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Currently, limited molecular markers ex-
ist that can determine where in the spec-
trum of chronic myeloid leukemia (CML)
progression an individual patient falls at
diagnosis. Gene expression profiles can
predict disease and prognosis, but most
widely used microarray analytical meth-
ods yield lengthy gene candidate lists
that are difficult to apply clinically. Conse-
quently, we applied a probabilistic method
called Bayesian model averaging (BMA)
to a large CML microarray dataset. BMA, a

supervised method, considers multiple
genes simultaneously and identifies small
gene sets. BMA identified 6 genes (NOB1,
DDX47, IGSF2, LTB4R, SCARB1, and
SLC25A3) that discriminated chronic
phase (CP) from blast crisis (BC) CML. In
CML, phase labels divide disease progres-
sion into discrete states. BMA, however,
produces posterior probabilities between
0 and 1 and predicts patients in “interme-
diate” stages. In validation studies of
88 patients, the 6-gene signature discrimi-

nated early CP from late CP, accelerated
phase, and BC. This distinction between
early and late CP is not possible with
current classifications, which are based
on known duration of disease. BMA is a
powerful tool for developing diagnostic
tests from microarray data. Because
therapeutic outcomes are so closely tied
to disease phase, these probabilities can
be used to determine a risk-based treat-
ment strategy at diagnosis. (Blood. 2009;
114:3292-3298)

Introduction

Chronic myeloid leukemia (CML) is characterized by a reciprocal
translocation between chromosomes 9 and 22 yielding the BCR-
ABL fusion protein. It is this constitutively active tyrosine kinase
that drives CML pathophysiology.1 CML usually presents in
chronic phase (CP), but in the absence of effective therapy, CP
CML invariably transforms to accelerated phase (AP) disease, and
then to an acute leukemia, blast crisis (BC). BC is highly resistant
to treatment, and all treatments are more successful when adminis-
tered during CP.2 The current first-line therapy for early CML is the
targeted tyrosine kinase inhibitor (TKI), imatinib mesylate (IM),
which inhibits BCR-ABL and consequently its downstream tar-
gets.3 IM is most effective in early CP patients with a progressive
increase in drug resistance, notably in the frequency of ABL
tyrosine kinase domain (TKD) point mutations (a common cause of
drug resistance), in late CP, AP, and BC patients.4-6 Responses in
BC to TKI therapy are most often transient.5 Although CML has
historically been divided into 3 phases, disease evolution is most
likely a continuous process. Currently there are limited clinical
markers,7,8 and no molecular tests that can predict the “clock” of
CML progression for individual patients at the time of CP
diagnosis, making it difficult to adapt therapy to the risk level of
each patient.

Microarray-based expression analyses have been used exten-
sively in the “discovery phase” for cancer-related biomarkers.9-14

According to the National Cancer Institute’s Early Detection
Research Network, the objective of exploratory studies in the
discovery phase is to determine a short list of 1 to 10 high-priority
candidates.15,16 A short list is critical as target validation is time,

cost, and labor intensive; and a small set is highly desirable for the
development of inexpensive diagnostic tests. However, choosing
these “best” markers from thousands of genes is a daunting task.
The merits of using a combination of biomarkers to predict
outcome are well documented in the literature.15-19 However, most
microarray-based analyses rely on univariate methods, such as the
t test and the significance analysis of microarray statistic,20 which
consider the expression profile of each gene individually. In
contrast, multivariate gene selection methods consider multiple
genes simultaneously, thereby accounting for the dependency
between genes. These methods can be used systematically to
identify signature genes that are predictive in combinations rather
than individually.

We applied a probabilistic supervised method, called Bayesian
modeling averaging (BMA),21 to a large gene expression microar-
ray dataset of patients in various phases of CML14 to identify a
small set of signature genes that predict CML disease progression.
BMA is a multivariate method that takes the uncertainty of
signature gene selection into consideration by averaging over
multiple models (ie, sets of potentially overlapping relevant genes).
BMA has many desirable features: is computationally efficient;
systematically determines the number of predictive genes and
models; yields posterior probabilities of the predictions, selected
genes, and selected models; and each selected model typically
consists of only a few genes.21,22 Six signature genes (NOB1,
DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3) were identified
and validated that discriminated early CP from late CP, CP from AP,
and CP from BC.
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Methods

Patient samples

All patient samples used in these investigations were obtained from
institutional review board–approved protocols from the Fred Hutchinson
Cancer Research Center with written informed consent. All clinical
investigations have been conducted according to the principles expressed in
the Declaration of Helsinki. The 93 individual cases of CML profiled in the
microarray studies have been previously described and are published.14 CP
was defined as less than 10% blasts. AP was defined as 10% to 30% blasts or
less than 10% blasts with clonal evolution, defined as cytogenetic abnormali-
ties in addition to the Philadelphia chromosome (AP-cyto). BC was defined
as more than 30% blasts. BC remission was defined as a return to CP from
BC after therapy (BC-rem). For the array studies 42 CP, 9 AP, 8 AP-cyto,
30 BC, and 4 BC-rem individual patient samples were examined.14

In further validation studies in independent patient samples, we
examined 45 early CP patients and 22 late CP patients by quantitative
reverse transcription polymerase chain reaction (QPCR). The 45 early CP
samples included de novo diagnostic samples from untreated patients
analyzed before treatment with IM at 800 mg per day on the Novartis-
sponsored RIGHT study. The 22 late CP patients had failed IM and were
examined before treatment with nilotinib at 800 mg on the Novartis-
sponsored AMN107 study.

Microarray studies

The procedures for RNA extraction, amplification, labeling, and hybridiza-
tion to the Rosetta platform are previously published23,24 and the analytic
methods used for analysis are as previously described.14 Briefly, analysis of
variance (ANOVA) analysis identified 2612 differentially expressed genes
(from a total of � 24 000 genes) that discriminated CP from BC (P � .001).14

BMA was applied to these 2612 genes. Ingenuity Pathways Analysis was
used to determine biologically enriched pathways and functions. The
P values for the Ingenuity analyses are calculated using a right-tailed
Fisher exact test and measure the statistical significance of a particular
function or pathway in our data with respect to the reference set defined by
Ingenuity Systems.

Quantitative PCR analysis

After cDNAsynthesis, expression in patient samples was quantitated in duplicate
by QPCR and normalized to GUSB expression using the Taqman Low Density
Array platform (TLDA; Applied Biosystems).23 As PCR efficiencies were
similar for all genes examined, relative gene expression was compared as: � Ct
calculations: 2��Ct � 100, where � Ct � Ct gene of interest � Ct GUSB.

Classification and gene selection using microarray data

In classification, a classifier is built using a training set with the goal of
predicting the classes of an independent test set. A major challenge of
classification using microarray data is that the number of genes is usually
much greater than the number of patient samples, and only a subset of these
genes is relevant in distinguishing the different classes. Here, we report
success with BMA from which we built classifiers consisting of a small
number of genes to discriminate disease phases.

Bayesian model averaging

A full discussion of BMA is available in supplemental methods, available
on the Blood website; see the Supplemental Materials link at the top of the
online article. When classifying samples using microarray data, a primary
goal is to identify a small set of predictive genes that can be validated easily.
How to identify this “best set,” however, is unclear. In the BMA framework,
sets of predictive genes are called “models.” In microarray analysis, there
are typically many models (or sets of predictive genes) that fit the data well.
BMA takes model uncertainty into consideration by computing the
weighted average of the posterior probabilities that a test sample belongs to
a given class over multiple “good” models. The weights are proportional to

the goodness of fit of the model.22,25 We applied the iterative BMA
algorithm26 to the 2612 differentially expressed genes derived from our
prior ANOVA analysis14 to determine the best model of genes and phase
of disease.

To briefly summarize our approach, we first ranked the genes associated
with CML phase (chronic vs blast) using a univariate measure of the ratio of
between-group to within-group sum of squares (BSS/WSS).27 Genes with
large BSS/WSS ratios (ie, genes with relatively large variation between
CML phases and relatively small variation within a phase) receive high
rankings. We then applied the “leaps and bounds” algorithm28 and the
Occam window method29 (supplemental Methods) to the top 30 ranked
genes. Genes that were assigned low posterior probabilities (� 5%) are
removed. Suppose m genes are removed. The next m genes from the rank
ordered BSS/WSS ratios are added to the set of genes so that we maintain a
window of 30 genes, and then we apply the leaps and bounds algorithm
again. These steps of gene swaps and iterative applications of leaps and
bounds were continued until all genes were subsequently considered.

Cross validation

Three-fold cross validation, in which a training set is randomly divided into
3 equal subsets, was used to assess the prediction accuracy of the iterative
BMA method on the CML progression microarray data. Each of these
3 subsets is left out in turn for evaluation of classification accuracy, whereas
the other 2 subsets are used as inputs to the classification algorithm. This
process was repeated 100 times.

Computational assessment

BMA was used to predict probabilities that a given sample was CP or BC
based on the gene expression of the genes populating the model. For
example, say class 0 represents CP and class 1 represents BC. The true class
labels of the test samples are unknown to the classification algorithm.
Comparing the true class labels of the test samples to the labels predicted by
the algorithm yields the number of classification errors. For a test sample
assigned to BC, a predicted probability close to 1 is more desirable than a
predicted probability slightly above 0.50, whereas the opposite is true for
the predicted probability of a test sample assigned to CP. The Brier score30

is equal to the sum of squares of the difference between the true class and
the predicted probability over all samples. When the predicted probabilities
are constrained to 0 and 1, the Brier score is equal to the number of
classification errors, and was used to compare the performance of the
deterministic 0-1 classification methods with that of probabilistic methods
such as BMA.

Results

BMA identifies genes associated with CML progression from
microarray gene expression data

Although it is highly likely that more than a single set of genes is
predictive of disease phase, most microarray analytic methods
select a single set and ignore the uncertainty in the selection of this
set. BMA takes this uncertainty into account by averaging over
multiple models (ie, sets of potentially overlapping relevant
genes)22,25 and it yields posterior probabilities of the inclusion of
each gene in the model. In our previous work, we showed that
BMA identified a small number of genes while achieving high
prediction accuracy when applied to microarray data.21

BMA was applied to a microarray dataset consisting of patients
in various phases of CML14 to identify signature genes that predict
CML disease progression (Figure 1). BMA identified 6 signature
genes over 21 models from 2612 genes that discriminated 42 CP
from 30 BC patients in our training set (Table 1). Using univariate
methods, the top 3 ranked genes were DDX47 (rank � 1), IGSF2
(rank � 2), and LTB4R (rank � 3). Notably, these 3 genes were
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selected by the multivariate BMA method in addition to 3 others,
NOB1, SCARB1, and SLC25A3, which were not as highly ranked
by univariate methods (ranked 13, 69, and 77, respectively). The
posterior probabilities reported for each gene (Table 1) are
computed by summing the posterior probabilities of selected
models in which each gene is included. Figure 2 illustrates the
membership of the 6 signature genes in each of the 21 models
selected by the iterative BMA algorithm. To summarize, each of the
6 signature genes is selected in a single-gene model with posterior
probability of 12.87%, and in 5 different 2-gene models with
posterior probabilities of 1.52%. Because the posterior probability
of a gene is equal to the sum of the posterior probabilities of all the
selected models containing the gene of interest in the BMA
paradigm, each of the 6 genes is selected with posterior probabil-
ity � 12.87% � (5 � 1.52%) � 20.47%. Under the BMA frame-
work, we computed the predicted probability (ie, of being CP or
BC) for each patient sample by averaging over the predicted
probabilities from these 21 selected models, weighted by the
posterior probabilities of the models.

The prediction accuracy of the 6-gene signature was then
validated using 3-fold cross validation. The 72 training samples
were randomly divided into training and testing subsets in cross
validation repeated 100 times: two-thirds of the samples were used
to build the prediction model and the remaining one-third were
used to evaluate the accuracy of the CP and BC prediction. The
predicted probability that a patient sample was BC was computed
using the BMA framework, and the number of classification errors
was computed by thresholding the predicted probability at 0.5. In

other words, if the predicted probability was less than 0.5, we
classified a patient sample as CP; otherwise we would classify the
sample as BC.

We compared the performance of different analytic methods by
computing the average number of errors and average Brier scores, a
relative probabilistic measure of the number of errors, over
multiple cross validation runs (see “Computational assessment”).
An analytic method with a relatively small number of errors and a
relatively small Brier score thus achieves higher prediction accu-
racy. BMA produced an average number of errors of 0.20 and an
average Brier score of 0.21 in the 24 test samples over 100 cross
validation test sets, producing an average prediction accuracy of
99.17%. In addition, BMA selected fewer genes and achieved
higher prediction accuracy than the simple method of predicting
with the top 10 or 30 univariate genes (supplemental methods). In
summary, our cross validation study demonstrated that BMA
accurately predicts the phase of CML when applied to CML
progression microarray data.

The 6-gene signature predicts advanced phase in 21 AP and BC
remission samples

Our initial validation was performed on independent patient
samples using microarrays and included 21 patients with disease
between CP and BC. Figure 3A shows the expression of the
6 signature genes in the CP and BC training set. Figure 3B shows
the expression of these 6 signature genes in 8 patients with AP
solely by cytogenetic criteria (AP-cyto), 9 patients with AP disease
by both cytogenetic and blast count criteria (AP), and 4 patients

Table 1. The 6-gene signature selected by BMA that discriminates chronic phase from blast crisis CML

ID Gene
Chromosome

location Activity Cellular function Posterior probabilities, % Univariate (BSS/WSS) rank

NM_016355 DDX47 12p13.1 RNA helicase RNA processing,

apoptosis

20.5 1

NM_004258 IGSF2 1p13 Signal transduction Immune function, T-cell

activation

20.5 2

NM_000752 LTB4R 14q11.2-q12 5-lipoxy-genase Cell growth, apoptosis 20.5 3

NM_014062 NOB1 16q22.1 Unknown Unknown 20.5 13

NM_005505 SCARB1 12q24.31 Cholesterol scavenger

receptor

HDL and LDL

metabolism

20.5 69

NM_005888 SLC25A3 12q23 Mitochondrial phosphate

transport

ATP synthesis 20.5 77

The table indicates chromosomal location, function, the posterior probability of each gene in multivariate modeling, and its rank in univariate modeling (using the univariate
measure of the ratio of between-group to within-group sum of squares (BSS/WSS).

BMA indicates Bayesain modeling averaging; and CML, chronic myeloid leukemia.

Figure 1. Experimental overview. A summary of our overall approach is shown. The
merits of BMA include that the model is multivariate and considers multiple
biomarkers simultaneously; that the uncertainty of gene selection is accounted for by
averaging over multiple good models; that posterior probabilities are generated for all
selected genes and models; and that it produces a high predictive accuracy with
relatively few genes.

Figure 2. Model selection by BMA. This figure illustrates the membership of the
6 signature genes in the 21 models selected by the iterative BMA algorithm on the
CML progression microarray data. The 6 signature genes are shown on the vertical
axis, whereas the 21 models are shown in the horizontal axis. The widths of the
columns are proportional to the posterior probabilities of the selected models. A red
entry indicates that the corresponding gene is included in a given model.
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with a return to CP from BC after therapy (BC-remission or
BC-rem). Notably, the expression pattern in these patients was
variable, and in certain cases was more similar to that of BC
patients than to CP patients. Therefore, we looked more closely at
the predicted probabilities in these patients who subsequently
underwent allogeneic transplantation.

As shown in Figure 3C, the predicted probabilities were more
variable and intermediate between the CP and BC cases. Because
BMA predicts the posterior probabilities of patient samples, the
posterior probability of a patient sample can be taken as an
indication of the strength of the prediction, that is, more CP-like or
more BC-like. Because of the close relationship between disease
phase and treatment outcomes, we then studied the relationship
between these pretransplantation posterior probabilities and patient
outcomes. Outcomes after transplantation were available for 17 of
21 patients. Using a posterior probability threshold of 0.3 in these
patients, 7 of 11 patients with posterior probabilities 0.3 or higher
ultimately died of relapse or treatment-related mortality after
transplantation compared with only 1 of 6 deaths among patients
with a posterior probability less than 0.3. These preliminary data
suggest that AP patients with a higher predicted posterior probabil-

ity using the 6-gene predictor behaved more like BC patients, who
typically have the worst outcomes after transplantation.

The 6-gene predictor signature discriminates early from late CP
by QPCR

Based on our findings in AP patients, we hypothesized that the
6 signature genes could discriminate early from late CP, a
distinction that is not possible with current clinical, pathologic, and
molecular methods. The late CP designation is made based on the
known duration of disease, which is unknown at the time of
diagnosis. In addition, outcomes are also different in late CP
patients who typically have poorer responses to TKI therapy than
early CP patients.31 Early CP samples (45) were obtained from
newly diagnosed and previously untreated patients who subse-
quently received IM. Late CP samples (22) were obtained from
patients with an extended duration of CP disease who had also
previously failed IM therapy. These samples were obtained before
second TKI therapy with nilotinib. The expression of NOB1,
DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3 was examined by
QPCR. As the QPCR expression data were on a different scale than

Figure 3. Differential gene expression of the 6-gene signature in patient cases. Heatmaps of the 6-gene signature selected by the iterative BMA algorithm. (A) Heatmap of
the gene expression of the 6-gene signature in the training set of CP and BC CML cases using microarray-based gene expression analyses. (B) Heatmap of the gene
expression in the test set, also by microarray-based gene expression analyses. This group is made up of AP by cytogenetic criteria only (AP cyto); AP by cytogenetic and blast
count criteria (AP); and BC after a return to second CP (BC-rem). Green indicates differentially decreased expression of each gene in each case compared with its expression
in a pool of CP patient samples and red indicates differentially increased expression. The more saturated the color, the greater is the degree of differential expression. (C) A
graphic depiction of the predicted posterior probability of all patient samples is shown. The samples are represented on the horizontal axis, whereas the predicted probabilities
are represented on the vertical axis. For the training data consisting of 72 CP (group 0) and BC (group 1) cases, the average predicted probabilities over 100 cross validation
runs are shown. For the test data, composed of 21 patients before allogeneic transplantation, the predicted probabilities of the 6 signature genes averaged over 21 models are
shown. This “intermediate phase” test set is composed of group 2 AP by cytogenetic criteria only; group 3 AP by cytogenetic and blast count criteria; and group 4 BC after a
return to second CP. For 17 of 21 patients, posttransplantation outcomes were available. Using a posterior probability threshold of 0.3, we found that 7 of 11 patients with
predicted posterior probabilities � 0.3 died of relapse or treatment-related mortality after transplantation versus only 1 of 6 with a predicted posterior probability � 0.3
(OR � 9).
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the microarray expression data, the BMA model was refit for the 6
signature genes using leave-one-out cross validation. In leave-one-
out cross validation, all but 1 patient sample (45 � 22 � 1 in our
case) are used to compute the predictive models and the left-out
patient sample is used to evaluate the prediction accuracy. Because
the left-out sample was not used to derive the models, this analysis
allows us to estimate the prediction accuracy for new diagnosis
patients. As shown in Figure 4, using leave-one-out cross valida-
tion the 6-gene signature clearly discriminated early CP from late
CP patients. Notably, there was no relationship between the
predicted probabilities using the 6-gene signature and the white
blood cell and peripheral blast counts at the time of the sample
draw (correlation coefficient � �0.62 and �0.36, respectively).
Among the 67 patients, 2 early CP patients and 5 late CP patients
were misclassified (error rate � 7/66 � 10.6%). In terms of sensi-
tivity and specificity analysis, our results achieved 77% sensitivity
(17/22 � 77%) and 95% specificity (43/45 � 95%). Notably, both
misclassified early CP patients subsequently failed IM therapy and
among the misclassified late CP patients, 2 patients did well on
subsequent nilotinib therapy, suggesting that therapeutic outcomes
for these 4 patients were more like outcomes expected from their
“predicted phase.”

BMA identifies potential biologic relationships associated with
CML progression

Ingenuity PathwaysAnalysis (Ingenuity Systems, http://www.ingenuity.
com) determines biologically enriched pathways and functions
based on relationships in published literature. Using this database,
networks around the 6 genes were created and merged. SCARB1,
SLCA25, and IGSF2 made the largest contributions to these
analyses as more is known about these 3 candidate genes. The
merged network was enriched for the following functions: cellular
movement (71 molecules, P �� .001), cell death (84 molecules,
P �� .001), lipid metabolism (47, molecules, P �� .001), and
molecular transport (62 molecules, P �� .001). The 2612 differen-
tially expressed genes associated with CML progression (from
which the 6-gene signature was derived) were then mapped onto
this network with differential gene expression observed for NFKB,
ERK, and heat shock proteins, and for the transcription factors
CEBPA, CEBPB, MYB, MYC, SPI, SP2, and YY1 (supplemental

Figure 1). These observations suggest that biologic relationships
may exist between these genes because BMA identifies markers
that work in combination.

Interestingly, 3 of the 6 signature genes identified by BMA
(Table 1) are located on chromosome 12 (DDX47 on 12p13,
SLC25A3 on 12q23, and SCARB1 on 12q24). Positional Gene
Enrichment (PGE) analysis32 was used to investigate whether
chromosome 12 is enriched with genes associated with CML
progression. PGE (http://homes.esat.kuleuven.be/�bioiuser/pge/
index.php) is a web-based tool that identifies overrepresented
chromosomal regions from a given gene list.32 We first identified
7017 differentially expressed genes associated with CML progres-
sion using significance analysis of microarray20 with a false
discovery rate of 0.001. As shown in Table 2, the regions (p13 and
q23) into which 2 of our signature genes (DDX47 and SLC25A3)
fall are statistically enriched with differentially expressed genes
(with raw P values for each well below .001 and adjusted P values
equal to .046 and .019, respectively). Our findings were similar
when restricted to the 2612 differentially expressed genes derived
from the ANOVA analysis (supplemental Table 1). This finding
suggests the possibility of gene amplification or chromatin modifi-
cation in these regions leading to increased gene expression. Thus,
BMA also identified an interesting chromosomal region or process
for further investigation in future studies.

Discussion

We have identified and validated in independent patient samples, using
the BMA algorithm, a 6-gene signature that discriminates CML disease
phase. This algorithm calculates a posterior probability for each patient
sample that ranges between 0 and 1; thus, values close to 0 represent CP
patients and values close to 1 represent BC patients. The genes NOB1,
DDX47, IGSF2, LTB4R, SCARB1, and SLC25A3 discriminated 42 CP
from 30 BC patients with excellent predictive accuracy in cross
validation studies. Notably, in a separate group of 21 patients with
disease “intermediate” between CP and BC, either AP or BC disease in
remission, BMAproduced posterior probabilities that were also interme-
diate, suggesting some patients were more CP-like and others more
BC-like. In an independent group of 45 early CP and 22 late CP patients,

Figure 4. The 6-gene signature discriminates early from late CP in
independent patient samples by QPCR. Results of leave-one-out cross
validation comparing diagnostic early CP (class 0, n � 45) and late CP
(class 1, n � 22) patient samples (A) including graphic representation (B).
Both early CP patients misclassified at diagnosis as late CP (indicated in
the red circles) subsequently did poorly on imatinib mesylate therapy.
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the expression of these 6 genes discriminated these groups with high
accuracy, suggesting a biologic difference mapping with duration of
chronic phase. Lastly, patients with 6-gene expression patterns more
similar to blast crisis patients before allogeneic transplantation appeared
to have more relapses and deaths compared with patients with 6-gene
expression more similar to chronic phase patients.

These observations suggest that these 6 genes are particularly useful
biomarkers as they can discriminate patients very early on the timeline
of CML progression (early CP vs late CP). Currently, no clinical,
pathologic, or molecular methods exist that can discriminate late from
early CP; only time from diagnosis discriminates these 2 groups after a
diagnosis has been made. Thus, the 6-gene signature could be used to
classify early and late CP patients at diagnosis. The ability to classify
patients as early and late CP at diagnosis is a useful prognostic marker as
response rates for TKI therapies are lower in late CP patients and the
incidence of ABL TKD point mutations, a common mechanism of
acquired resistance, is also higher in late CP patients and more advanced
disease patients.6

The 6 genes chosen by the BMA modeling approach are not
common names in leukemia biology. This observation may simply
reflect the limitations of our current knowledge, and does not discount
them from being interesting candidates for disease biology investiga-
tions. SCARB1 plays a role in cancer cell proliferation33 and was also
recently identified as differentially increased in expression in a panel of
genes that discriminated TEL/AML1 acute lymphoblastic leukemia
from other B-cell acute lymphoblastic leukemias in pediatric patients.34

The DDX family of RNA helicases are required for ATP binding,
nucleic acid binding, and unwinding; and several family members have
been characterized as being overexpressed in solid tumors.35 The SLC25
family of mitochondrial transporters is important in several physiologic
and pathologic processes, although no direct role in cancer has, as of yet,
been identified.36

BMA identifies small numbers of genes that work in combina-
tion to predict disease phase, and our analyses using Ingenuity
Pathways Analysis also suggest that as disparate as each of the

6 genes appear individually, that they, and genes that they are
related to, may share common biology. We found enrichment of
cellular movement and cell death in addition to the expected lipid
metabolism (SCARB1) and molecular transport (SLC25A3). Further-
more, when mapping the differential gene expression of the
progression microarray data onto a merged network, hubs were
identified that are known to play a role in CML and acute leukemia
biology such as NFKB, ERK, and heat shock proteins. These
biologic insights may have treatment implications as each of these
can be targeted therapeutically.37-39 Lastly and most intriguingly,
our 6-gene signature led us to identify areas of enrichment on
chromosome 12, which will be examined in further studies.

In conclusion, the identification of this small set of phase-
specific genes has several clinical implications. It is tempting to
speculate that gene expression at diagnosis might give a better
indication of response than pathologic diagnosis. A higher posterior
probability in a newly diagnosed CP patient may indicate that a
patient is at higher risk of failing first-line TKI therapy or
developing ABL TKD point mutations. In this scenario, increased
monitoring for early treatment failure with consideration for a more
rapid switch to alternative therapy with either another TKI or even
allogeneic transplantation may be indicated. The fact that this set of
genes is so small makes this a testable hypothesis in a relatively
inexpensive and efficient way. If we can indeed predict response at
diagnosis by a simple QPCR assay, this will be a model for using
molecular diagnostics to “tailor” therapy, a big step in the push to
use genetic assays for “personalized” medicine.
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Table 2. PGE analysis demonstrates enrichment of several chromosomal regions including 2 areas in which 2 of the 6 signature genes are
located

Chromosome Start position End position Chromosomal region
No. of input genes in

the region
No. of genes in

the region % enrichment

1 151596954 151789236 q21.3 6 10 60.00

1 201403562 201587240 q32.1 5 5 100.00

2 160664438 162639298 q24.2 8 10 80.00

3 101566831 102795969 q12.2-q12.3 6 10 60.00

3 137167257 137953935 q22.2-q22.3 4 4 100.00

4 15313738 20229900 p15.32-p15.31 8 16 50.00

4 77173975 80052363 q21.1-q21.21 9 18 50.00

4 77173975 77450763 q21.1 4 4 100.00

5 135392644 137503031 q31.1-q31.2 7 14 50.00

8 6344580 6901669 p23.1 7 10 70.00

9 4701155 5460547 p24.1 6 10 60.00

11 59279108 59390594 q12.1 4 4 100.00

12 2870294 6511381 p13.33-p13.31 12 37 32.43

12 21175403 29378272 p12.2-p11.22 16 55 29.09

12 32003620 32789750 p11.21 5 7 71.43

12 91061030 97519906 q21.33-q23.1 15 43 34.88

12 92385401 93377851 q22 5 5 100.00

13 72227541 93857656 q22.1-q32.1 12 30 40.00

19 56807156 56965572 q13.33 4 4 100.00

X 55760897 56611026 p11.21-p11.1 4 4 100.00

To investigate the possibility of enrichment of differential expression on chromosome 12, we performed positional gene enrichment (PGE) analysis to detect
overrepresented chromosomal regions in the CML progression-related data set. The table shows the chromosomal regions that were enriched in these analyses. Chromosome
12 is indicated in bold.

All raw P values were less than .001.
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