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ABSTRACT

The authors introduce two ways to produce locally calibrated grid-based probabilistic forecasts of tem-

perature. Both start from the Global Bayesian model averaging (Global BMA) statistical postprocessing

method, which has constant predictive bias and variance across the domain, and modify it to make it local. The

first local method, geostatistical model averaging (GMA), computes the predictive bias and variance at ob-

servation stations and interpolates them using a geostatistical model. The second approach, Local BMA,

estimates the parameters of BMA at a grid point from stations that are close to the grid point and similar to it

in elevation and land use. The results of these two methods applied to the eight-member University of

Washington Mesoscale Ensemble (UWME) are given for the 2006 calendar year. GMA was calibrated and

sharper than Global BMA, with prediction intervals that were 8% narrower than Global BMA on average.

Examples using sparse and dense training networks of stations are shown. The sparse network experiment

illustrates the ability of GMA to draw information from the entire training network. The performance of

Local BMA was not statistically different from Global BMA in the dense network experiment, and was

superior to both GMA and Global BMA in areas with sufficient nearby training data.

1. Introduction

Probabilistic forecasting has experienced a recent surge

of interest in the atmospheric sciences community. Early

on, it was recognized that ensembles of forecasts could

provide a measure of forecasting confidence for a given

variable (Epstein 1969; Leith 1974). There was hope that

ensembles of forecasts would produce an estimate of the

predictive distribution for a specific weather quantity, and

much research has been devoted to methods of generat-

ing representative ensembles (Toth and Kalnay 1993;

Houtekamer and Derome 1995; Molteni et al. 1996;

Stensrud et al. 1999; Hamill et al. 2000; Buizza et al.

2005). However, ensembles are often underdispersed

(Hamill and Colucci 1997) and require postprocessing to

properly calibrate the resulting distribution.
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Recently, work on postprocessing of ensembles has

focused on generating calibrated probabilistic fore-

casts. Some approaches include nonhomogeneous

Gaussian regression (Gneiting et al. 2005; Hagedorn

et al. 2008), the best member method (Roulston and

Smith 2003; Wang and Bishop 2005; Fortin et al. 2006),

and logistic regression (Hamill et al. 2004), all of which

have been recently compared by Wilks and Hamill

(2007). Related approaches include kernel dressing

(Bröcker and Smith 2008), moving average estima-

tion (Johnson and Swinbank 2009), model output

statistics (MOS; Glahn et al. 2009b), ensemble re-

gression (Unger et al. 2009) and extended logistic re-

gression (Wilks 2009). The need for postprocessing of

ensemble output is also discussed in the climate litera-

ture (Kharin and Zwiers 2002; Tebaldi and Knutti 2007;

Smith et al. 2009).

Postprocessing of ensembles using Bayesian model

averaging (BMA), introduced by Raftery et al. (2005),

has enjoyed success in forecasting weather quantities

such as 2-m temperature, sea level pressure, precipita-

tion (Sloughter et al. 2007), and wind speed (Sloughter

et al. 2010), as well as hydrologic streamflow (Duan et al.

2007). BMA is a method of combining predictive den-

sities generated by individual members of an ensemble.

We focus on surface temperature as the variable of in-

terest here, though the methods we introduce can be

adapted to other quantities. If yst is the temperature at

site s, valid at time t, with K forecasts f1st, . . . , fKst, the

BMA predictive density for yst is

p(ystjf1st, . . . , fKst) 5 �
K

‘51
w‘g(ystjf‘st), (1)

where g(ystjf‘st) is a normal density with bias-corrected

mean f‘st 2 a‘ and variance s2. We refer to this model for

temperature as Global BMA. Global BMA is a global

model in the sense that it does not adjust the statistical

parameters (such as bias and predictive variance) lo-

cally.

Postprocessing of numerical weather forecasts has

been carried out since the advent of MOS (Glahn and

Lowry 1972). Systematic errors in numerical weather

prediction models can be removed using MOS, but often

these errors (which we refer to as biases; see Dee 2005)

vary spatially. These biases can only be computed at

observation locations. However, recent interest has fo-

cused on removing bias across the entire model grid,

where there are usually no direct observations. The most

common approach to gridded bias correction is to in-

terpolate relevant information from surrounding ob-

servation stations to a given grid point. Various ways of

doing this interpolation have been proposed in recent

years: Yussouf and Stensrud (2006) interpolated ob-

served biases to the model grid using a Cressman (1959)

scheme. Hacker and Rife (2007) interpolated bias analyses

using minimum variance estimates. Glahn et al. (2009a)

described an approach to gridding MOS predictions that

accounts for elevation and the distinction between water-

and land-based model grid points. Mass et al. (2008) in-

troduced an approach to gridded bias correction that is

sensitive to features that affect model bias, such as eleva-

tion, land-use type, and forecast value. Their gridded bias

estimation is based on an interpolation scheme, which we

refer to as the Mass–Baars interpolation method. Mass–

Baars interpolation is used extensively in one of our two

locally adaptive probabilistic approaches, and is described

fully in section 4.

Generally, the two fields of probabilistic forecasting

and grid-based model corrections do not overlap. There

have been some recent developments in combining nu-

merical model output and observational data that sug-

gest a hybrid approach that locally adjusts a statistical

postprocessing model based on observations. Berrocal

et al. (2009) described a statistical model with spatially

varying parameters to downscale average gridcell level

numerical model output for ozone concentration, which

was generalized to the bivariate case in a follow-up

study (Berrocal et al. 2010). A similar, but not fully

Bayesian, approach has been implemented by Liu et al.

(2008).

In this paper we explore postprocessing methodolo-

gies to generate locally calibrated predictive distribu-

tions based on an ensemble of forecasts. We introduce

two approaches, both based on the BMA work of Raftery

et al. (2005). The first can be thought of as a local gen-

eralization of Global BMA, which we call geostatistical

model averaging (GMA). In particular, GMA will allow

the bias correction and predictive variance parameters to

vary by location. GMA belongs to the general class of

spatially varying-coefficient models (Hastie and Tibshirani

1993; Gelfand et al. 2003, 2005). Our second method in-

terpolates relevant forecast errors first according to the

Mass–Baars interpolation scheme, and then estimates

the Global BMA model at each model grid point. We

call this approach Local BMA.

The remainder of the paper is structured as follows:

section 2 introduces the GMA model for the case of a

single forecast. This is extended to an ensemble of

forecasts in section 3. Section 4 describes Local BMA.

The following two sections are devoted to illustrating

the models: aggregate results over the Pacific Northwest

are considered in section 5, followed by a detailed case

study at four locations in section 6. We end the paper

with a discussion and possible extensions.
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2. Geostatistical single forecast model

The basic model for temperature yst at site s valid at

time t is

yst 5 fst 2 as 1 «st, (2)

where fst is the corresponding forecast, as is an additive

bias correction, and «st has a normal distribution with

mean 0 and variance s2
s .

a. Estimation

Suppose we have training data at n sites s 5 s1, . . . , sn

with forecasts fst and validating observations yst. For any

given training site s, empirical estimates of bias and var-

iance are

âs 5
1

T
�
T

t51
( fst 2 yst) and ŝ2

s 5
1

T
�
T

t51
( fst 2yst 2 âs)

2,

where the sum and variance are over some prespecified

training period of length T.

We view the empirical estimates fâ
si
gn

i51
as a partial

realization from a stationary Gaussian random field in

three dimensions, R3, with mean ma and the covariance

function:

Ca(s1, s2) 5 Cov(as
1
, as

2
)

5 t2
a 1 r2

a exp

�
2
ks1 2 s2k

ra1

2
jh(s1) 2 h(s2)j

ra2

�
,

(3)

where k�k is the Euclidean norm. The parameter t2
a is the

nugget effect, which corresponds to measurement error

or microscale variability; r2
a is a variance parameter; ra1

is the range corresponding to horizontal distance; and ra2

is the range corresponding to vertical distance, where

h(s) is the elevation at location s.

We define ys 5 logs2
s , with empirical estimates ŷ

s
5

logŝ2
s . We view fŷ

si
gn

i51
as a partial realization from a

stationary Gaussian random field with mean my and the

covariance function:

C
y
(s1, s2) 5 Cov(ys

1
, ys

2
)

5 t2
y 1 r2

y exp

�
2
ks1 2 s2k

r
y1

2
jh(s1) 2 h(s2)j

r
y2

�
.

(4)

These random field parameters are estimated by maxi-

mum likelihood using the empirical values fâsi
gn

i51
and

f̂y
si
gn

i51
as data. There is no closed form for these esti-

mates, so they must be found via numerical maximiza-

tion; we use the limited memory quasi-Newton bound

constrained optimization method of Byrd et al. (1995).

We now introduce some notation. First, denote the

maximum likelihood estimates of the random field pa-

rameters by hats (e.g., m̂a). Let Ĉa(�, �) and Ĉ
y
(�, �) be the

covariance functions for the as and ys processes defined

by (3) and (4), respectively, with the maximum likeli-

hood estimates plugged in. Define the covariance ma-

trices S
a

5 fĈ
a
(s

i
, s

j
)gn

i, j51 and S
y
5 fĈ

y
(s

i
, s

j
)gn

i, j51. For

any site of interest, s0, let ĉa 5 [Ĉa(s0, s1), . . . , Ĉa(s0, sn)]9

and ĉ
y
5 [Ĉ

y
(s0, s1), . . . , Ĉ

y
(s0, sn)]9 be the vectors of es-

timated covariances for the two processes between the

site of interest and the station locations. Finally, let

â 5 (âs1
, . . . , âsn

)9 and ŷ 5 (ŷs1
, . . . , ŷsn

)9 be the vectors of

empirical estimates of the bias and log variance at the

observation sites.

b. Forecasting

The predictive distribution at site s0 valid at time t is

specified by (1). Unless s0 is a training site, there are no

direct estimates of as0
or s2

s0
, so we use a geostatistical

method of interpolation known as kriging (Cressie 1993;

Stein 1999). Kriging yields the best linear unbiased pre-

dictor under a quadratic loss function. The kriging esti-

mates of a
s0

and y
s0

are

âs
0
5 m̂a 1 ĉa9S21

a (â 2 m̂a1) (5)

and

ŷs
0
5 m̂

y
1 ĉ9

y
S21

y (ŷ 2 m̂
y
1), (6)

where 1 is a vector of ones of length n. In this case, the

kriging estimates correspond to the conditional expec-

tations of as0
and ys0

given â and ŷ, respectively, under

the assumption that the maximum likelihood estimates

of the spatial parameters are the true underlying spatial

parameters (Chilès and Delfiner 1999). The final predic-

tive distribution for ys0t is then normal with mean fs0t 2 âs0

and variance ŝ2
s0

5 exp(ŷ
s0

).

3. Geostatistical model averaging

In the last section we considered the situation where

we have just one forecast for each site and valid time.

We now extend this to the situation where we have an

ensemble of forecasts at each site and valid time.

Suppose that at each of n training sites s 5 s1, . . . , sn,

with s2 R3, we have K forecasts f1st, . . . , fKst at site s valid

at time t. The BMA approach to combining forecasts is
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described in Raftery et al. (2005), where the predictive

density of temperature, yst, given the K forecasts, is de-

fined by (1), where g(ystjf‘st) is a normal density with

mean f‘st 2 a‘ and variance s2. Here, the additive bias

corrections a‘ and predictive variance s2 are common

among all sites for any time t, and hence define the Global

BMA model.

In the GMA formulation, the additive bias term be-

comes, for forecast ‘ at site s, a‘s. Raftery et al. (2005)

suggest the assumption of a common variance among all

component densities is reasonable, so that the GMA

predictive variance becomes cs2
s , where s2

s 5 exp(ys).

The variance deflation factor c is chosen so as to produce

a calibrated predictive density (Berrocal et al. 2007).

a. Estimation

Suppose we have training data consisting of K fore-

casts f f
‘st
gK

‘51
along with observations at the n observa-

tion sites. For training site s, empirical estimates of bias

and variance are

â‘s 5
1

T
�
T

t51
( f‘st 2 yst) and

ŝs
2 5

1

KT
�
T

t51
�
K

‘51
( f‘st 2 yst 2 es)

2,

where the sum is over a training period, usually of length

T 5 25 days, and the variance is over this training period

along with all K forecasts, where e
s

is the average of the

K 3 T errors f‘st 2 yst.

As in the single forecast case, we view the empiri-

cal estimates fâ‘si
gn

i51
as being drawn from stationary

Gaussian random fields with covariance functions of the

form (3), but with forecast-specific parameters ma‘, t2
a‘,

r2
a‘, ra1‘, ra2‘, for ‘ 5 1, . . . , K. The site-specific log vari-

ances are y
s
5 logs2

s , with estimates collapsed across

ensemble members denoted by ŷ
s
5 logŝ2

s . The model

for ys follows directly from the single forecast case. The

random field parameters are estimated by maximum

likelihood, using the empirical estimates fâ‘si
gn

i51
and

fŷs
i
gn

i 51
.

b. Forecasting

As in the single forecast case, the first step is to set up

the predictive densities fg(ys0tj f‘s0t)g
K

‘51
for any site of

interest s0. The kriging equations (5) and (6) yield esti-

mates â1s0
, . . . , âKs0

, and ŷs0
that are plugged into the

component densities. Thus, the final predictive density for

ys0t is (1), where g(ys0tj f‘s0t) is normal with mean f‘s0t 2 â‘s0

and variance c exp(ŷ
s0

), for ‘5 1, . . . , K. The BMA weights

w1, . . . , wK and the variance deflation parameter c are

estimated via the expectation-maximization (EM) al-

gorithm (Dempster et al. 1977), which we describe in the

appendix. Once a stopping criterion for the EM algo-

rithm is reached, the estimates w1, . . . , wK and c are used

in the predictive density (1).

4. Local Bayesian model averaging

This paper describes two ways to approach the local

prediction problem: GMA first estimates forecast error

characteristics such as bias at the available observation

stations, and then interpolates this information spatially.

Alternatively, forecast errors could be interpolated first,

followed by model estimation; this is the approach be-

hind Local Bayesian model averaging (Local BMA).

Local BMA is currently used operationally in the Uni-

versity of Washington’s probabilistic forecasting project,

Probcast (Mass et al. 2009); it combines the Mass–Baars

interpolation technique with the Global BMA model to

produce a predictive distribution that adapts to local

characteristics. Mass–Baars interpolation is sensitive to

features that affect model bias, such as elevation, land-

use type, and forecast value, and works as follows.

Given forecasts fst and observations yst at n observation

stations s 5 s1, . . . , sn at time t, the goal of the Mass–Baars

interpolation scheme is to interpolate past forecast errors

fst 2 yst at observation stations s to grid point s0. The in-

terpolation scheme selects relevant forecast errors using

the following criteria: observation sites must have an el-

evation that is close to the elevation at s0, and must fall

within some prespecified radius of s0, with observing lo-

cations that are closer to s0 given preference over those

farther away. Observation sites must have a similar land-

use category as s0, as forecast biases may have different

characteristics depending on the land-use type of the

forecast site. Land-use types are split into nine groups

sharing similar characteristics, as defined in Mass et al.

(2008). To mitigate the effects of change of meteorolog-

ical regime, the forecast errors must arise from a similar

forecast value; for instance, if the forecast at s0 is 208C,

then the only errors considered come from forecasts

between, say, 188 and 228C. To account for diurnal effects

and differences due to model projection time, only errors

from the same forecast hour as the forecast grid in ques-

tion are used. Only recent errors are considered, and er-

rors beyond a certain magnitude are ignored as they may

be indicative of a problem station. The unspecified pa-

rameters here such as the interpolation radius are ob-

tained using an optimization routine that minimizes mean

absolute error based on training data. The Mass–Baars

bias-correction technique estimates bias at any given grid

point s0 by interpolating forecast errors based on the above

criteria, and averaging the resulting set of interpolated
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errors. The estimated bias may then be removed from

the forecast at s0. Local BMA, on the other hand, uses

interpolated forecast errors from observation stations to

produce a probabilistic forecast.

Local BMA operates as follows: given observations

and an ensemble of K forecasts at sites s 5 s1, . . . , sn, the

Mass–Baars interpolation scheme is used to interpolate

a predefined number of forecast errors f‘st 2 yst to a

model grid point s0, where t runs through some pre-

defined training period, usually of no longer than several

weeks. Then, BMA is applied, using these errors as data,

at each model grid point separately, yielding a predictive

density of the form (1), but with weights w1s0
, . . . , wKs0

,

bias corrections a1s0
, . . . , aKs0

, and predictive variance

s2
s0

that are all specific to the grid point s0. Finally, to

produce a predictive distribution at any site within the

domain, the locally estimated Global BMA model pa-

rameters are bilinearly interpolated from each of the

surrounding four grid points. The control parameters

that define the interpolation radius, elevation band, and

forecast value band that determine the relevant forecast

errors are chosen by minimizing the domain averaged

mean absolute error on a set of held out station data.

The specific values of these parameters, and the algo-

rithm used to minimize the domain-averaged mean ab-

solute error are described in Mass et al. (2008).

5. Aggregate results

Our two methods are applied to a temperature dataset

over the North American Pacific Northwest during cal-

endar years 2005–06. We use 48-h forecasts initialized

at 0000 UTC from the 8-member University of Wash-

ington Mesoscale Ensemble (UWME), described in Eckel

and Mass (2005). First we examine aggregate results

over the entire forecast domain, followed by a focused

study of results at four stations.

Since Local BMA chooses stations based on charac-

teristics other than just station proximity, GMA and

Local BMA usually choose different sets of observa-

tions. Depending on the density of the observation

network, we might expect one of the two methods to be

superior. For instance, if the observation network is very

dense, GMA will focus on the nearest stations for local

adjustments with no concern for features such as land

type. In contrast, the nearby stations that Local BMA

draws from may be more similar in terms of forecast er-

rors, and hence may account for important information

overlooked by GMA. On the other hand, if the observa-

tion network is sparse, Local BMA may not have enough

‘‘similar’’ stations nearby to make any local corrections

(we always default to the Global BMA predictive density

in these cases), while GMA is able to draw from all

available sites in the network. Below we look at both

scenarios, starting with the sparse network experiment.

a. Sparse network

For the sparse network, we restrict attention to ob-

servation stations on land, as exploratory analysis sug-

gested no spatial correlation of forecast biases or

variances over the Pacific Ocean, where there would be

little or no gain in using a geostatistical approach; at

these locations Global BMA will suffice for probabilistic

predictions. That is, if one were interested in producing

probabilistic forecasts at a station in the Pacific Ocean,

one could use Global BMA (using, say, only training

stations that are also ocean based), without the added

complication of the locally varying model parameters.

Land-based observation stations show strong spatial cor-

relations: see the empirical estimates of the biases as and

the log variances ys for the GFS ensemble member using

a 25-day training period leading up to 7 July 2005 in Fig. 1.

The 294 observation stations in this sparse experiment

were chosen as if they represented a sparse, but reliable

network, having an observation on at least 90% of all

available days. Hence, each station has a nearly com-

plete set of observations across the 2005–06 period, with

very few short periods of missing data. Initially, we

randomly divide the 294 observation stations into 194

for model fitting and 100 for validation. Figure 2 shows

the locations of these two sets of stations. Empirical

estimates of the bias and log variance processes as and ys

require a choice of training period; for both GMA and

Global BMA, we adopt the 25-day training period that

has been recommended in previous studies (Raftery

et al. 2005).

GMA relies on a Gaussian process representation of

the bias as and log variance ys parameters. Exploratory

analysis, such as empirical variograms, suggests that the

functional form of the covariance functions (3) and (4)

is justified, and also that the parameters defining the

Gaussian structure of as and ys are constant across sea-

sons. Thus, we estimate these random field parameters

only once, using 11 independent realizations generated

by disjoint 25-day training periods from 20 January to

31 December 2005, and hold these estimates constant

across the validation year of 2006. This duration is lon-

ger than 11 3 25 days since forecasts are missing on

some days due to machine failure and disruptions in

communications. These maximum likelihood estimates

are presented in Table 1. The second-order parameters

are almost indistinguishable between ensemble mem-

bers, but the mean bias varies between forecasts.

With these estimates in hand, we perform validation

on the entire year 2006. All models use a sliding training

window of the previous T available days where T 5 25
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for GMA and Global BMA, and T 5 59 for Local BMA.

Other lengths of training periods were considered for

GMA, but 25 days was found to produce the best results

in terms of domain-averaged mean absolute error and

continuous ranked probability score, similar to the ex-

perience of Raftery et al. (2005). The length of training

period for Local BMA was chosen as that which mini-

mized the domain aggregated mean absolute error, and

we refer to Mass et al. (2008) for details. The network is

sparse enough that occasionally Local BMA does not

have enough similar stations near a grid point to in-

terpolate forecast errors (there must be 8 nearby sta-

tions with 11 similar forecasts each for Local BMA to be

available at a grid point). In these situations, we will

substitute the Global BMA predictive density, thereby

always guaranteeing a probabilistic prediction.

To assess the quality of the predictive distributions,

we adopt the principle that probabilistic forecasts aim

FIG. 1. Empirical estimates of (a) the bias process as (in 8C), and (c) the log variance process ys (in log Celsius2) with

kriged estimates of (b) bias and (d) log variance on the 12-km forecast grid, from the GFS ensemble member, using

a 25-day training period leading up to 7 Jul 2005.
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to maximize sharpness subject to calibration (Gneiting

et al. 2007). Calibration requires statistical consistency

between the predictive distributions and validating ob-

servations, and may be assessed via the probability in-

tegral transform (PIT) histogram (Diebold et al. 1998;

Raftery et al. 2005; Gneiting et al. 2007). If F is the

predictive cumulative distribution function for the ob-

served quantity y, then the PIT histogram is a plot of

F(y) over many instances. A perfectly calibrated distri-

bution will result in a uniform PIT histogram, while an

overdispersed predictive distribution will put more mass

in the center, and finally underdispersion is indicated by

a U-shaped histogram. PIT histograms are a continuous

analog of the rank histogram, which we use to describe

the ensemble’s calibration (Hamill 2001). Figure 3 shows

the PIT histograms for the Global BMA model, Local

BMA, and GMA, with a rank histogram for the raw en-

semble.

It is immediately seen that the raw ensemble is under-

dispersed, a common feature of many types of forecasts

(Hamill and Colucci 1997). The Global BMA model and

GMA show much better calibration, while Local

BMA reduces the underdispersion, but does not re-

move it completely.

FIG. 2. Observation station locations: fitting stations in the sparse network are shown by

black dots, fitting stations in the dense network are shown by both black and green dots, and

validation stations are shown by red dots.
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Sharpness refers to the concentration of the predictive

distribution; the continuous ranked probability score

(CRPS) assesses both sharpness and calibration, and is

defined by

CRPS(F, x) 5

ð1‘

2‘

[F(y) 2 I(y $ x)]2 dy, (7)

where F is the predictive distribution and x is the

observed temperature (Matheson and Winkler 1976;

Hersbach 2000; Grimit et al. 2006; Gneiting and Raftery

2007). The CRPS and mean absolute error (MAE) be-

tween the validating observations and median of the

predictive distribution are displayed in Table 2. Global

BMA improves the raw ensemble’s MAE by 4.8%,

Local BMA improves it by 3.5%, while GMA improves

it by 6.3%. Similarly, the raw ensemble’s CRPS is im-

proved by 15.8% using Global BMA, 14.1% by Local

BMA, and 17.3% by GMA. Indeed, GMA improves

the aggregate mean CRPS and MAE over Global BMA;

the standard error of the difference in CRPS between

Global BMA and GMA is 0.0038C and for MAE the

standard error is 0.0058C, indicating that the improve-

ment in both scores is statistically significant. Similarly,

the standard error for difference between Global BMA

and Local BMA is 0.0038 and 0.0058C for CRPS and

MAE, respectively, also indicating that the differences

shown in Table 2 are significantly different, in particular

that Local BMA is performing worse than Global BMA

at an aggregate level.

We also calculate the CRPS value for each model at

each validation station separately, with Fig. 4a summa-

rizing the results. Each validation station is color coded

corresponding to the model with the best local CRPS

value. GMA has the best CRPS value at 47 stations,

while Global BMA has the lowest value at 42, Local

BMA at 10, and the raw ensemble is best at 1 station.

The aggregate scores of CRPS and MAE show im-

provement using all models over the raw ensemble, and

TABLE 1. Maximum likelihood estimates for the additive bias

processes a‘s (in 8C) and the log variance process ys (in log Cel-

sius2), for each member of the UWME. Distance is in km, and el-

evation is in m. The Global Forecast System (GFS) is from the

National Centers for Environmental Prediction (NCEP), the

Global Environmental Multiscale Model from the Canadian Me-

teorological Centre (CMCG), Eta is the limited-area mesoscale

model from NCEP, the Global Analysis and Prediction (GASP)

model is from the Australian Bureau of Meteorology, the Global

Spectral Model is from the Japan Meteorological Agency (JMA),

the Navy Operational Global Atmospheric Prediction System

(NGPS) is from the Fleet Numerical Meteorological and Ocean-

ographic Center, the Global Forecast System is from the Taiwan

Central Weather Bureau (TCWB), and the Unified Model is from

the Met Office.

Forecast

Bias processes, a‘s

ma t2
a r2

a ra1 ra2

GFS 20.21 0.48 3.36 307 2159

CMCG 0.14 0.46 3.40 287 2090

ETA 0.10 0.52 3.64 356 2429

GASP 20.43 0.43 3.57 304 2139

JMA 20.47 0.46 3.35 300 1992

NGPS 20.47 0.44 3.67 321 2240

TCWB 20.69 0.44 3.76 333 2193

UKMO 20.16 0.45 3.37 301 2109

Log variance process, ys

my t2
y r2

y ry1 ry2

1.78 0.0076 0.23 136 2800

FIG. 3. Sparse network experiment: (a) rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA,

and (d) GMA.

TABLE 2. MAE and mean CRPS (both in 8C) for the raw ensemble,

Global BMA, Local BMA, and GMA over the calendar year 2006.

Sparse network Dense network

MAE CRPS MAE CRPS

Raw ensemble 1.958 1.603 1.958 1.603

Global BMA 1.865 1.350 1.875 1.356

Local BMA 1.889 1.377 1.883 1.375

GMA 1.834 1.326 1.849 1.333
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suggest further improvement over Global BMA using

a locally adaptive model. Indeed, GMA improves MAE

at 54% of stations over Global BMA and improves the

local CRPS at 55% of validation stations. Local BMA

improves MAE and CRPS over Global BMA at 30%

and 26% of validation stations, respectively. To assess

local calibration and sharpness of the postprocessing

models, Fig. 5 shows box plots for the validation-station-

based coverage and average width for the nominal 80%,

90%, and 95% prediction intervals. Locally, we see that

Local BMA is underdispersed at most stations while

GMA and Global BMA are closer to nominal coverage

at most validation stations. The box plots of average

widths in the second row illustrate the effect of a con-

stant predictive variance parameter as in the Global

BMA model, all average prediction intervals are nearly of

equal width at every station. GMA and Local BMA allow

the prediction interval widths to vary substantially be-

tween locations, and both produce much narrower pre-

diction intervals at most validation stations than Global

BMA.

While CRPS takes account of both sharpness and

calibration, the former may be checked directly by ex-

amining the width of the predictive intervals. Table 3

provides average width and coverage of the 80%, 90%,

and 95% prediction intervals for Global BMA, Local

BMA, and GMA. As the PIT histogram suggests, Global

BMA produces globally calibrated prediction intervals;

for instance the 80% interval covers the verifying value in

80.6% of cases. GMA yields only slightly underdispersed

but significantly sharper prediction intervals, consistently

narrowing each of the 80%, 90%, and 95% intervals by

approximately 8% relative to Global BMA. Local BMA

displays the underdispersion seen in its PIT histogram

with the average interval coverages generally being 8%–

10% lower than nominal, but narrows the predictive

intervals by approximately 20% over Global BMA on

average.

The greater accuracy of GMA than Global BMA

displayed in the MAE is a result of a locally varying bias

correction, while the better calibration and sharper

prediction intervals are also influenced by the locally

varying predictive variance. The ability to adjust pa-

rameters locally should result in better-calibrated dis-

tributions at each given site, which is not necessarily

guaranteed using Global BMA. We examined the dis-

crepancy criteria at each validation station, that is, the

deviation of the PIT histogram from uniformity, and we

FIG. 4. Station-based CRPS with color corresponding to model with the lowest (best) value. Color codes are black

for the raw ensemble, blue for Global BMA, green for Local BMA, and red for GMA. Scores are shown for (a) the

sparse training network and (b) the dense training network.
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found that GMA improved calibration over Global

BMA in 66% of cases.

Local BMA suffers from the lack of available infor-

mation using the sparse training network, and must in-

terpolate forecast errors from great distances because of the

sparsity of fitting stations. In fact, Local BMA was available

at only 85 of the 100 validation sites; we substituted in

Global BMA’s predictive density at the remaining 15 lo-

cations where Local BMA was not available.

b. Dense network

For the dense network, we allow any station available

during the 2005–06 time period to be included as a fitting

station. This yields 1457 fitting stations on land, with an

additional 263 water-based stations; we use the same 100

validation stations as for the sparse network, which are

held out of the training set.

Table 2 displays the MAE and CRPS scores for the

dense network experiment. The order of performance of

the three methods is the same as for the sparse method,

with GMA best, followed by Global BMA and then

Local BMA. The standard errors for differences be-

tween Global BMA and GMA or Local BMA are the

same as in the sparse experiment (i.e., 0.0038C for CRPS

and 0.0058C for MAE). In this case, the differences

in CRPS between all three methods are statistically

FIG. 5. Station-based prediction interval coverage and average width for Global BMA, Local BMA, and GMA for the nominal 80%,

90%, and 95% prediction intervals. The first row contains coverage while the second row shows predictive interval width. Coverages and

width are calculated at each validation station separately and summarized by box plots. The box shows the interquartile range, while the

whiskers extend to no more than 1.5 times the interquartile range.

TABLE 3. Average prediction interval coverage and width (in 8C) for 2006.

Sparse network Dense network

Coverage (%) Width (8C) Coverage (%) Width (8C)

80% 90% 95% 80% 90% 95% 80% 90% 95% 80% 90% 95%

Global BMA 80.6 89.4 93.5 5.92 7.59 9.03 81.9 90.2 94.1 6.17 7.91 9.41

Local BMA 70.0 80.5 86.7 4.77 6.08 7.20 68.6 79.4 85.7 4.64 5.92 7.00

GMA 77.2 86.6 91.4 5.45 6.98 8.30 77.4 86.8 91.8 5.50 7.06 8.39
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significant, but unlike the sparse experiment, the MAE

is not significantly different between Local BMA and

Global BMA. Hence, the skill of Local BMA has im-

proved over the sparse experiment, largely because of

the higher density of training stations. Whereas Local

BMA was available at 85 of the 100 validation stations in

the sparse experiment, it is available at 99 in the dense

network case.

We examine local CRPS values for the dense training

network in Fig. 4b, where Global BMA is best at 31

stations, and the locally adaptive methods Local BMA

and GMA are superior at 19 and 49 stations, respec-

tively. Local calibration can be assessed similar to Fig. 5

for the sparse training network, and the results are

similar to those of Fig. 5 (not shown). While Global

BMA shows aggregate calibration, GMA displays local

calibration and substantially shrinks the predictive in-

terval widths. For this network, GMA improves the lo-

cal CRPS value at 57% of stations over Global BMA,

while Local BMA improves local CRPS at 45% of sta-

tions over Global BMA.

The PIT histograms for this training network are

displayed in Fig. 6. Local BMA still displays some un-

derdispersion, reflected in Table 3, with lower coverage

percentages and narrower prediction intervals. Global

BMA is now slightly overdispersed. The PIT histogram

for GMA does not indicate either overdispersion or

underdispersion.

Figure 7 shows the predictive temperature fields for

Global BMA, GMA, and Local BMA valid on 22 May

2006. Each point is the median of the predictive distri-

bution at the corresponding grid location. Global BMA

and GMA are available everywhere, but Local BMA is

not available in areas of sparse observations. Local

BMA and GMA both decrease the median forecasts

compared to Global BMA in the Puget Sound region

east of the Olympic Peninsula in Washington, and Local

BMA shows greater adjustment. The observations in the

Puget Sound region are generally cooler than Global

BMA’s median forecast on 22 May 2006, while GMA

and Local BMA identify and adjust for the local bias.

6. Case study

We now present four stations in detail: Peony Creek,

Washington; Roberts Field, Oregon; Franklin Falls,

Washington; and Friday Harbor Airport, Washington.

The following results are under the conditions of the

sparse training network.

a. Peony Creek

The first case study station is at Peony Creek in north-

east Washington State; see Fig. 8. The black time series in

Fig. 9a consists of the forecast errors of the GFS en-

semble member forecast at Peony Creek in 2006. The

red line is the bias correction for the GFS member equal

to the kriged value of as from GMA, the blue line rep-

resents Global BMA’s bias correction, while the green

line is Local BMA’s bias correction. The bias correction

of Global BMA is constant across all sites. Figure 9b

illustrates GMA’s ability to adapt to bias locally, pre-

dicting the local bias at Peony Creek significantly more

accurately than Global BMA.

Similar behavior is seen in the predictive standard

deviation, shown in Fig. 9c. Global BMA’s predictive

standard deviation was nearly constant across 2006. In

contrast, GMA’s predictive standard deviation was able

to identify and adapt to periods of changing uncertainty,

as indicated by the vertical dashed line. Local BMA is

not available every day that GMA and Global BMA are;

there is a slight gap at day 54 in the bias correction and

predictive standard deviation. On these days there were

not enough nearby stations that met the requirements of

the Mass–Baars interpolation scheme (see section 4).

The stations on which Local BMA’s interpolation is

based change from day to day, while GMA uses every

available station. To get a sense of which stations were

chosen on a particular day, see Fig. 8. On 22 May 2006,

FIG. 6. Dense network experiment: (a) Rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA,

and (d) GMA.
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eight stations were available to interpolate to the near-

est grid point adjacent to Peony Creek and Roberts

Field for Local BMA; these are represented by green

points. The eight nearest stations used by GMA are

colored red, while the stations shared by both are in

purple. At Peony Creek, the biases from the nearby

stations used by GMA reflect the empirical bias more

accurately than those stations chosen by Local BMA, as

seen in Fig. 9b. This is partially due to the fact that two of

the nearest stations selected by GMA are of the same

land type as that at Peony Creek, namely forest, while

the land type of the stations chosen by Local BMA

(which are of the same land type as the nearest grid point

to Peony Creek but not as Peony Creek itself) are

grassland.

Calibration may again be assessed by looking at the

PIT histograms generated by predictive distributions

at Peony Creek for the year 2006; these are displayed

in Fig. 10. As expected, the raw ensemble is under-

dispersed, while the PIT histogram for Global BMA

FIG. 7. Median of predictive density on 22 May 2006 for Global BMA, GMA, and Local BMA using the dense

network for training, with observed values.
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puts more mass at higher values, suggesting a tendency

to underpredict at Peony Creek. Local BMA improves

the calibration of Global BMA, but also has the ten-

dency to underpredict. The PIT histogram for GMA

shows much better calibration, which is a result of locally

accurate bias correction and predictive variance.

Predictive densities for 11 September 2006 and

28 December 2006 are shown in Fig. 11. The ensemble

FIG. 8. The eight nearest training stations chosen by GMA in red and Local BMA in green on 22 May 2006, with

shared stations in purple. The case study stations are in black with corresponding codes PEONY for Peony Creek,

KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR for Friday Harbor airport.
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spread does not capture the realizing value in either

case. On 11 September 2006 we see the local bias cor-

rection of GMA shifting the predictive distribution to-

ward higher temperatures, centering exactly around the

realizing value. In both cases, GMA’s 80% predictive

interval was much narrower than that of Global BMA.

This is most easily seen on 28 December where GMA’s

interval was completely contained within that of Global

BMA, while both intervals captured the realizing value.

Table 4 shows the MAE and CRPS for the raw en-

semble, Global BMA, GMA, and Local BMA at Peony

Creek for the 2006 calendar year. Global BMA performed

FIG. 9. (a) Time series of GFS member forecast errors (forecast minus observation) for 2006 at Peony Creek in black, with bias

corrections from Global BMA (blue), Local BMA (green), and GMA (red). (b) Empirical bias of GFS member at Peony Creek in black

with bias corrections from Global BMA (blue), Local BMA (green), and GMA (red). (c) Empirical standard deviation of GFS member

forecast errors at Peony Creek in black with predictive standard deviations from Global BMA (blue), Local BMA (green), and GMA

(red). The vertical dashed line marks the beginning of a period of greater predictive uncertainty, as seen in the empirical standard

deviation.
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better than the raw ensemble, while GMA showed further

improvement. Local BMA did not improve over the global

model; this is due to a lack of available training stations

nearby whose forecast errors follow the same behavior

as the grid points surrounding Peony Creek. GMA was

calibrated and at the same time provided sharper pre-

diction intervals, narrowing the average interval width

of Global BMA by 7.6%, as seen in Table 5. This table

also indicates that Local BMA was underdispersed at

these three intervals.

b. Roberts Field

Our second case study station is at Roberts Field for

which Fig. 12 shows empirical errors, biases, and pre-

dictive standard deviations for the 2006 calendar year.

The situation here is the opposite of that at Peony

Creek. GMA pulled information mainly from the sta-

tions shown in Fig. 8, which are geographically closer

to Roberts Field, but the information interpolated by

Local BMA from the further stations represent the

FIG. 10. (a) Rank histogram for the raw ensemble, and PIT histograms for (b) Global BMA, (c) Local BMA, and (d) GMA. Each row is

a case study station with codes PEONY for Peony Creek, KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR for Friday

Harbor airport.
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behavior of the GFS member forecast errors at Roberts

Field more accurately. This can be seen in Fig. 12b,

where the bias estimation by GMA is consistently too

low during most of 2006, while Local BMA’s correction

tends to follow the empirical trend more closely. The

interpolated standard deviation of GMA agrees with the

empirical variability of the GFS member, similarly to

the situation at Peony Creek.

The PIT histograms in Fig. 10 show that the raw

forecast tended to overpredict, Global BMA usually

underpredicted, and GMA and Local BMA were better

calibrated. Local BMA was slightly underdispersed, as

seen in Table 5, but it gave significantly sharper pre-

diction intervals at Roberts Field than Global BMA and

GMA, by approximately 22% on average. This is re-

flected in the superior CRPS score for Local BMA, see

Table 4.

Local BMA performed well at Roberts Field because

there were appropriate training stations nearby for it to

select. Indeed, all 8 stations chosen by Local BMA were

within 280 m of the elevation at Roberts Field, and these

stations were characterized as grassland, the same land

use as Roberts Field. GMA chose stations of up to 507 m

different in elevation, and only 3 of the nearest locations

were grassland, while the other 5 were either cropland or

FIG. 11. Predictive densities for (a) 11 Sep 2006 and (b) 28 Dec 2006 at Peony Creek. The blue density is Global

BMA, the red density is GMA, the green density is Local BMA, the black vertical line is the verifying observation,

while the dashed vertical lines correspond to the 80% prediction intervals. The dots show the eight ensemble member

forecasts, with a horizontal line to illustrate ensemble spread.

TABLE 4. MAE and mean CRPS (both in 8C) for the raw en-

semble, Global BMA, GMA, and Local BMA over the calendar

year 2006 at four stations with codes PEONY for Peony Creek,

KRDM for Roberts Field, TFRAN for Franklin Falls, and KFHR

for Friday Harbor airport.

Model MAE CRPS

PEONY Raw ensemble 2.007 1.703

Global BMA 1.877 1.339

Local BMA 1.950 1.400

GMA 1.760 1.283

KRDM Raw ensemble 1.948 1.550

Global BMA 1.843 1.303

Local BMA 1.804 1.274

GMA 1.785 1.289

TFRAN Raw ensemble 1.716 1.400

Global BMA 1.750 1.262

Local BMA 1.732 1.243

GMA 1.552 1.135

KFHR Raw ensemble 1.404 1.132

Global BMA 1.400 1.054

Local BMA 1.373 0.992

GMA 1.375 1.009

TABLE 5. Average prediction interval coverage and width at four

stations with codes PEONY for Peony Creek, KRDM for Roberts

Field, TFRAN for Franklin Falls, and KFHR for Friday Harbor

airport.

Coverage (%) Width (8C)

80% 90% 95% 80% 90% 95%

PEONY Global BMA 82.4 89.7 94.0 5.81 7.46 8.88

Local BMA 71.7 85.3 91.0 5.32 6.81 8.08

GMA 81.4 89.0 92.4 5.37 6.89 8.20

KRDM Global BMA 84.2 91.9 95.2 6.04 7.72 9.17

Local BMA 74.4 85.8 90.6 4.74 6.02 7.12

GMA 86.1 90.6 92.9 6.03 7.72 9.15

TFRAN Global BMA 82.0 89.8 94.2 5.92 7.59 9.03

Local BMA 73.8 85.7 91.5 5.02 6.40 7.58

GMA 80.0 87.5 92.5 5.14 6.60 7.85

KFHR Global BMA 88.5 93.1 96.4 5.71 7.32 8.72

Local BMA 81.9 91.1 96.1 4.74 6.06 7.20

GMA 81.6 87.2 93.1 4.31 5.52 6.57
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forest, leading to a poorer estimate of the forecast bias at

Roberts Field.

However, Local BMA’s approach to station selection

can also lead to difficulty in obtaining predictions. Of the

100 validation stations used in section 5, only 85 had

sufficient training stations nearby to give a Local BMA

predictive distribution. This behavior in areas of a sparse

observation network is overcome by GMA, which is avail-

able everywhere, while still locally adjusting forecasts.

c. Franklin Falls and Friday Harbor Airport

The final two case study stations serve to illustrate the

applicability of GMA and Local BMA to regions of com-

plex terrain. Franklin Falls is only a few hundred meters

away from Snoqualmie Pass in the Cascade Mountain

range, and sits at an elevation of 829 m. Indeed the sen-

sitivity of both methods to elevation is important in the

mountains, and Table 4 displays the importance of local

FIG. 12. (a) Time series of GFS member forecast errors (forecast minus observation) for 2006 at Roberts Field in black, with bias

corrections from Global BMA (blue), Local BMA (green), and GMA (red). (b) Empirical bias of GFS member at Roberts Field in black

with bias corrections from Global BMA (blue), Local BMA (green), and GMA (red). (c) Empirical standard deviation of GFS member

forecast errors at Roberts Field in black with predictive standard deviations from Global BMA (blue), Local BMA (green), and GMA (red).
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adjustments in different types of terrain. Both methods

produce significantly sharper prediction intervals that are

calibrated for GMA and only slightly undercalibrated for

Local BMA (see Table 5).

Friday Harbor Airport is located on the San Juan Is-

land chain in the Puget Sound. The airport itself is only

approximately 200 m from the ocean, and experiences

vastly different climate than the three other case study

stations. The local methods improve the point estimate

of the median of the predictive distribution over Global

BMA, but all are seen to have comparable CRPS values

(see Table 4). Notice that Global BMA is slightly

overdispersed at Friday Harbor Airport, while GMA

and Local BMA display good calibration, and narrow

the predictive interval widths (at all levels) relative to

Global BMA by 17% on average for Local BMA and by

25% on average for GMA (seen in Table 5). Both local

methods choose coastal stations, as shown in Fig. 8, for

improving local bias and predictive variance, while Global

BMA equally weights all coastal, mountain, grassland,

cropland, forest, and other land-type-based stations for

parameter estimation at Friday Harbor Airport.

7. Discussion

We have presented two different ways to produce

locally calibrated probabilistic grid-based forecasts, us-

ing station observations. Local calibration refers to sta-

tistical calibration at an individual location, while global

calibration refers to calibration over all locations. Both

models are based on the Bayesian model averaging

method of Raftery et al. (2005). Geostatistical model

averaging first estimates the statistical parameters of

the BMA model at each station and then interpolates

the parameter estimates using a geostatistical model.

Local BMA estimates the bias at a grid point as an av-

erage of the observed forecast errors at stations that are

close to the grid point and have similar elevation and

land use.

The two methods have advantages and disadvantages.

GMA yields local adjustments everywhere, putting

the most weight on information from the nearest sta-

tions, irrespective of land use or other characteristics.

Local BMA uses only stations with similar land type,

elevation, and forecast value, and thus provides a more

physical interpolation; however, it has the disadvantage

of not always being available everywhere. This problem

is related to station density—for a dense observation

network, Local BMA performs well at locations with

sufficiently many nearby stations, while GMA is better

adapted to a sparse network. However, occasionally the

similarity of bias in a certain land type reflects the true

bias at a model grid point more so than the nearest

stations; in these situations Local BMA will estimate the

local parameters more accurately than GMA.

There is no guarantee that the predictive distribution

from a global model at any single location will be cali-

brated, whereas locally adaptive procedures can pro-

duce locally calibrated forecasts. GMA was locally

calibrated and sharp, and Local BMA was significantly

sharper than Global BMA and GMA on average, but

was underdispersed.

Our example of 48-h temperature forecasts illustrates

a strength of GMA relative to the Global BMA model.

The predictive densities generated by both methods lead

to calibrated probabilistic forecasts. However, GMA

yields sharper predictive densities than Global BMA,

due to the locally varying predictive variance. At the

second case study station, Roberts Field, Oregon, we see

Global BMA and GMA producing essentially equiva-

lent sharpness, where Local BMA yields much sharper

densities, narrowing the predictive intervals as much as

22%. Both methods perform well and improve over

Global BMA in areas of complex terrain, as seen with the

final two case study stations: one in the Cascade Moun-

tains and the other on an island in the Puget Sound.

The example section focused on 48-h temperature

forecasts, but we also evaluated the models’ 36- and 42-h

forecasts, finding similar results to those described above.

In particular, GMA and Local BMA substantially re-

duced the predictive interval width over Global BMA,

but GMA displayed slight underdispersion and Local

BMA had more pronounced underdispersion than at the

48-h horizon. For 36- and 42-h forecasts, GMA reduced

the domain aggregated MAE and CRPS over both Global

BMA and the raw ensemble. Local BMA reduced the

domain-aggregated scores over Global BMA, except for

the CRPS in the 36-h experiment.

We have specified GMA in terms of a specific geo-

statistical model with an exponential covariance func-

tion. However, any other geostatistical model could be

used, and other specifications could provide better perfor-

mance. Also, GMA and Local BMA both have strengths,

and it might be profitable to combine them, for example by

restricting the estimation of GMA parameters for a grid

point to stations that are similar to the grid point in location,

elevation, and land use.

Local BMA relies on the Mass–Baars interpolation

algorithm, whose interpolation parameters are esti-

mated by minimizing the domain-aggregated mean ab-

solute error. The parameters used in our experiments

are described in Mass et al. (2008). However, these pa-

rameters are likely to differ depending on the region of

interest, so reoptimization is likely required in a differ-

ent setting. It also may be profitable to consider allowing

these parameters to vary by location. For example, in
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areas of dense observations the forecaster may want

stricter rules on what errors are interpolated, while in

areas of sparse network coverage, there may be benefit

to relaxing the forecast error selection criteria.

Gridded bias correction is built into both GMA and

Local BMA. Gel (2007) investigated two other approaches

to gridded bias correction that are similar to our methods.

The first, local observation-based (LOB) bias removal,

defines neighborhoods based on the spatial structure of

historical biases at observing locations. However, rather

than using all available bias information, Gel (2007)

defined a neighborhood based on the spatial parameters.

Her other method is a nonlinear regression method that

uses classification and regression trees (CART) and al-

ternating conditional expectations (ACE). Gel (2007)

pointed out that her CART–ACE method works well in

areas of sparse data, but it requires a long training period

and is not fully automated. Both LOB and CART–ACE

only result in deterministic gridded bias estimates, rather

than a calibrated probabilistic prediction.
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APPENDIX

EM Algorithm

We describe the EM algorithm of section 3. The EM

algorithm is an iterative process that finds a maximum of

the log likelihood function:

‘(w1, . . . , wK, c) 5 �
s,t

log

�
�
K

‘51
w‘g(ystj f‘st)

�
. (A1)

One cannot guarantee that the algorithm converges to

a global maximum, but using different initial values can

assist in avoiding local maxima.

We introduce latent variables z‘st, which can be thought

of as being 1 if the ‘th forecast is best for site s and time t,

and 0 otherwise. In the jth E (expectation) step of the EM

algorithm, we start with current estimates fw( j)
‘ g

K

‘51 and

c( j), and, based on these, calculate estimates
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for every ensemble member, where g( j)(ystj f‘st) is a nor-

mal density with mean f
‘st

2 â
‘s

and variance c( j) exp(ŷ
s
).

In the M (maximization) step, we update the weights via
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�
K

‘51
ẑ

( j)
kst[yst 2 ( f‘st 2 â‘s)]2, (A4)

where N is the number of station and time pairs, and â
‘s

and exp(ŷ
s
) depend on time t, though we have not in-

cluded the subscript t here for simplicity. The algorithm

is iterated between the E and M steps until some stop-

ping criterion is reached.
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