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Summary. We propose an online binary classification procedure for cases when there is uncertainty about the model to
use and parameters within a model change over time. We account for model uncertainty through dynamic model averaging,
a dynamic extension of Bayesian model averaging in which posterior model probabilities may also change with time. We
apply a state-space model to the parameters of each model and we allow the data-generating model to change over time
according to a Markov chain. Calibrating a “forgetting” factor accommodates different levels of change in the data-generating
mechanism. We propose an algorithm that adjusts the level of forgetting in an online fashion using the posterior predictive
distribution, and so accommodates various levels of change at different times. We apply our method to data from children
with appendicitis who receive either a traditional (open) appendectomy or a laparoscopic procedure. Factors associated with
which children receive a particular type of procedure changed substantially over the 7 years of data collection, a feature that
is not captured using standard regression modeling. Because our procedure can be implemented completely online, future
data collection for similar studies would require storing sensitive patient information only temporarily, reducing the risk of a
breach of confidentiality.
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1. Introduction
We describe a method suited for high-dimensional predic-
tive modeling applications with streaming, massive data in
which the data-generating process is itself changing over time.
Specifically, we propose an online implementation of the dy-
namic binary classifier, which dynamically accounts for model
uncertainty and allows within-model parameters to change
over time.

Our model contains three key statistical features that make
it well suited for such applications. First, we propose an en-
tirely online implementation that allows rapid updating of
model parameters as new data arrive. Second, we adopt an
ensemble approach in response to a potentially large space
of features that addresses overfitting. Specifically we com-
bine models using dynamic model averaging (DMA), an exten-
sion of Bayesian model averaging (BMA) that allows model
weights to change over time. Third, our autotuning algorithm
and Bayesian inference address the dynamic nature of the
data-generating mechanism. Through the Bayesian paradigm,
our adaptive algorithm incorporates more information from
past time periods when the process is stable, and less dur-
ing periods of volatility. This feature allows us to model local
fluctuations without losing sight of overall trends.

In what follows we consider a finite set of candidate lo-
gistic regression models and assume that the data-generating
model follows a (hidden) Markov chain. Within each candi-
date model, the parameters follow a state-space model. We

present algorithms for recursively updating both the Markov
chain and the state-space model in an online fashion. Each
candidate model is updated independently because the defi-
nition of the state vector is different for each candidate model.
This alleviates much of the computational burden associated
with hidden Markov models. We also update the posterior
model probabilities dynamically, allowing the “correct” model
to change over time.

“Forgetting” eliminates the need for between-state transi-
tion matrices and makes online prediction computationally
feasible. The key idea within each candidate model is to cen-
ter the prior for the unobserved state of the process at time
t on the center of the posterior at the (t − 1)th observation,
and to set the prior variance of the state at time t equal to
the posterior variance at time (t − 1) inflated by a forgetting
factor. Forgetting is similar to applying weights to the sample,
where temporally distant observations receive smaller weight
than more recent observations.

Forgetting calibrates or tunes the influence of past observa-
tions. Adaptively calibrating the procedure allows the amount
of change in the model parameters to change over time. Our
procedure is online and requires no additional data storage,
preserving our method’s applicability for large-scale problems
and for cases where sensitive information should be discarded
as soon as possible.

Our method combines components of several well-known
dynamic modeling schemes (see Smith, 1979, or Smith, 1992,
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for a review) with a procedure for calibrating the influence
of past observations through forgetting. For the single-model
setting, West and Harrison (1997), for example, describe a
forgetting strategy similar to ours. The engineering litera-
ture also considers various forgetting schemes (sometimes re-
ferred to as “discounting”)—see, for example, Fagin (1964),
Jazwinsky (1970), and Kulhavý and Zarrop (1993)—although
the degree of forgetting is typically selected a priori rather
than in a data-adaptive way. Discretized versions of forgetting
have also been used previously in the literature (see Kárný
and Halousková, 1994).

In the multiple model setting, a related literature exists in
signal processing with applications to tracking and filtering—
see, for example, Kreucher, Hero, and Kastella (2004) or Bar-
Shalom, Li, and Kirubarajan (2001). Our method is also re-
lated to recent advances in sparse dynamic graphical modeling
(see Carvalho and West, 2007; Carvalho, Polson, and Scott,
2010; or Wang, Reeson, and Carvalho, 2010). As far as we
know, ours is the first work to propose an autotuning method
to calibrate the degree of forgetting and to couple this with a
model averaging approach to account for model uncertainty.

We have applied our methodology to a pediatric surgery
problem—determining features that distinguish the type of
appendectomy a child might undergo. We will assume that
data arrive as patients receive a procedure, and are then dis-
carded. Although the entire dataset is available to use, we
have modeled it as if data were only available at the time
of the procedure. As electronic medical records become more
prevalent, instantaneous reporting of data on procedures will
likely become more prevalent, making this approach feasible
and practical. Because medical records contain sensitive in-
formation, discarding records as soon as they are used for
modeling reduces the risk of breaching patient confidentiality.

Although adult studies suggest that laparoscopic surgery
can reduce recovery time and lower cost compared to tradi-
tional open appendectomy (Hagendorf et al., 2007), the ev-
idence is less compelling in children. Despite this difference,
the overall proportion of appendectomies done laparoscopi-
cally in children has increased (Nguyen et al., 2004; Hagendorf
et al., 2007). This suggests that the overall rate of laparoscopy
may be driven by features other than direct patient benefit,
such as diffusion of technology and training in hospitals, or
nonmedical patient factors such as insurance type or race. We
analyze data from the Nationwide Inpatient Sample from 1996
to 2002 to explore how the medical and nonmedical factors
associated with the type of procedure a child receives have
changed over time.

In Section 2, we describe DMA for binary classification. We
demonstrate the performance of our proposed method using
simulation studies in Section 3. In Section 4, we apply the
method to data obtained from the National Inpatient Sample
of children undergoing surgery for appendicitis between 1996
and 2002. Section 5 offers a discussion and potential exten-
sions of this method.

2. Dynamic Model Averaging for Binary
Classification

2.1 Bayesian Dynamic Logistic Regression
We propose a dynamic logistic regression method. We first
describe the recursive estimation procedure for a single model

in this section. We then account for model uncertainty by
extending the DMA method of Raftery, Kárný, and Ettler
(2010) to binary classification in Section 2.2.

2.1.1 State-space model for within-model estimation. Re-
cursive estimation allows for sequential, online processing
and is done in two steps: updating and prediction. Con-
sider a binary response, yt and a set of predictors xt =
(x1, t , x2, t , . . . , xd,t ) such that at time t:

yt ∼ Bernoulli (pt ),

where

logit (pt ) = xT
t θt ,

where θt is a d-dimensional vector of regression coefficients.
At a given time, t, the procedure takes the posterior mode

of θ from time (t − 1) and uses it to construct the prior for
time t. We do this by first using the information up to time
(t − 1) to construct an estimate of the parameters for time
t, yielding the prediction equation. This equation predicts the
value of the observation at time t based on the estimated pa-
rameter using data up to time (t − 1). The prediction equation
is then combined with the observed data at time t, and the
new information factors into updated parameter estimates via
the updating equation. This process happens first within each
model and then predictions between models are combined us-
ing the procedure described in the next section to produce
predictions that account for model uncertainty.

We first develop the prediction equation and, as in Raftery
et al. (2010), assume the state equation θt = θt−1 + δt , where
the δt ’s are independent N(0, Wt ) random vectors. For a set
of past outcomes, Yt−1 = y1, . . ., yt−1, and reasonable starting
values, recursive estimation begins by supposing

θt−1 |Y t−1 ∼ N (θ̂t−1, Σ̂t−1).

Then the prediction equation is

θt |Y t−1 ∼ N (θ̂t−1, Rt ), (1)

where

Rt = Σ̂t−1 /λt . (2)

Forgetting is specified by equation (2) with λt typically taking
a value slightly less than one. The model could also be spec-
ified without forgetting by using a covariance matrix Wt so
that we would instead have Rt = Σ̂t−1 + Wt . This approach,
however, would require specifying the entire covariance ma-
trix Wt , which would often be quite large.

We now combine the prediction equation (1) with the ad-
ditional observation at time t to construct updated estimates.
The posterior distribution of the updated estimate, θt , having
observed yt , can be written as follows:

p (θt |Y t ) ∝ p (yt |θt )p (θt |Y t−1). (3)

Equation (3) is the product of the prediction equation (1)
and the likelihood at time t. The term p(θt |Yt−1) now acts as
the prior. The likelihood from the logistic regression model
is not conducive to computing a closed-form expression for
equation (3).

We approximate the right-hand side of equation (3) with
a normal distribution where the mean of the approximating
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normal distribution is the mode of equation (3). We use θ̂t−1

as the starting value, yielding

θ̂t = θ̂t−1 − D2� (θ̂t−1)−1 D� (θ̂t−1), (4)

where �(θ) = logp (yt | θ) p (θ |Yt−1). Now

D� (θ̂t−1) = (yt − ŷt ) xt , (5)

where logit(ŷt ) = xT
t θ̂t−1. Also

D2� (θ̂t−1) = R−1
t + ŷt (1 − ŷt ) xt xT

t . (6)

This relationship means that we can substitute equations (5)
and (6) into equation (4) to get the updated estimate, θ̂t . We
update the state variance (i.e., the variance in the approxi-
mating normal distribution) using Σ̂t = {−D2� (θ̂t−1)}−1.

In our examples, we initialize the process with coefficients
from standard logistic regression models fit to the first one
third of the data.

We propose an online, adaptive tuning procedure using the
predictive likelihood:

f (yt |Y t−1) =
∫

θ t

p (yt | θt , Y t−1)p (θt |Y t−1) dθt . (7)

This integral is not available in closed form so instead we use
a Laplace approximation yielding

f (yt |Y t−1) ≈ (2π)d/2 | {D2(θ̂t )}−1 |1/2 p (yt |Y t−1, θ̂t )

× p (θ̂t |Y t−1). (8)

Lewis and Raftery (1997) suggest that this approximation
should be quite accurate. The Laplace approximation makes
the computation feasible and fast because p(yt |Y t−1, θ̂t ) is
the logistic likelihood function evaluated at θ̂t and (xt ,yt ),
and p(θ̂t |Y t−1) is a normal density with mean θ̂t and variance
Σ̂t−1/λt evaluated at its mean. We choose the value of λt that
maximizes equation (8). In other words,

λt = arg max
λ t

∫
θ t

p (yt |θt , Y
t−1) p (θt |Y t−1) dθt .

Note that λt also enters equation (8) via θ̂t . Also, this ap-
proach implies that equation (7) depends on the past trajec-
tory of the forgetting factors. An alternative approach would
be to treat λt in a fully Bayesian way (see Section 12.3 of
West and Harrison, 1997) and maximize the full posterior,
f(λ1:t |Yt ), where λ1:t = (λ1, . . ., λt−1, λt ). This approach would
allow potentially informative current observations, yt , to be
used for updating λ1:t−1, but would be more difficult, compu-
tationally.

Because the θt ’s may be changing at different rates, we sug-
gest that each parameter within each model at each time have
its own forgetting parameter. Though it adds flexibility, this
approach could be computationally burdensome. In our appli-
cation we selected separate tuning factors for each continuous
variable at each time. For categorical variables, we selected
the same tuning factor for all levels of the variable.

One way to approximately maximize the above quantity
would be to evaluate it for multiple values of λt . We found
that the following, simpler, alternative performed comparably
while requiring minimal computational effort. At each obser-
vation, consider two options: (i) no forgetting (λt = 1) or (ii)

some forgetting (λt = c( < 1)). The constant c must still be
chosen by the user, but we now also consider not forgetting at
each step. If the process is believed more variable (detecting
a spike, e.g.), one should choose a smaller value whereas a
value closer to one works better for a more stable process or a
smooth trend. We found that our results were not sensitive to
the chosen constant. In fact, simulation studies showed that
the algorithm maintains similar performance across different
tuning values by choosing to forget more or less often depend-
ing on the scale of the tuning factor. A similar method was
proposed for the single-model case by Kárný and Halousková
(1994).

The forgetting/no-forgetting approach is also more com-
putationally feasible for selecting a different tuning factor
for each parameter in a given model. For our application in
Section 4.1, the data have around 15 candidate variables with
some being indicators with multiple levels. If we assume that
all indicators for a categorical variable share the same for-
getting factor, then the combinatorics are manageable, even
using a standard desktop computer.

2.2 Dynamic Model Averaging
In the multimodel case we have K candidate models (M1,
M2, . . ., MK ). A key feature of this method is that model prob-
abilities are also dynamic, allowing flexibility through time
while avoiding overfitting at each observation.

We define Lt as a model indicator so that if Lt = k, the
process is governed by model Mk at time t. For the multimodel
case, we have

yt |Lt = k ∼ Bernoulli (p(k )
t ), where

logit (p(k )
t ) = x(k )T

t θ
(k )
t . (9)

Notice from equation (9) that both the values of θ
(k)
t and the

dimension of the vector are model specific. Following Raftery
et al. (2010), we update θ

(k)
t conditionally on Lt = k.

As in the single-model case, estimation occurs in two
steps—prediction and updating. In the multimodel case, how-
ever, the state space at each time now consists of the pair
(Lt , θt ), where θt = (θ(1)

t , . . . , θ
(k )
t ). Recursive estimation now

acts on the pair (Lt , θt ):

K∑
�=1

p (θ(�)
t |Lt = �, Y t−1) p (Lt = � |Y t−1). (10)

The key feature of equation (10) is that the θ
(�)
t term is present

only conditionally, given Lt = �. We can now proceed with our
prediction and updating steps separately for the model, Lt ,
and for the parameters within a given model.

We first describe prediction for the model indicator, Lt . The
model prediction equation is

P (Lt = k |Y t−1)

=
∑K

�=1 p(Lt−1 = � |Y t−1) p (Lt = k |Lt−1 = �).

To avoid specifying the K × K transition matrix of p(Lt =
k|Lt−1 = �) terms, we update using forgetting, specifically

P (Lt = k |Y t−1) =
P (Lt−1 = k |Y t−1)α t∑K

�=1 P (Lt−1 = � |Y t−1)α t

, (11)
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where αt is the forgetting factor, αt ≤ 1. The αt parameter
in equation (11) increases uncertainty by flattening the dis-
tribution of Lt . In this way, only a single parameter must be
set instead of an entire transition matrix.

The model updating equation is then:

P (Lt = k |Y t ) = ω
(k )
t

/
K∑

�=1

ω
(�)
t ,

where

ω
(�)
t = P (Lt = � |Y t−1) f (�) (yt |Y t−1). (12)

Notice that for each model, equation (8) provides the ex-
pression for f(�)(yt |Yt−1). Furthermore, because the procedure
for selecting the model-specific forgetting factor λ

(�)
t already

computes f(�)(yt |Yt−1), no further computation is required for
equation (12).

We also adjust αt , the forgetting factor for the model in-
dicator forgetting, using the predictive likelihood across our
candidate models, f(yt |Y t−1), so that

f (yt |Y t−1)

=
K∑

k=1

f (k ) (yt |Y t−1) P (Lt = k|Y t−1)

=
K∑

k=1

(∫
θ

(k )
t

P (yt | θ(k )
t , Y t−1) p (θ(k )

t |Y t−1) dθ
(k )
t

)

× P (Lt−1 = k |Y t−1)α t∑K

�=1 P (Lt−1 = � |Y t−1)α t

.

We previously computed f(k)(yt |Yt−1) so we can use it here
with minimal additional computation. We select αt as:

arg max
α t

K∑
k=1

f (k )(yt |Y t−1)P (Lt = k|Y t−1).

In practice, we choose between two candidate αt values at
each time (forgetting/no forgetting).

To predict yt we then use ŷDMA
t =

∑K

�=1 P (Lt = � |Y t−1)ŷ(�)
t ,

where ŷ
(�)
t is the predicted response for model � at

time t.

3. Simulation Results
Figure 1 shows parameter estimates for one parameter in a
large logistic regression model. The mean Brier score for our
model was 0.12, compared with 0.14 using a standard logis-
tic regression model. While the data-generating mechanism
changed gradually, the algorithm detected the trend and the
adaptive tuning scheme accommodated the additional uncer-
tainty. During this period, the algorithm chose tuning values
corresponding to more diffuse prior distributions.

Near the midpoint of our simulations, we incorporated a
spike in the data-generating mechanism. Our method quickly
detected the drastic change in signal. The adaptive tuning
algorithm again compensated (by reducing prior variance) in
the stable period after the spike. The overall result was more
precise estimation when behavior is more stable, and flexibil-
ity during more volatile periods.

Figure 1. Parameter estimates ±2 standard errors for an
example coefficient in logistic regression on simulated data.
The dashed line represents the trajectory used to generate the
data. We set the forgetting constant, c, as .99. We present ad-
ditional simulation results for different values of c in Web Fig-
ures 1–4. We first generated a series of 20,000 coefficient values
corresponding to the trajectory indicated by the dashed line,
then generated predictor values and sampled our responses
from the appropriate Bernoulli distribution. Our method de-
tects more variable regions in the data-generating mechanism
and compensates by increasing variance. When the trend is
more consistent, the method responds by reducing variance.

Figure 2. Posterior model probabilities. The data-generating
model changes midway through the simulation, which is re-
flected in the estimated model probabilities. For presentation,
we have included only four candidate models, though we found
similar performance with much larger simulation experiments.
Model 2, which generated the first 10,000 observations, con-
sisted of four predictor variables: θ1, t = 1, θ2, t increases gradu-
ally from 0 to 1.5, θ3, t increases from 0 to 1 then is stable, θ4, t

increases from 0 to 1, then decreases to −1. Model 4, which
generated the second 10,000 observations, contains only θ1

and θ2. Model 1 uses only of θ4, t and model 3 contains all
four predictors in model 2 along with two additional predic-
tors. We set both forgetting constants to 0.999.

Figure 2 displays results for a simulation experiment
for DMA. We used one model (model 2) to generate data
for the first half of the simulation (10,000 observations).
Then, we switched the data-generating mechanism to a dif-
ferent model (model 4) for another 10,000 observations. Our
method quickly identified and adapted the estimated model
probabilities. The approximations used here allow fast com-
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Figure 3. Coefficients for the age variable from the model
using all predictors of laparoscopic or open appendectomy de-
scribed in Section 4.1. The solid lines are coefficient estimates
and the dashed lines are ±2 standard errors.

putation of posterior model probabilities, increasing the fea-
sibility of large-scale, online implementations of DMA.

4. Pediatric Laparoscopic Appendectomies
4.1 Background and Data
We apply our method to a sample of children less than 15
years old from the Nationwide Inpatient Sample. The sample
consists of 72,189 children who underwent appendectomies
between 1996 and 2002. Previous research indicates that there
are socioeconomic and racial differences in the presentation of
appendicitis in children and that these differences may exist
even when accounting for severity of appendicitis (Guagliardo
et al., 2003; Smink et al., 2005). Although we have access
to the entire dataset, we have modeled it as if it were only
available at the time of the procedure.

The data also contain demographic and health informa-
tion about the patient and information about the hospi-
tal. We observe the patient’s race (white, African American,
Hispanic, Asian, or other), age, sex, payment source (Medi-
caid/Medicare, private insurance, other), number of chronic
diseases, and severity of appendicitis (no perforation, perfora-
tion without abscesses, abscess). Information about the hospi-
tal includes: teaching hospital or not, urban hospital or not,
hospital volume of appendectomies, and children’s hospital
status (no children’s hospital, children’s hospital or children’s
unit in adult hospital). Of the 2449 hospitals in the study 659
did not report race and some states did not report hospital
names, making it impossible to assign a children’s hospital
designation. All other variables were missing less than 3% of
records. We agree with Hagendorf et al. (2007) that the data
are missing at random and use complete-case analysis.

The overall rate of laparoscopic procedures in the sam-
ple increased from 6% in 1996 to 24% in 2002. We hypoth-
esize that this change could also have been accompanied by
a change in what predicts which children get a laparoscopic
procedure.

4.2 Results
We first present results from one of the candidate models to
compare our dynamic modeling strategy with static model-
ing results, using the same data as Hagendorf et al. (2007).
We next address uncertainty in model choice through DMA.
In both cases we present results from the online implementa-
tion of our dynamic logistic regression and model averaging
procedure.

4.2.1 Batch updating. The data were reported monthly
between 1996 and 2002. Because the temporal structure of
the data is basic to our analysis, arbitrarily ordering the

Figure 4. Coefficients for the race variables from the model
using all predictors of laparoscopic or open appendectomy de-
scribed in Section 4.1. The solid lines are coefficient estimates
and the dashed lines are ±2 standard errors.

observations within each month could impact our estimates.
Instead, we updated our model in batches where the observa-
tions within each batch were assumed to be independent and
identically distributed. This assumption allows batch updat-
ing with minor modifications for vectorizing computations in
the previously described model setting.

4.2.2 Dynamic logistic regression. Following Hagendorf et
al. (2007) we considered first a model adjusting for all of the
characteristics considered in Section 4.1 and found a surpris-
ingly more complicated situation than Hagendorf et al. (2007)
could have seen using static modeling. We set the forgetting
constant to 0.99.

As patient’s age increases, for example, Hagendorf et al.
(2007) found an increased propensity for the procedure to be
laparoscopic, which seems sensible because laparoscopic pro-
cedures became the normal treatment for acute appendicitis
in adult over the study period. Considering Figure 3, how-
ever, we see that the coefficient for age increased steadily
from 1996 until 1999 and then stabilized. This behavior is
consistent with the notion that in the mid-1990s laparoscopic
procedures were relatively new even for adults but had be-
come common by the end of the decade.

Dynamic modeling also yields additional insights beyond
static modeling when considering the role of a patient’s race.
Figure 4 shows the profiles of the race indicators, with white
as the reference group. Taking the Hispanic indicator, for
example, Hagendorf et al. (2007) did not find the coeffi-
cient to be statistically significant. Using dynamic modeling,
however, the odds ratio was near 1 from around 1996 until
2001 but then increased to nearly 1.5 by the end of 2002.
Considering the indicator for African Americans next,
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Hagendorf et al. (2007) found the odds ratio for African
American to be significantly less than 1. Dynamic modeling
confirms this observation but adds the caveat that the trend
was increasing and that by 2001 the odds ratio had nearly
reached 1.

4.2.3 Dynamic model averaging. Hagendorf et al. (2007)
considered both univariate and multivariate models and drew
conclusions from the aggregate findings of all models fit. Our
proposed model averaging, in contrast, acknowledges model
uncertainty by considering results from multiple models.

The full model space in this problem consisted of 512 candi-
date models. Figure 5 displays the posterior model probabil-
ities for the three models with highest posterior probability
as well as for five additional candidate models selected us-
ing the conclusions based on static modeling from Hagendorf
et al. (2007).

The models selected from Hagendorf et al. (2007) group
predictors with a common theme (predictors related to hos-
pital characteristics, e.g.). The models with highest posterior
probability, however, contained combinations of these themes.
Initially, the model with only the intercept had the highest
posterior probability, indicating an overall rise in the rate of
laparoscopic procedures. Near the end of 1996, a model that
included medical factors and the prevalence of pediatric pro-
cedures at the hospital overtook the intercept-only model. As
1998 began, medical factors were no longer in the model with
highest probability, being replaced by demographic and in-
surance type predictors.

In terms of specific coefficients, Hagendorf et al. (2007) sug-
gested that nonmedical characteristics of the patient and the
hospital significantly contribute to the propensity of a pa-
tient to get a laparoscopic procedure. Specifically, their work
focused on race and payment type, both of which they found
to be influential. Figure 6 displays the marginal probability
for each predictor. Our dynamic model also found evidence
for the importance of race and payment type, though it var-
ied through time. The patient’s race, for example, had low
marginal probability during the initial 2 years of observation,
but increased and remained high through 1998. We observe
a similar pattern with payment type, though the marginal
probabilities for payment type increased sooner, around the
end of 1997.

We also compared the performance of DMA to each of the
512 potential static models. Each static model also included
indicator variables for year, as in Hagendorf et al. (2007).
The Brier score was approximately 0.14 using DMA and the
best static regression model, even though our method has
no prior knowledge about model performance. The overall
misclassification rates at a threshold of 0.5 were also nearly
equal. The static model overpredicted zero responses, yielding
a lower sensitivity (proportion of predicted successes which
were actually a success) score. The sensitivity score for DMA
was 0.12, versus 0.02 for the best static regression. We found
similar trends for additional threshold values.

5. Discussion and Conclusion
We have constructed an online, adaptive binary classifica-
tion method that accounts for model uncertainty using DMA,
thereby extending DMA to binary outcomes. We apply our
model to data collected from children receiving either laparo-

scopic or open appendectomies. Our method provides insights
into the treatment of appendicitis that were not clear us-
ing static logistic regression, even when year of presentation
was considered as a covariate (Hagendorf et al., 2007). These
data also included survey weights that we did not use in this
analysis. Future models could include these weights, though
we found little substantive difference in coefficients for static
models with and without weights.

Analyses can be done online and estimates updated as addi-
tional data become available. This feature makes the method
applicable to other situations where data must be collected
and processed sequentially or where storing data is unappeal-
ing, as is often the case when sensitive data such as health-
care records are being analyzed. The absence of a closed-form
posterior makes sequential updating challenging. West, Har-
rison, and Migon (1985) proposed an alternative approach us-
ing conjugate priors through a transformation to the natural
parameter space in the exponential family. A key feature of
both our approach and that of West et al. (1985) is specifying
prior distributions that yield a tractable form for sequential
updating. West et al. (1985) put conjugate priors on the nat-
ural parameter of the exponential family density. They then
used the relationship between the natural parameter space (ηt

in their notation) and the underlying state vector (these are
equivalent in the Gaussian case because of the identity link)
to derive updates for the first two moments of the state distri-
bution (see (3.2) and (3.3) in West et al., 1985). Our approach
updates the state vector directly but assumes the prediction
equation, (1), is well approximated by a Gaussian distribu-
tion. As in the West et al. (1985) approach, our distributional
assumptions ensure updates are based on calculating approx-
imations of the first and second moments of the posterior.

We also offer a new possibility for adaptive tuning in this
type of model. The tuning strategy we propose is adaptive
and requires a fraction of the computation that would be re-
quired to compute the full transition matrices. Our method is
similar in spirit to maximizing prequential probability (Dawid
and Vovk, 1999), but differs in our choice to use the current
data to update the parameters before evaluating the marginal
likelihood.

Our method is designed for applications where no data are
stored. If even a few observations were to be stored, however,
we could use these data for tuning using more traditional
crossvalidation type procedures. In that case, we propose up-
dating the tuning factor to maximize the average one-step-
ahead predictive score for the stored data. The choice of score
would depend on the application. For logistic regression, for
example, we suggest using Brier scores.

Specifically, we suggest updating the forgetting factor ev-
ery n0 observations to maximize the average score for the
previous n0 observations. Because tuning may be compu-
tationally intensive, we may not wish to update the for-
getting factor with every new batch of stored observations.
We suggest choosing n0 based on available computational
resources and the complexity of the problem. Similarly, we
posit that n0 will often be determined by necessity (limited
storage space or computation time). If possible, this could
also be determined empirically using the first portion of the
data.
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Figure 5. Posterior model probabilities for a subset of the 512 candidate models for predicting appendectomy type. The first
five models in the legend were selected based on conclusions from Hagendorf et al. (2007), whereas the last three are models
with dominant posterior probability. We used a parallel implementation where each model was updated independently on
a separate CPU. We combined results at each step to compute model probabilities. We grouped similar indicator variables
(Hispanic, African American, Asian, and other race were all included or all excluded, e.g.) to reduce dimensionality and
preserve interpretability.

Figure 6. Marginal probabilities for the nine predictors.

The procedure described in this section could be ap-
plied to other regression problems by adapting the predictive
score, possibly using the continuous ranked probability score
(Gneiting and Raftery, 2007). We could then also test, using
Bayes’ factors, to see if our λt and αt values are changing
over time or if we should revert to a model with a constant
forgetting factor.

Our goal in tuning is to optimize a criterion related to our
method’s performance. The best way to maximize the predic-
tive score would be through numerical optimization, but this
is typically computationally burdensome. We propose evaluat-
ing two values at each update (forgetting and no forgetting).
Instead, following Kárný and Halousková (1994), we could
evaluate across a grid of tuning values (equally spaced on the
scale of the effective sample size, 1/(1-λt ), e.g.) or, further
reducing computation, evaluate only three candidate values
at each update—the previous tuning value and the values on
either side in the grid. Evaluating across a grid would avoid
the need to specify a ‘no-forgetting’ condition, but would in-

stead require tuning the precision of the grid. The magnitude
of the forgetting factor depends on the volatility of the pro-
cess, which is not known in advance. A highly volatile process,
for example, may be adequately described using a grid with
ten equally spaced values between 0.9 and 1. A less volatile
process, however, maybe be well described using a grid with
more precision between 0.99 and 1. Using our approach, we
found the frequency of forgetting adjusted to the size of the
constant and the volatility of the process.

As shown in Section 4.2, our method can accommodate a
model space with hundreds of models using a parallel com-
puting environment. Many applications will have much larger
model spaces, making it infeasible to evaluate every model at
each time point. Even if the full set of models could be eval-
uated, it may be desirable to preserve computing resources
by updating only a subset of models at each time point. The
proposed method could be adapted through an ‘Occam’s win-
dow’ approach (Madigan and Raftery, 1994), where we eval-
uate only an ‘active’ subset of the models at each time. The
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active set of models includes the model with highest posterior
probability and other models whose posterior probability is
within a threshold of the best candidate. Models outside the
set are reevaluated periodically and added if their predictive
probability is sufficiently high. This approach is also known
as model set adaptation in other contexts (Li, 2005; Li, Zhao,
and Li, 2005).

6. Supplementary Materials
Web Figures referenced in Section 3 are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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