s1, . . . , sN}
as a partial realization of a Gaussian random field, whose log-
likelihood is then maximized with respect to the covariance pa-
rameters μa0, τ

2
a0, ρ

2
a0, ra01, and ra02. We discuss the details of

our implementation in Section 5.
Turning now to forecasting with the geostatistical model, we

first consider the training stations s = s1, . . . , sN , where we ap-
ply Equation (1) with the station-specific estimates for the prob-
ability of precipitation and gamma density parameters plugged
in.

If interest lies in prediction at a site s, where no training
data are available, we use the geostatistical method of inter-

(a)

(b)

(c)

Figure 1. Maximum likelihood estimates (MLEs) and Laplace-approximated posterior mean estimates for the probability of precipitation
parameters (a) a0s, (b) a1s, and (c) a2s at the training station at Vancouver International Airport, British Columbia across 2008, using a 30-day
sliding window training period. When the MLE is missing, it is degenerate and estimated as ±∞. The online version of this figure is in color.
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polation known as kriging (Cressie 1993; Stein 1999) based on
the covariance structure (8) and plug-in MLEs for its param-
eters, μpn, τ

2
pn, ρ

2
pn, rpn1, and rpn2 where p refers to a,b, c and

n to 0,1 and possibly 2. Kriging results in interpolated esti-
mates â0s, â1s, â2s, b̂0s, b̂1s, ĉ0s, and ĉ1s at the desired location
s, which we plug into the predictive density in Equation (1).
Here, we condition on the kriging estimates and other parame-
ters; in our experience and that of other authors (Vrugt, Diks,
and Clark 2008) this works well, and a fully Bayesian treatment
does not result in improved predictive performance. Specifi-
cally, we also explored the fully Bayesian posterior predictive
distribution with our Gaussian process priors, but the results
were comparable to our conditional point estimate approach,
and the computational load is significantly higher.

Kriging is an exact interpolator; that is, if s is a training lo-
cation, then the interpolated value agrees with the site-specific
value. The kriging predictor is a linear function of the observed
values, and puts most weight on nearby observations at similar
altitudes. Hence, kriging provides a unified way to do parameter
estimation at and between training stations.

We close this section by noting that we have not imposed
any sign constraints on b0s,b1s, c0s, and c1s. It is possible that
these take on very small negative values, and in fact in our case
study below, they sometimes do. However, this happens rarely
(in less than half a percent of cases in our example), and then
the member forecasts are such that the gamma means and vari-
ances remain positive. A possible alternative would be to model
log bis and log cis, for example, as Gaussian processes, thereby
precluding the possibility of invalid parameter estimates in the
gamma components.

3. ENSEMBLE MODELS

Thus far in this article, we have considered the generation
of predictive distributions for future precipitation accumulation
based on a single numerical weather forecast. However, it is
common practice to run ensembles of numerical weather pre-
diction models, in which multiple estimates of the current state
of the atmosphere and/or multiple physics options are used to
generate an estimate of the probability distribution of future
weather events (Palmer 2002; Gneiting and Raftery 2005).

Thus, we extend our model to take advantage of the infor-
mation in multiple ensemble members, and turn to the situa-
tion where we have an ensemble of K > 1 numerical forecasts
of precipitation accumulation. We follow Raftery et al. (2005)
and Sloughter et al. (2007) in postprocessing the ensemble fore-
casts using Bayesian model averaging (BMA). The geostatisti-
cal model now becomes geostatistical model averaging (GMA),
and the global model becomes Global BMA.

Let yst denote the cube root of the precipitation accumu-
lation at site s and time t, and consider the ensemble mem-
ber forecasts f1st, . . . , fKst for the (non-transformed) precipi-
tation accumulation. Following Sloughter et al. (2007), each
ensemble member is associated with a density p(yst|fkst) of
the form in Equation (1) with probability of precipitation pa-
rameters ak0s,ak1s,ak2s and gamma mean parameters bk0s and
bk1s, where k = 1, . . . ,K. These parameters are estimated in
the same way as in the previous section, except that they are
now member-specific. The associated covariance parameters in
Equation (8) also become member-specific. Furthermore, both

Global BMA and GMA use gamma variance parameters c0s and
c1s that do not depend on the ensemble member, and whose
estimation we discuss below. Of course, for Global BMA, the
parameters do not vary with location.

The BMA predictive density then is

p(yst|f1st, . . . , fKst) =
K∑

k=1

wkp(yst|fkst), (9)

where the member weights w1, . . . ,wK are probabilities, and
thus are nonnegative and sum to 1. This approach to combin-
ing forecast densities accommodates both Global BMA and
GMA, and remains valid when some or all of the ensemble
members are exchangeable, with straightforward adaptations
(Fraley, Raftery, and Gneiting 2010). We now discuss the es-
timation of the gamma variance parameters c0s and c1s, which
do not depend on the ensemble member, and the BMA weights
w1, . . . ,wK . Note that the weights for both models are global
parameters, and do not vary by location, in line with the expe-
rience of Brentnall, Crowder, and Hand (2011, p. 1158), who
concluded that “performance is worse when the weights in the
predictions are allowed to vary across the stations.”

In GMA, c0s and c1s are estimated via maximum likelihood
by numerically maximizing the joint log-likelihood which is a
sum of the logarithms of gamma densities over all K ensemble
members and time points in the training period with estimates
b̂k0s and b̂k1s plugged in. Conditionally on these estimates, we
fit the member weights w1, . . . ,wK by maximum likelihood us-
ing a version of the expectation-maximization (EM) algorithm
(Dempster, Laird, and Rubin 1977). This version introduces la-
tent variables z1st, . . . , zKst for each site and time, where zkst can
be interpreted informally as the probability of member k being
the most skillful for this site and time. The notion of a most
skillful member is frequently invoked by operational weather
forecasters, who tend to select a “best member” based on re-
cent performance (Joslyn and Jones 2008). The EM algorithm
is iterative, and the jth E step takes current estimates {w(j)

k }K
k=1,

and, based on these, computes

ẑ(j)
kst = w(j)

k p(j)(yst|fkst)∑K
�=1 w(j)

� p(j)(yst|f�st)
(10)

for every ensemble member, where p(j)(ys|f�st) is the density of
Equation (1) with the GMA estimates plugged in. In the M step,
the weights are updated via

w(j+1)

k = 1

N

∑
s,t

ẑ(j)
kst, (11)

where N is the number of station and time pairs. The E and M
steps are then iterated until convergence is reached.

In Global BMA, the gamma variance parameters and the
weights are estimated simultaneously. Specifically, we update
c(j)

0 and c(j)
1 by using a variation of EM called ECME (Expec-

tation/Conditional Maximization Either; Liu and Rubin 1994).
The algorithm consists of E (expectation) and CM (condi-
tional maximization) steps. The jth E step is analogous to
Equation (10), but with current estimates c(j)

0 and c(j)
1 used in

p(j)(ys|f�st). The CM step is split into two steps, with the initial
(CM-1) step being identical to GMA’s M step, Equation (11).
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Conditionally on these updated w(j+1)

k estimates, the CM-2 step
maximizes the mixture likelihood (9) numerically as a function
of c(j+1)

0 and c(j+1)

1 .

4. ASSESSING PREDICTIVE PERFORMANCE

The basic goal in probabilistic forecasting is to maximize the
sharpness of the predictive distributions subject to calibration
(Gneiting, Balabdaoui, and Raftery 2007).

Probability integral transform (PIT) histograms are useful
tools for visually examining calibration. The method relies on
the fact that if the random variable Y has a continuous cumula-
tive distribution function F, then U = F(Y) is uniformly dis-
tributed. In practice, one evaluates the predictive cumulative
distribution function at the realizing observation to compute
the PIT, aggregates over forecast cases, and plots a histogram.
In our case, the predictive distributions have a point mass at
the origin, and if there is no precipitation, we randomize, that
is, the PIT is a random value uniformly between zero and the
probability of no precipitation (Sloughter et al. 2007; Czado,
Gneiting, and Held 2009). Uniformity of the PIT histogram cor-
responds to the probabilistic calibration criterion of Gneiting,
Balabdaoui, and Raftery (2007). We quantify the deviation of
the PIT histogram from uniformity by averaging the absolute
difference of histogram values from unity; we call this the PIT
discrepancy criterion. The choice of the number of bins for the
PIT histogram is not straightforward, but there is a related di-
agram for ensemble forecasts called the verification rank his-
togram (Hamill and Colucci 1997). If an ensemble of size K is
calibrated, then the rank of the observation within the combined
set of the ensemble members and the observation has a discrete
uniform distribution on the integers from 1 to K +1. As we will
be comparing to an ensemble forecast, we use K + 1 bins in our
PIT histograms as well.

Sharpness can be examined by looking at the width of pre-
diction intervals. For unimodal densities, central intervals are
often appropriate, but for highly skewed positive variables such
as precipitation and wind speed, lower intervals are preferable.
As well as looking at average interval widths, we consider a
proper scoring rule called the quantile score (QS). The special
case for the (1 − α) × 100% quantile arises from equation (40)
of the article by Gneiting and Raftery (2007) with s(x) = x

α
and

h(x) = − x
α

, and is defined by

QS1−α(u, y) = u + 1

α
(y − u)1[y>u],

where u is the (1 − α) × 100% quantile of the predictive den-
sity and y is the realizing observation. Note that we take the
negative of the score here to make it negatively oriented, that
is, the smaller the better. This score is especially attractive for
lower intervals with a cutoff at zero, such as are encountered in
precipitation or wind forecasting. The mean score then equals
the average prediction interval width when the predictive inter-
vals always capture the realizing observation. If the observation
falls outside of the interval, the score adds a penalty term pro-
portional to the distance between the observation and the upper
boundary of the predictive interval.

To assess calibration and sharpness jointly, we consider the
continuous ranked probability score (CRPS), which is defined

by

CRPS(F, y) =
∫ +∞

−∞
(F(x) − 1(x ≥ y))2 dx,

where F is the predictive cumulative distribution function
(CDF) and y is the observed precipitation accumulation. The
CRPS may equivalently be expressed as

CRPS(F, y) = EF|Y − y| − 1
2EF|Y − Y ′|,

where Y and Y ′ are independent random variables with CDF F.
The initial definition illustrates that the CRPS accounts for both
sharpness and calibration simultaneously, while the second for-
mulation shows that it has the same unit as the outcome, y.
A natural summary to examine is the mean absolute error
(MAE), that is, the average difference between the median of
the predictive density and the realizing observation.

The above scores, apart from the MAE, involve the entire
predictive distribution and so we include the popular Brier score
(Brier 1950; Gneiting and Raftery 2007) to assess the probabil-
ity of precipitation forecasts. For a series of binary observations
oi corresponding to rain/no rain and probability forecasts pi for
i = 1, . . . ,n, the Brier score is defined by

Brier score = 1

n

n∑
i=1

(oi − pi)
2.

The Brier score is also negatively oriented with smaller values
indicating better performance. Finally, we visually assess cali-
bration via the reliability diagram, which plots the conditional
frequency of precipitation occurrence against the forecast prob-
ability. A well-calibrated probability forecast shows a reliability
diagram tightly along the identity line.

5. PRECIPITATION FORECASTS FOR
THE PACIFIC NORTHWEST

We now apply GMA to forecasts of 24-hour aggregated pre-
cipitation accumulation over the North American Pacific North-
west during the calendar years 2007–2008. The Pacific North-
west has terrain features that challenge weather forecasters, in-
cluding the coastline, major mountain ranges, and the Puget
Sound region, all of which have important effects on local pre-
cipitation patterns (Mass 2008). The predictions we use are
48-hour-ahead forecasts with the eight-member University of
Washington Mesoscale Ensemble, described by Eckel and Mass
(2005), initialized at 0000 UTC, which is 4:00 pm local time,
except when Daylight Saving Time is in effect, when it is
5:00 pm local time.

Only observation stations on land are considered. Generally,
precipitation is highly affected by terrain characteristics such as
elevation, while over large bodies of water such as the Pacific
Ocean the distribution of precipitation is much more homoge-
neous, and there is little need for a locally adaptive predictive
model. There are 279 stations, which we randomly divide into
179 stations used for model fitting and 100 hold-out stations for
validation. The stations are displayed in Figure 2.
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Figure 2. Pacific Northwest domain with fitting stations in small
unfilled circles and validation stations in black dots. The location of
Mountain Home Air Force Base, Idaho is shown by an asterisk.

5.1 Parameter Estimation

The first step in setting up the predictive distributions is to
gather point estimates of the predictive model parameters. We
use a sliding training window of 30 days, so that, on any partic-
ular day of interest, the previous 30 days are used to yield esti-
mates âk0s, âk1s, âk2s, b̂k0s, b̂k1s, which depend on the ensemble
member k, and estimates ĉ0s and ĉ1s. The gamma component
parameters bkis and cis are estimated as described in Section 2.2.
Estimates of ak0s,ak1s,ak2s for GMA are set to the posterior
mean as approximated by the Laplace method; this temporar-
ily requires prior distributions. The prior distributions are in-

dependent normals, with hyperparameters estimated in the fol-
lowing way. Using only data from 2007, we find daily MLEs
of ak0,ak1, and ak2 for the Global BMA model using a sliding
window 30-day training period. The prior mean for the process
ak�s is set to the median of the Global estimates for ak�, while
the prior standard deviation is set to twice the (asymptotically
corrected) median absolute deviation of the Global estimates
for ak�. This variance inflation factor was also used by Berrocal
et al. (2010). Note that we use robust estimates, median and
median absolute deviation, to guard against the possibility that
the MLEs of ak� are not well behaved. The weights are then
estimated for each day of the validation year 2008 using the
EM algorithm with all data at available training locations. This
completes the first stage of estimation.

To interpolate the predictive parameters to locations other
than training stations, GMA requires estimates of the spatial pa-
rameters μkp, τ

2
kp, ρ

2
kp, rkp1, and rkp2 of the Gaussian processes.

These are estimated once using data from the fitting stations in
2007, conditional on our point estimates of predictive parame-
ters obtained in the first stage. Specifically, we use five realiza-
tions of âk0s, âk1s, âk2s, b̂k0s, b̂k1s, ĉ0s, and ĉ1s at time points that
are 60 days apart. This subset of days is used to provide approx-
imately independent realizations of the spatial processes, giving
a buffer period of two months between realizations. Condition-
ing on these realizations, we estimate the spatial covariance pa-
rameters by maximum likelihood. The spatial parameters are
then held constant throughout the year 2008. Validation is al-
ways performed at the 100 hold-out stations in the year 2008,
where the sliding training window for the statistical parameters
requires the last 30 days of 2007.

5.2 Aggregate Results

We now present validation results with special attention to
local predictive performance. Table 1 contains the aggregate
scores for Global BMA and GMA averaged across the calendar
year 2008 as well as the Pacific Northwest domain. We pause
only to mention that the very use of an ensemble (compared to
a single forecast) indeed led to improved scores, especially for
the lower 90% prediction interval. GMA reduced the MAE of
Global BMA by 7.2%, the mean CRPS by 5.5%, and the mean
Brier score by 8.1%.

Table 1. Aggregate scores for Global BMA and GMA: mean absolute error (MAE), mean continuous ranked probability score (CRPS), mean
Brier score, and mean quantile score, coverage percent, and average width for 50% and 90% lower prediction intervals. Units are millimeters

for all scores except the Brier score, which is unitless, and coverage, which is in percent. Scores are listed for using only the GFS member
forecast as well as the full eight-member ensemble

Global BMA GMA

Single forecast Ensemble Single forecast Ensemble

MAE 1.53 1.53 1.46 1.42
CRPS 1.11 1.10 1.08 1.04

Brier score 0.135 0.136 0.133 0.125

50% Quantile score 3.36 3.36 3.29 3.26
Width 0.77 0.62 0.90 0.82

Coverage 48.9 48.3 48.6 48.0

90% Quantile score 7.47 7.16 7.48 7.05
Width 4.63 4.54 4.50 4.52

Coverage 89.5 91.1 88.9 91.1
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Figure 3. Aggregate results: Verification rank histogram for the raw ensemble, PIT histograms for Global BMA and GMA, and reliability
diagram with the raw ensemble represented as empty circles, GMA as filled circles, and Global BMA as ‘+’ symbols.

On the aggregate level, GMA showed slightly better quantile
scores for both the nominal 50% and 90% prediction intervals,
while both methods displayed good calibration at these lev-
els. The improved scores indicate increased sharpness subject
to calibration using the geostatistical model, as in the case of
GMA for temperature (Kleiber et al. 2011). Notice that the aver-
age predictive interval widths are slightly worse for GMA than
Global BMA at the 50% level. This is unsurprising, as GMA
produces locally calibrated prediction intervals, and thus must
sometimes increase the predictive interval width to achieve cal-
ibration. As we will see, GMA shows better local calibration,
which follows our goal of maximizing sharpness subject to lo-
cal calibration. Aggregate calibration can be visually assessed
using the PIT histogram. Figure 3 shows the PIT histogram for
both Global BMA and GMA, as well as reliability diagrams.
Both methods showed good reliability on the aggregate level
with a slight tendency to underforecast at central probabilities.

Table 2 provides a comparison of Global BMA and GMA
in terms of the predictive performance at individual sites. For
example, at 72% of our validation stations, GMA showed
an improvement in the PIT discrepancy criterion over Global

Table 2. Comparison of GMA and Global BMA in terms of
performance measures at individual stations. Each entry shows the

percent of validation stations that had a better result under GMA than
under Global BMA. Improvement is defined by a lower mean

absolute error (MAE), mean continuous ranked probability score
(CRPS), mean PIT discrepancy, mean Brier score, or mean quantile

score, or closer to nominal coverage for the 50% and 90% lower
prediction intervals

Performance criterion Percent improved

MAE 60
CRPS 65

Brier score 77
PIT discrepancy 72

50% Quantile score 60
Width 54

Coverage 76

90% Quantile score 68
Width 64

Coverage 63

BMA, thereby demonstrating better local probabilistic calibra-
tion. Similar rates of improvement apply to other performance
criteria, comprising calibration, sharpness, and proper scoring
rules. To determine if these local effects could be explained by
chance alone, we performed a paired t-test for each score, and
we indeed find that GMA significantly improves all scores over
Global BMA at the 1% level with the exception of predictive
interval widths and the quantile score at the 90% level. As men-
tioned earlier, GMA adjusts the local interval widths in order to
calibrate the predictive distributions locally. GMA significantly
improves local calibration over Global BMA, which sometimes
involves extending predictive interval widths, but this aligns
with our goal to maximize sharpness subject to local calibra-
tion.

Finally, Figure 4 shows probability of precipitation forecast
fields valid January 8, 2008 along with the verifying precipi-
tation pattern for this day. GMA correctly identified the band
of precipitation along the Pacific Coast and in the Puget Sound
region, producing significantly higher probabilities than Global
BMA. GMA was also able to identify the regions in northern
Washington and eastern Oregon where there was little chance of
precipitation on January 8. Since Global BMA’s statistical pa-
rameters are not location dependent, the probability fields tend
to be less sensitive to local terrain features, while the probabil-
ity fields produced by GMA are able to adapt to the complex
terrain of the Pacific Northwest.

5.3 Forecasts at Mountain Home Air Force Base, Idaho

We consider forecasts at Mountain Home Air Force Base,
Idaho, whose location is shown in Figure 2. This is a hold-out
station, and all parameter estimates for GMA are interpolated
to this site, while Global BMA uses the same parameter val-
ues across the hold-out stations. The GMA method was locally
calibrated at Mountain Home, as shown by the PIT histogram
in Figure 5. The Global BMA method displayed a skewed PIT
histogram, indicating slight overdispersion and a tendency to
overpredict. Table 3 shows performance measures at Mountain
Home, with the MAE, mean CRPS, and mean Brier score being
much better for GMA. At the nominal 50% level, Global BMA
was overdispersed by approximately 13.2%, while GMA was
much closer to the nominal level, thus yielding calibrated and
sharper intervals. At the 90% level, Global BMA also showed
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Figure 4. Forty-eight-hour-ahead probability of precipitation forecast fields valid January 8, 2008 for Global BMA and GMA. Observations
are filled points if it rained on January 8, and empty points if there was no precipitation.

overdispersion, with a coverage of 97.2%, while GMA was at
91.9%.

Global BMA and GMA separate the estimation of the
occurrence-of- and amount-of-precipitation models, and com-
bine them in the final step for prediction. The gamma compo-
nent for the amount of precipitation [Equations (3), (4), (6),
and (7)] is weighted by the probability of precipitation for
any given day, and hence is highly affected by the latter. Ta-
ble 3 points to an important characteristic of GMA, namely,
its ability to accurately model the probability of precipitation
locally. Indeed, at Mountain Home GMA reduced the mean
Brier score over Global BMA by 14.1%. The reason for the
improvement is illustrated in Figure 6, which displays local es-
timates of a0s,a1s, and a2s, as well as the (spatially constant)
Global BMA estimates and the kriged values from GMA for the
GFS member forecast. Global BMA consistently overestimated
the local value of a0s at Mountain Home throughout most of
2008, thereby over-weighting the amount-of-precipitation com-
ponent, while GMA accurately followed the local estimates,
which put a more appropriate weight on the gamma compo-
nent. This effect is readily seen in Figure 7(a), which displays
the Global BMA and GMA predictive densities for January 19,

2008 along with lower 90% intervals and the verifying observa-
tion. Global BMA put the probability of precipitation at 66.7%
for this day, and hence assigned substantial mass to the gamma
component, resulting in inflated higher quantiles. GMA, on the
other hand, produced a low 31.2% probability of precipitation,
even though all eight ensemble member forecasts were positive.

A second pair of predictive distributions that is valid for
November 11, 2008 is displayed in Figure 7(b). Here, Global
BMA and GMA agreed closely at probability of precipitation
values of 97.6% and 96.0%, respectively. The effect of the lo-
cal adjustment to the gamma parameters b0s,b1s, c0s, and c1s is
readily seen, as GMA narrowed the lower 90% prediction in-
terval by over 30 mm, when compared to Global BMA, while
still capturing the verifying value. These two days illustrate the
sharpness of the GMA forecasts, in addition to their being lo-
cally calibrated.

6. DISCUSSION

We have introduced a geostatistical model averaging (GMA)
approach to generating locally calibrated probabilistic forecasts
of precipitation accumulation from an ensemble of numerical
weather predictions. The method builds on the Global BMA

Figure 5. Results at Mountain Home Air Force Base, Idaho: verification rank histogram for the raw ensemble, PIT histograms for Global
BMA and GMA, and the reliability diagram with the raw ensemble as empty circles, GMA as filled circles, and Global BMA as ‘+’ symbols.
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Table 3. Results at Mountain Home Air Force Base, Idaho: mean
absolute error (MAE), mean continuous ranked probability score

(CRPS), mean Brier score, and mean quantile score, coverage
percent, and average width for the 50% and 90% lower prediction

intervals. Units are millimeters for all scores except the Brier score,
which is unitless, and coverage, which is in percent

Global BMA GMA

MAE 0.45 0.27
CRPS 0.38 0.24

Brier score 0.11 0.09

50% Quantile score 0.72 0.56
Width 0.39 0.07

Coverage 63.2 52.9

90% Quantile score 3.39 2.11
Width 2.99 0.97

Coverage 97.2 91.9

model of Sloughter et al. (2007) but allows all parameters to
vary by location, except for the BMA weights, for which the
predictive performance is known to benefit from spatial con-

stancy (Brentnall, Crowder, and Hand 2011). When applied
to the eight-member University of Washington Mesoscale En-
semble, GMA had better aggregate and local calibration than
Global BMA, and was significantly sharper on average.

The GMA approach relies on modeling each parameter as a
Gaussian process with constant mean and a covariance function
that decays exponentially across horizontal distance and eleva-
tion. This basic idea accommodates many adjustments, includ-
ing more complex first- and second-order structures. Kleiber
(2010) examined a number of extensions to this standard GMA
formulation including nonconstant means and multivariate co-
variance functions that allow for dependencies between param-
eters, but found that the added complexity did not substantially
improve the predictive performance. Nonetheless, these exten-
sions may prove useful in other settings with different types
of ensemble systems or other geographic domains. Berrocal,
Gelfand, and Holland (2010a, 2010b) reported on related de-
velopments in the context of air quality; all these approaches
are examples of general varying coefficient models (Hastie and
Tibshirani 1993).

Our estimation scheme for the model parameters is split into
two steps to increase efficiency and allow implementation in

(a)

(b)

(c)

Figure 6. Local estimates for the probability of precipitation parameters (a) a0s, (b) a1s, and (c) a2s at Mountain Home Air Force Base, Idaho
(black), kriged values from GMA, and the globally constant parameters of Global BMA for the GFS member forecast over the validation year
of 2008. The online version of this figure is in color.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
3:

49
 1

2 
M

ay
 2

01
2 



Kleiber, Raftery, and Gneiting: Geostatistical Model Averaging 1301

(a)

(b)

Figure 7. Forty-eight-hour-ahead predictive densities for daily precipitation accumulation at Mountain Home using GMA and Global BMA
valid (a) January 19, 2008 and (b) November 11, 2008, respectively. The eight-member ensemble is represented by dots, and the realizing
observation by the black vertical line. Dashed lines indicate the lower 90% prediction interval. The thick solid line segments at zero show the
probability of no precipitation, with the lesser probability in the foreground.

real time, which is a critical concern here. The locally varying
model parameters are estimated at each point in time using a
variety of techniques, ranging from least squares estimates to
posterior means. We also considered a more fully Bayesian ap-
proach that used posterior predictive distributions, rather than
conditioning on point estimates. The results were comparable to
those of our conditional approach, much in line with the experi-
ences of Vrugt, Diks, and Clark (2008). In addition to failing to
improve the predictive performance, a major drawback of using
a fully Bayesian approach is the extra effort required to sample
from posterior and conditional distributions, which is unlikely
to be undertaken, or even to be feasible, in real time. Our condi-
tional approach produces locally sharp and calibrated forecasts,
and is faster than using full posterior predictive distributions.
Di Narzo and Cocchi (2010) also carried out a fully Bayesian
analysis similar to that of Vrugt, Diks, and Clark (2008), but
they did not show any performance comparisons with the sim-
pler method of Raftery et al. (2005).

While we consider precipitation here, GMA was originally
developed for the technically less demanding case of surface
temperature (Kleiber et al. 2011). Versions of GMA that apply
to wind speed and wind vectors, which are also highly affected
by local terrain, are highly desirable, especially with the recent
surge of interest in wind energy. For wind speed, this could be

achieved by combining the work of Sloughter, Gneiting, and
Raftery (2010) with the ideas in our article.

Our approach, and that of Sloughter et al. (2007), is to
model the occurrence of precipitation using logistic regression
and, conditional on precipitation occurrence, the precipitation
amount using a gamma density. Other authors have considered
alternative approaches to postprocessing ensemble forecasts
of quantitative precipitation, including nonparametric methods
(Brown and Seo 2010) and logistic regression at a number of
thresholds (Hamill and Whitaker 2006; Hamill, Hagedorn, and
Whitaker 2008). Recently, Wilks (2009) proposed an appeal-
ing development that avoids inconsistencies between logistic
regression equations at distinct thresholds and results in full
predictive distributions. Schmeits and Kok (2010) compared
his approach to BMA, with the methods performing similarly.
The basic idea of GMA, namely locally varying model param-
eters, can be implemented in the logistic regression framework
as well.

While GMA yields locally calibrated probabilistic forecasts
at any given individual location and prediction horizon, it does
not address the problem of joint calibration across meteorolog-
ical variables, locations, and/or prediction horizons. A major
challenge for the future, with further benefits in key applica-
tions such as flood management or air traffic control, is to com-
bine our postprocessing approach with that of Berrocal, Raftery,
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and Gneiting (2008), which generates spatially correlated po-
tential realizations of entire precipitation fields, while retaining
the predictive density of Equation (1) at any individual location.

APPENDIX: LAPLACE METHOD

In Section 2.2 we discussed a Bayesian regularization approach that
uses Laplace approximations to find the posterior means of the GMA
logistic regression parameters. The Laplace method was introduced to
statistics by Tierney and Kadane (1986) and rests on the approximation∫

exp(g(a))da ≈ (2π)p/2 det(−H(m))−1/2 exp(g(m)),

where the integral is over R
p, the function g has mode m, and H(m)

is the Hessian matrix of g evaluated at m. Here we provide the details
of our implementation.

The posterior means we seek can be written as∫
aisq(a|y)da =

(∫
aisq(y|a)p(a)da

)

×
(∫

q(y|a)p(a)da
)−1

(A.1)

for i = 0,1,2, where a = (a0s,a1s,a2s)
′ is the parameter vector at the

location s, y = (y1,s, . . . , yT,s)
′ is the vector of the binary observations

of precipitation occurrence in the training set, q denotes a generic den-
sity, and p denotes the prior density. An application of the Laplace
method to the terms on the right side requires the Hessian of the loga-
rithm of the integrands. In particular, we need to find the Hessian of the
log-likelihood, log q(y|a), and the Hessian of the log prior, log p(a).

The likelihood function q(y|a) is a product of Bernoulli terms
with success probability pt = exp(a′xt)/(1 + exp(a′xt)) where xt =
(x0t, x1t, x2t)

′ = (1, f 1/3
ts − f 1/3

s ,1[fts=0])′ for t = 1, . . . ,T . The Hes-
sian of the log-likelihood function then has entry

(H(a))i+1,j+1 = −
T∑

t=1

xitxjtpt(1 − pt)

for i, j = 0,1,2. Note, in particular, that the Hessian matrix does not
depend on the observation vector y; it depends on the parameter vec-
tor a via the success probabilities p1, . . . ,pT . The prior density p(a)

factors as a product of independent normal densities with means μi
and variances σ 2

i for i = 0,1,2. The Hessian of the log prior thus is a

diagonal matrix with entries −1/σ 2
i for i = 0,1,2.

The parameters ais may take on negative values, whence we can-
not directly apply the Laplace method to the first term on the right
side of Equation (A.1). Instead, we follow Tierney, Kass, and Kadane
(1989) and find Laplace approximations for the integrals

∫
(ais +

M)q(y|a)p(a)da and
∫

Mq(y|a)p(a)da, where M > 0 is large. The dif-
ference of the two approximations provides the desired estimate.

The Laplace method is both fast and accurate, with the approxi-
mation error for posterior moments being of order O(T−2) (Tierney,
Kass, and Kadane 1989). The most demanding task computationally
is to find the mode of the logarithm of the integrand, but this is not an
issue for the small training sets we use.

[Received July 2010. Revised June 2011.]
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