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Bayesian model averaging has become a widely used approach to accounting for
uncertainty about the structural form of the model generating the data. When data arrive
sequentially and the generating model can change over time, Dynamic Model Averaging
(DMA) extends model averaging to deal with this situation. Often in macroeconomics,
however, many candidate explanatory variables are available and the number of possible
models becomes too large for DMA to be applied in its original form. We propose a new
method for this situation which allows us to perform DMA without considering the whole
model space, but using a subset of models and dynamically optimizing the choice of
models at each point in time. This yields a dynamic form of Occam's window. We evaluate
the method in the context of the problem of nowcasting GDP in the Euro area. We find
that its forecasting performance compares well with that of other methods.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Short-term forecasting and nowcasting economic conditions are important for policy makers, investors and economic
agents in general. Given the lags in compiling and releasing key macroeconomic variables, it is not surprising that particular
attention is paid to nowcasting, an activity of importance because it allows economic decisions to be made and policy
actions to be taken with a more precise idea of the current situation.

Cheap computing power and wide availability of data have made forecasts increasingly available over time. At the same
time, rich data environments pose new challenges to forecasters. The first and most important is how to distinguish useful
variables from noise. Following the financial crisis and the revisions to existing models, the related problem of which
regressors should be used at different times has also become crucial in forecasting and modeling, leading to more emphasis
on forecast and model uncertainty.

Model averaging, and in particular Bayesian Model Averaging (BMA) is a useful tool to deal with some of these challenges
and has consequently become more popular among practitioners (Del Negro et al., 2014). Advantages of BMA include the
possibility of using more parsimonious models, which tend to yield more stable estimates, because fewer degrees of
freedom are used in individual models. Also, BMA signals relevant regressors, making the results more informative and
easier to interpret. It can be used to account for model uncertainty, or as a tool to choose the best indicator to measure a
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concept, for example choosing between different measures of slack in a Phillips curve. Finally, it can also be used to account
for uncertainty about model structure beyond variable selection (e.g. linear versus nonlinear models, univariate versus
multivariate models, fixed versus time-varying parameters). A version of BMA allowing models to change over time, thus
also dealing with structural changes, is Dynamic Model Averaging (DMA). DMA was first proposed by Raftery et al. (2010)
and allows the weights used in the model averaging to change over time.

This paper deals with the main limit to the use of DMA in macroeconomic forecasting and nowcasting, namely that the
computational requirements still limit the use of DMA to at most middle-sized datasets. The reason for this limitation is
simple: in a standard regression with J possible predictors, the number of possible regression models (the model space)
amounts to 2J models. This model space grows rapidly with J and quickly becomes too large to be computationally tractable
with DMA.

In this paper we propose a way of implementing DMA in large model spaces, called Dynamic Occam's Window (DOW).
This allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically
optimizing the choice of models at each point in time. It is particularly well adapted to macroeconomic studies and allows
the inclusion of substantial information sets. We describe an application to the difficult problem of nowcasting GDP in the
euro area.

The paper is organized as follows. Section 2 briefly reviews Bayesian and Dynamic Model Averaging and Model Selection
and puts them into the context of other data-intensive forecasting techniques. In Section 3 we describe the Dynamic
Occam's Window method. In Section 4 we describe an economic application, the nowcasting of the euro area GDP, and show
that our technique yields good results in terms of forecasting performance and computational efficiency. Section 5 gives the
results of several sensitivity analyses and robustness checks, and the final section concludes.

2. Forecasting with dynamic model averaging

This section describes Dynamic Model Averaging (DMA), as it was introduced by Raftery et al. (2010), and briefly
compares it with other data-intensive forecasting techniques. While this section is more technical in nature, the rest of the
article can be understood without it.

BMA (Leamer, 1978; Raftery, 1988; Madigan and Raftery, 1994; Raftery, 1995; Raftery et al., 1997; Hoeting et al., 1999) is
increasingly used for forecasting when there is uncertainty about which forecasting model should be used. Bayesian Model
Averaging (BMA) deals with the issue by assigning prior probabilities to each model under consideration and by updating
these probabilities using Bayes' Theorem and the observed data. Predictive distributions for future observations are
constructed as the weighted average (using the probabilities as weights) of the predictive distributions of the individual
models. It has become quite popular in economics, thanks in large part to methodological developments to which Eduardo
Ley has contributed (Fernández et al., 2001a; Ley and Steel, 2007, 2009). For other developments of BMA in
macroeconomics, see Fernández et al. (2001b), Brock and Durlauf (2001), Brock et al. (2003), Sala-i-Martin et al. (2004),
Durlauf et al. (2006, 2008), Eicher et al. (2010) and Varian (2014); see Steel (2011) for a survey.

Dynamic Model Averaging is an extension of BMA to allow both the generating regression model and the regression
parameters to vary over time. Following Raftery et al. (2010), we assume a population, M, of K candidate regression models,
M¼ fm1;‥;mKg, where model mk takes the form:

yt ¼ x kð Þ
t β kð Þ

t þε kð Þ
t ; ð1Þ

where ε kð Þ
t �Nð0;σ2 kð Þ

t Þ.
Each explanatory set x kð Þ

t contains a subset of the potential explanatory variables xt (xt can also include lagged values of
yt). This implies a large number of models: if J is the number of explanatory variables in xt, then there are K ¼ 2J possible
regression models involving every possible combination of the J explanatory variables.

DMA averages across models using a recursive updating scheme. At each time two sets of weights are calculated, wtjt�1;k

and wtjt;k. The first, wtjt�1;k, is the key quantity. It is the weight of model k in forecasting yt given data available at time t�1.
The second weight, wtjt;k, is the update of wtjt�1;k using data available at time t. DMA produces forecasts which average over
all K models using wtjt�1;k as weights. Note that DMA is dynamic since these weights can vary over time.

Dynamic Model Selection (DMS) uses the same model weights as DMA, but when it comes to forecasting yt it uses only
the model with the highest value of wtjt�1;k. DMS allows for model switching: at each point in time it is possible that a
different model is chosen for forecasting.

Raftery et al. (2010) derived the following updating equation for DMA:

wtjt;k ¼
wtjt�1;kLk yt jy1:t�1

� �
PK

ℓ ¼ 1 wtjt�1;ℓLℓ yt jy1:t�1
� �; ð2Þ

where Lk yt jy1:t�1
� �

is the predictive likelihood, or the predictive density of yt for model mk evaluated at the realized value of
yt. The algorithm then produces the weights to be used in the following period by using a forgetting factor, α

wtþ1jt;k ¼
wα

tjt;kPK
ℓ ¼ 1 w

α
tjt;ℓ

: ð3Þ
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The forgetting factor, α, is specified by the user. Here we use α¼0.99, following Raftery et al. (2010). Thus, starting with
w0j0;k (for which we use the noninformative choice of w0j0;k ¼ 1

K for k¼ 1;‥;K), we can recursively calculate the key elements
of DMA: wtjt;k and wtjt�1;k for k¼ 1;‥;K .

Other techniques use large datasets in order to forecast quarterly GDP growth. Here we review three of them, to put DMA
into context. This paper is closely related to the optimal predictive pool proposed by Geweke and Amisano (2010, 2011).
More recently, Del Negro et al. (2014) considered dynamic prediction pools and developed a methodology for estimating
time-varying weights in optimal prediction pools. This technique presents the important advantage that it does not operate
under the assumption that one of the models considered is correct. It is, however, computationally intensive and so can be
applied only to a limited number of models.

Dynamic factor models are based on the idea that a few unobserved common factors are able to capture the essential
information in a large cross-section of time-series, and they play a major role in forecasting/nowcasting quarterly real GDP
growth; see for example Stock andWatson (1989) and Stock et al. (2012). They are also used to nowcast GDP growth in real time,
as new releases of data become available; see for example Giannone et al. (2008). The results are sometimes harder to interpret
than in the case of DMA, where each variable (or group of variables) can be singled out and its effect and importance analyzed
individually. The two approaches are not incompatible, as factors can be used as potential regressors in DMA.

Large Bayesian vector autoregressive models have also been successfully applied to large datasets and are routinely used
in policy institutions (Banbura et al., 2010). They have the advantage of easy estimation and computation of conditional and
unconditional forecasts. However, they normally require very tight priors when used on large datasets, and specifying the
priors is still something of an art despite recent progress (Giannone et al., 2015).

All these techniques have advantages and disadvantages, and the choice should depend on the forecast of interest. Model
averaging emphasizes model uncertainty and structural change and may be preferred when assessing which variables are
important in a regression and how this importance evolves over time. In the rest of the paper our benchmark will be DMA,
to emphasize the role of the Dynamic Occam's Window.

3. Dynamic Occam's window

When many potential regressors are considered, the number of models is too large to be tractable. However, typically
most of the models contribute little to the forecast, as their weights are close to zero. These include for example highly
misspecified models, which must be kept while carrying out DMA, despite their poor performance, only to calculate Eq. (2).

We propose a heuristic aiming at eliminating most of these low probability models from the computation, while being
able to “resurrect” them when needed. This is an extension of the Occam's Window method of Madigan and Raftery (1994),
in which model averaging is based only on the models whose posterior model probability is greater than some multiple C of
the highest model probability. (Madigan and Raftery, 1994 used C¼1/20, while subsequent implementations have used
lower values.)

We now extend Occam's Window to the dynamic context. Our Dynamic Occam's Window (DOW) method is based on
two implicit assumptions:
1.
 We dispose at the initial time of a valid population of models.

2.
 Models do not change too fast over time: the relevant models at each time are relatively close (in an appropriately

defined “neighborhood”) to those at the preceding time.

We believe these assumptions are reasonable in typical problems of macroeconomic analysis. If verified, they allow the
exploration of the space of models in a parsimonious and efficient way.

3.1. Forecast, Expand, Assess, Reduce: the FEAR algorithm

We propose to implement Occam's window on currently used models and keep for future use only those that perform
sufficiently well relative to the best performer. Call the current set of models M0ðtÞ, and renormalize their current weights,
wtjt;k, so that they sum to 1 over the current set of models, i.e. so that

P
k:mk AM0ðtÞwtjt;k ¼ 1. After choosing a threshold

CAð0;1�, we keep for future use the models mkAM0ðtÞ that fall in Occam's window, namely those in the set

mk:mkAM0ðtÞ;wtjt;kZCn max
ℓ:mℓ AM0ðtÞ

wtjt;ℓ

� �
: ð4Þ

The FEAR algorithm iterates over four steps: Forecasting, Expanding the set of models, Assessing them, and Reducing the
model set via Occam's window.

Initialization:
1.
 Divide the sample 1;…; T into an in-sample period 1;…; Tr and a pseudo out-of-sample period Trþ1;…; T .

2.
 Start with an initial population of models M0ðTrÞ and an initial set of weights wTr jTr ;k.
For t ¼ ðTrÞþ1;…; T:
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1.
the
(Forecast) Use the models in M0ðt�1Þ and the weights wtjt�1;k to perform model averaging as in Raftery et al. (2010),
obtaining the forecast distribution pðyt jy1:t�1;M0ðt�1ÞÞ. We call this the reduced DMA forecast, or DMA-R, because it is
obtained with the smaller model population inherited from the previous period.
2.
 (Expand) Expand M0ðt�1Þ to a larger population of models M1ðtÞ, including all mkAM0ðt�1Þ and all their “neighboring”
models. We define neighboring models as models derived from any model mAM0ðt�1Þ by adding or removing a
regressor, but different definitions are possible. We call this the expanded DMA forecast, or DMA-E, because it is obtained
with the expanded model population. Both DMA-R and DMA-E are based on past information and do not include current
information.
3.
 (Assess) Upon observing yt, compute the weights wtjt;k for all mkAM1ðtÞ, and normalize them to sum to 1 over M1ðtÞ.

4.
 (Reduce) Define the final population of models for time t, M0ðtÞ, as those in M1ðtÞ that are in Occam's Window, namely

M0ðtÞ ¼ fmkAM1ðtÞ:wtjt;kZCnmaxℓ:mℓ AM1ðtÞ wtjt;ℓg.

3.2. Computational issues

We now explain why Dynamic Occam's Window allows the exploration of large model spaces that would not be possible
otherwise.

We define, somewhat imprecisely but as a rough reference, a Notional Unit of Computation (NUC) as a basic operation of
estimation. Since we are concentrating on computability, we consider broadly equivalent (one NUC) one OLS estimation, one
period estimation of a Kalman filter, and in general each operation involving at least a matrix inversion. Using this loosely
defined but quite general metric, we compare the DOW method with a DMA that exhaustively explores the space of models.
Let J be the number of candidate explanatory variables, T be the number of time points for which we have data, and N be the
number of models in Occam's window (a subset of the K possible regression models).

DMA with all models has approximate computational cost

NUCDMA ¼ 2J
nT ; ð5Þ

because all the potential models need to be estimated once per period.
The DOW method reduces the number of models to be evaluated but changes the population dynamically. It is therefore

necessary to re-estimate each model from the beginning each time. Its computational cost is thus approximately that of
estimating about

NUCDOW ¼ ðTþ1ÞnT
2

nN ð6Þ

different models, where N is the average number of models evaluated at each time point. The role of the average number of
models N is explored in Section 5. In particular, we will consider versions of the DOW method where the number of models
at each time point is constrained not to exceed a given upper limit, in which case N is effectively specified by the user.

The DOW method allows gains in speed when NUCDOWoNUCDMA, or

No2n
2J

ðnTþ1Þ: ð7Þ

To illustrate, consider the case where T¼45, J¼30, and N¼10,000. Then

NUCDOW

NUCDMA
¼ 10:350:000
48:318:382:080

¼ 0:02%; ð8Þ

and so the DOW method is about 5000 times faster in this case.
Fig. 1 shows the relationships (5) and (6). The computational complexity of the DOW method grows quadratically with

the length of the available series T, while that of DMA grows only linearly in T but increases exponentially in the number of
regressors J. Above 15-20 regressors the DOW method is always more efficient computationally. This is particularly true
when the time series are relatively short, since longer series imply a higher number of estimations for each model in the
case of Occam's window.

4. An economic application: forecasting GDP growth in the Euro area in the great recession

4.1. Data

We apply the DOW method to nowcasting GDP growth in the euro area. This problem is particularly difficult because
there are many candidate explanatory variables (large J) but most of them cover a short time span (small T). We use
quarterly (or converted to quarterly) series available from 1997, and we describe our source data in Table 1.1 Abstracting
1 We use quarterly data or data at higher frequency. Higher frequency stock data are converted to quarterly data by taking the last observation (for example
last month in a quarter); as a robustness check we also experimented with averages, obtaining very similar results. Flow data are always averages.



Fig. 1. Computing time: The number of Notional Units of Computation, or NUC (vertical axis), plotted against the data length and the number of regressors.
The blue area refers to the DOW method, the red area to DMA. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Table 1
Variables used in the Euro Area GDP growth forecasting area application.

Code Variable Transformation Data
source

hicp Euro area – HICP, Eurostat Annual growth
rate

Eurostat

hicpx Euro area – HICP excl. unprocessed food an energy, Eurostat Annual growth
rate

Eurostat

ppi Euro area – Producer Price Index, domestic sales, Total Industry (excluding construction) – Neither
seasonally nor working day adjusted

Annual growth
rate

Eurostat

unemp Euro area – Standardized unemployment, Rate, Total (all ages), Total (male and female), percentage of
civilian workforce

Level Eurostat

ip Euro area – Industrial Production Index, Total Industry (excluding construction) – Working day adjusted, not
seasonally adjusted

Annual growth
rate

Eurostat

l1 to l5 Euro area – Gross domestic product at market price, Chain linked, ECU/euro, Working day and seasonally
adjusted

Annual growth
rate

Eurostat

spfgdp2 Survey Professional Forecasters; Forecast topic: Real GDP growth; Point forecast Annual growth
rate

ECB

spfgdp2_var Survey Professional Forecasters; Forecast topic: Real GDP growth; Variance of Point forecast Variance ECB
pmi_e PMI employment Level Markit
pmi_ord PMI new orders Level Markit
pmi_y PMI output Level Markit
x_oil Brent crude oil 1-month Forward – fob (free on board) per barrel – Historical close, average of observations

through period - Euro
Annual growth
rate

ECB

x_rawxene Euro area, ECB Commodity Price index Euro denominated, import weighted, Total non-energy commodity Annual growth
rate

ECB

x_neer Nominal effective exch. Rate Annual growth
rate

ECB

xusd Exchange Rates; Currency: US dollar; Currency denominator: Euro; Exchange rate type: Spot Annual growth
rate

ECB

i_short Euro area – Money Market – Euribor 1-year – Historical close, average of observations through period - Euro Level Reuters
i_long Euro area – Benchmark bond – Euro area 10-year Government Benchmark bond yield – Yield – Euro Level ECB
m3 Euro Area – Monetary aggregate M3, All currencies combined – Working day and seasonally adjusted Annual growth

rate
ECB

spread Government bond, nominal yield, all issuers whose rating is triple A (less) Government bond, yield nominal,
all issuers all ratings included

Level ECB

stress Composite Indicator of Systemic Stress; Euro area ; Systemic Stress Composite Indicator Level ECB
risk_eb Euro area, Financial market liquidity indicator: Foreign currency, equity and bond markets Level ECB
risk_tot Euro area, Financial market liquidity indicator: Composite indicator Level ECB
risk_glob Euro area, Financial market liquidity indicator: Global risk aversion indicator Level ECB
risk_mon Euro area, Financial market liquidity indicator: Money market Level ECB
stox Dow Jones Eurostoxx 50 Index – Historical close, average of observations through period Annual growth

rate
Reuters

domcred Euro area, Loans [A20] and securities [AT1], Total maturity, All currencies combined – Working day and
seasonally adjusted

Annual growth
rate

ECB

L. Onorante, A.E. Raftery / European Economic Review 81 (2016) 2–146
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from minor differences in publication dates, there are two main nowcasts that a forecaster may perform, depending on
whether or not the preceding quarter figure for GDP is available. For simplicity of exposition, we focus on the case when the
past quarter is already available. Our nowcasts will be based on an information set comprising past GDP growth and current
indicators.

The need to use timely indicators largely dictates the choice of potential regressors, but most sectors and economic
concepts are well covered. Our indicators include domestic prices (HICP, HICP excluding food an energy and producer
prices), cycle indicators (unemployment rate, industrial production, lags of GDP), expectations (mean and dispersion of two-
year-head SFP forecasts for GDP, PMI for employment, orders and output), prices of commodities (oil prices, non-energy
commodity prices), exchange rates (nominal effective exchange rate, EUR/USD exchange rate), monetary policy variables
(short and long interest rates, M3), financial variables (spread between interest rate on bonds of AAA states and average
interest rate on bonds, Dow Jones Eurostoxx index, domestic credit). Given the relevance of uncertainty to the
macroeconomic developments included in our sample, we also include potential macroeconomic risk indicators (Composite
Indicator of Systemic Stress, Risk Dashboard data on banking, total, global and monetary factors).

All variables are in year-on-year growth rates, with the exception of interest rates and indicators. The target variable in
our forecasting exercises is the year-on-year GDP growth rate. As a result, at least four lags of the independent variable must
be included as potential regressors; we use five to account for potential autocorrelation in the residuals. This may be
overcautious, but unnecessary lags will be selected away in the model averaging. The possibility of adding regressors but
discarding them adaptively if they are unnecessary is one of the advantages of our methodology.

In order to concentrate on the effects of the proposed DOW method, we simplify the method of Raftery et al. (2010)
slightly, and estimate each model recursively but with fixed parameters. We choose this setup because Koop and Korobilis
(2012) have shown that DMA is a good substitute for time varying parameters, and we want to concentrate on the
advantages of the DOW method alone in accounting for model changes. DMA is performed as in Raftery et al. (2010), using a
discount factor set at α¼0.99.
4.2. Forecasting performance

Fig. 2 shows that the DOW method had a satisfactory nowcasting performance overall, even in the presence of turning
points. The accuracy of the method, as expected, increased with the amount of available data. The 95% prediction intervals
take into account both the within and between model uncertainty.

The difficult episode of the recession in 2008–2009 was well captured by DMA. The forecast slightly underpredicted in
the trough, but it immediately recovered and became quite accurate in the aftermath of the crisis.

Table 2 compares the forecasting performance in a pseudo-real time exercise. Practically all the indicators we use are
seldom or never revised, the main difference with a real time forecasting exercise being the fact that we use the latest
available vintage for GDP. The pseudo out-of-sample period ranges from 2003q1 until 2014q1.

We use as evaluation metrics: the Root Mean Squared Forecast Error (RMSE), the Mean Average Forecast Error (MAE) and
the Maximum Forecast Error (MAX), expressed as ratios relative to the random walk benchmark; the average log score
differential (LLIK); and the average continuous ranked probability score differential (ACPRS) (Gneiting and Raftery, 2007).
For RMSE, MAE and MAX, smaller is better, while for LLIK and ACRPS, bigger is better.

The DMA-R forecast is based on the smaller population of modelsM0 and compares favorably with simple benchmarks. It
beats the simple random walk and a standard ARð2Þ model by a wide margin. We recall that the forecast DMA-R is based on
Fig. 2. Forecasting Euro Area GDP growth Using DMA with the DOW Method: nowcasts and 95% prediction intervals.



Table 2
Forecasting performance of different forecasting methods.

Metric RW AR2 DMA-R DMA-E DMS-R DMS-E

RMSE 1 0.8755 0.5154 0.5072 0.5183 0.5644
MAE 1 0.8922 0.5673 0.5595 0.5837 0.6377
MAX 1 1.0721 0.4872 0.4774 0.4606 0.4606
LLIK 0 0.1884 0.6682 0.6622 0.5395 0.4103
ACPRS 0 0.0006 0.0023 0.0023 0.0022 0.0019

Note: Methods: RW¼Random walk model; AR2¼second-order autoregressive model; DMA-R¼reduced DMA method; DMA-E¼expanded DMA method;
DMS-R¼reduced DMS method; DMS-E¼expanded DMS method.
Metrics: RMSE¼root mean squared error; MAE¼mean absolute error; MAX¼maximum absolute error; LLIK¼average log score differential;
ACPRS¼average continuous ranked probability score differential. For RMSE, MAE and MAX, smaller is better, while for LLIK and ACRPS, bigger is better.
The best method by each metric is shown in bold font.
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past GDP and recent information on the indicator variables.
Forecasts computed using the extended population of models M1 are reported as DMA-E. The results are very close to

those of DMA-R. When there are differences in the assessment, these are not sizeable and completely disappear if a
sufficient size for population M0 is allowed. Intuitively, the population M1 has the advantage of always including all
regressors in its models and as a consequence it should react more quickly to model changes. On the other hand its forecast
is slightly more noisy due to the presence of additional models. The two effects basically cancel out. DMA-R uses many fewer
models than DMA-E and so may be preferred to DMA-E on the grounds of simplicity, ease of interpretation and
computational efficiency.

In most cases DMA beats the corresponding forecast computed with DMS, although by a small margin, corroborating the
common finding that model averaging can beat even the best model in the pool.

Following Koop and Korobilis (2012), we tried additional benchmarks. These included a single time-varying parameter
model including all regressors, and a single Bayesian ordinary least squares model with all regressors. However, these
models performed poorly as their estimated paramaters were unstable.
4.3. Variable posterior inclusion probabilities

An important value added of model averaging (beyond the good forecasting performance) is the posterior inclusion
probabilities of each regressor and their evolution. DMA identifies the importance of single variables and how this varies
over time, which helps interpretation. The posterior inclusion probability of a variable at a given time point is calculated by
summing the posterior probabilities of the models that use that variable as a regressor. Thus they vary between 0 and 1 and
give a measure of the importance of that regressor at the given time point. Their evolution in time is summarized in Figs. 3
and 4.

The posterior inclusion probabilities identify which were the most useful indicators of real activity and how this changed
over time. In more detail:
�
 Lags of GDP were, as expected, important overall. The first lag captures the persistence in GDP, and it remained important
even during the crisis, when GDP showed pronounced swings. The fourth and fifth lag capture essentially base effects.
Our decision to include lag 5 as a potential regressor turned out to be justified.
�
 Among the consumer price variables, HICP was an important regressor over most of the sample. This confirms the idea
that prices and output are not determined in isolation. Without extending our interpretation to the existence of a
European Phillips curve, we notice that this confirms the results for the euro area recently obtained by Giannone et al.
(2014).
�
 Among the early indicators of real activity, industrial production was the most important. This is a well known result in
nowcasting, where industrial production is widely used as a timely and already comprehensive subset of GDP. The role of
unemployment changed over time, becoming more important in the aftermath of the crisis.
�
 DMA selected GDP surveys as overall important over the sample, with the exception of the period immediately following
the 2008 crisis, which the surveys failed to capture adequately. This confirms the literature on nowcasting inflation
(Ang et al., 2007), arguing that surveys have nowcasting power, thereby supporting the importance of expectations in
determining macroeconomic outcomes.
�
 No single external variable alone had a determinant role. This is possibly due to the relative compactness of the euro
area. Variables traditionally important in determining prices, such as oil and commodity prices or the exchange rate,
appear to have had a limited impact on real GDP. We find this result interesting but not surprising, given that these
variables mostly affect prices, and affect GDP only indirectly.
�
 Among the variables closer to the operation of monetary policy, interest rates progressively lost their importance in the
credit constrained post-crisis period, while the monetary variable M3 had an increasing role, possibly highlighting the
importance of liquidity in the recent part of the sample.



Fig. 3. Euro Area GDP growth: Posterior inclusion probabilities of variables over time: black above 20%, red above 50%. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Euro Area GDP growth: Posterior inclusion probabilities of single variables over time.
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Fig. 5. Euro Area GDP growth: Posterior means of regression coefficients over time under DMA.
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�
 Risk and stress indicators were useful predictors of GDP. Overall risk indicators seemed to matter before the crisis, in
particular the indicator of global risk. The stress indicator was important during the crisis.
�
 Finally, stock market developments did not seem to be a very useful predictor, while (lack of) domestic credit was overall
important during the crisis.
Koop and Onorante (2014) carried out a similar analysis of inflation. They used DMA on a similar dataset, but they
explored the whole model space, which limited the number of predictor variables they could use. Comparing their results
with ours, it is apparent that the determinants of GDP growth were fairly similar to those of inflation. In particular, variables
representing expectations are important predictors, with the exception of 2008–2009 at the beginning of the crisis period.

A natural complement to the results above is the posterior mean of the coefficient of each variable. These are shown in
Fig. 5. While posterior inclusion probabilities provide important information about which variables should be included in
the regressions at each point in time, they do not specify the size of their effect, and even a variable with a very high
posterior inclusion probability may have a small overall impact on GDP. The posterior means are averages over models at
each point in time, and so vary over time.
5. Sensitivity analysis

We now assess the performance of the DOW method and how the performance changes with different specifications of
the algorithm. We assess its sensitivity to different initial conditions, different maximum numbers of models, and finally we
use a large and noisy database. We find that the method's performance is not very sensitive to these changes.
5.1. Initial conditions

The DOW method requires the specification of an initial set of models at the first time point. In our implementation we
used an initial set consisting of just one-variable models. In this section we check the sensitivity of the forecast to the choice
of the initial population of models.



Fig. 6. Euro Area GDP growth: Evolution of average model size starting from different initial model populations: one-variable models or 100 randomly
selected models of average size 8. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 3
Euro Area GDP growth: forecasting from an initial population of models of average size 8.

Metric RW AR2 DMA-R DMA-E DMS-R DMS-E

RMSE 1 0.8755 0.5283 0.5085 0.5644 0.5644
MAE 1 0.8922 0.573 0.5623 0.6377 0.6377
MAX 1 1.0721 0.4872 0.4774 0.4606 0.4606
LLIK 0 0.1884 0.6671 0.622 0.4103 0.4103
ACPRS 0 0.0006 0.0022 0.0021 0.0019 0.0019

Note: Methods: RW¼Random walk model; AR2¼second-order autoregressive model; DMA-R¼reduced DMA method; DMA-E¼expanded DMA method;
DMS-R¼reduced DMS method; DMS-E¼expanded DMS method.
Metrics: RMSE¼root mean squared error; MAE¼mean absolute error; MAX¼maximum absolute error; LLIK¼average log score; ACPRS¼average
continuously ranked probability score. The best method by each metric is shown in bold font.
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Fig. 6 reports the average number of variables included in the models. The same average size of models is a necessary
(although not sufficient) condition for convergence in populations of models, and it allows an easy graphic exploration of
convergence.

It appears that DMA favors models with about 7–8 variables, and thus that the initial population of models M0 is not
representative of the final models selected. Fig. 3 supports this finding by showing that the posterior inclusion probabilities
changed rapidly at the beginning of the period.

We test two very different initial conditions: (1) our baseline population of one-variable models only, and (2) a
population of 100 randomly selected models with eight variables each. Fig. 6 shows that beyond the few periods of
presample (in red) and a few initial points, the two initial populations gave comparable results in terms of model size.

The same holds for forecasting performance. Table 3 reports the forecasting performance of the alternative, random
initial population of models with average size 8. The results are very similar to those in Table 2, in which DMAwas initialized
with one-variable models only. Once again, the DMA methods outperformed the others considered.

5.2. Maximum number of models

A pure application of the Occam's window principle and of the FEAR algorithm would require keeping each model that
satisfies condition (4). This may sometimes lead to a relatively high number of models in the wider population M1, as this
population, generated from the Expand step of the algorithm, includes all possible neighbors of the preceding population
M0. The size of the latter, however, is controlled by the following Reduce step, where condition (4) is applied. Fig. 7 shows
the evolution of the size of population M0 over time.

The effort of the algorithm to find a stable population of models at the beginning is reflected in the high number of
models retained. It is important to note that we start our pseudo out-of-sample period after ten data points; as a result
many models are poorly estimated at first and their performance varies considerably. After a few periods, a stable
population has been found and it is progressively refined; as a result, the size ofM0 decreases rapidly. From this point on, the
FEAR algorithm increases the population size during turbulent times, for example during the Great Recession. Whenever the



Fig. 7. Euro Area GDP growth: The number of models over time in the reduced set of models, M0, in the Dynamic Occam's Window algorithm.
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forecast is less accurate and no model is clearly dominating, the algorithm “resuscitates” additional models in the attempt to
improve the forecast. Fig. 7 shows that this attempt is usually successful. Quiet periods are instead characterized by smaller,
decreasing model populations.

Finally, as the sample size increases and models including the best regressors are selected, the population size becomes
quite small (the last M0 had size 2350). Overall, the population M0, from which the baseline nowcast is generated, never
exceeded 100,000 models, while the wider M1 could be up to about ten times larger.

In the interest of computational speed, we introduced the possibility of specifying a maximum number of models N, and
we now experiment with this number in order to assess whether it implies a deterioration of the forecast. Fig. 8 reports the
nowcasting performance in relation to maximum model size N.

In our model space of 30 potential regressors, forecasting performance improved until the size of the population M0

reached about 10,000 models. Bigger model populations did not lead to any further improvement, as we have seen from the
unconstrained estimation. Constraints set at 50,000 or more on the maximum number of models were mostly not reached,
and thus provide results equivalent to Occam's window without a maximum number of models. We would of course still
recommend keeping the maximum number of models as high as possible, subject to computational constraints.

Fig. 8 also confirms that in our case DMA performed slightly better than DMS for any maximum number of models. This
is a robust result in the case of macroeconomic variables, but it cannot be generalized. Koop and Onorante (2014) and
Morgan et al. (2014), for example, have shown using Google searches as predictors that DMS performed better than DMA
in situations where the data were noisy and forecasting benefitted from excluding many regressors.

When looking at single regression parameters, we observe that convergence may be slower for parameters with low
posterior inclusion probabilities. For some specific parameters and posterior inclusion probabilities there are observable
convergence issues up to 50,000 models. The low-probability models containing these parameters do not affect the overall
forecast much, but when this more specific information is important, we would suggest increasing the maximum number of
models by one (or if possible two) orders of magnitude.

5.3. Adding many noisy regressors

Until now we have been using a standard, large-sized policy database, composed of “reasonable” regressors used in the
profession. As a robustness check we now introduce a very large database. Despite the large size of the data and the
noisiness of the database, the DOW delivers a good performance.

The enlarged database includes 60 variables (including the lags of GDP growth). We collected a large dataset for the Euro
Area and we did not select out any variable, thus leaving regressors that have no obvious relationship with output growth
either in theory or in forecasting practice.

This leads to two problems. First, a high quantity of “noise” relative to informative data has been shown to reduce the
accuracy of forecasts (Morgan et al., 2014 with Google indicators). While this problem is minimized in DMA because the
most significant regressors are selected and most others are assigned low weights, the same result needs to be shown to
hold for the DOW method. Second, a model space of 260 models can only be sparsely explored even when increasing the
maximum number of retained models. We want to show that both factors lead to only a small deterioration of the forecast;
for this reason, we keep the number of models in M0 to 10,000 as in the baseline scenario.



Fig. 8. Euro Area GDP growth nowcasting: Performance metrics relative to random walk, for different maximum numbers of models.

Table 4
Euro area GDP growth: forecasting from a population of 260 models.

Metric rw AR2 DMA-R DMA-E DMS-R DMS-E

RMSE 1 0.8755 0.5387 0.5317 0.5172 0.5635
MAE 1 0.8922 0.5832 0.5797 0.5835 0.6375
MAX 1 1.0721 0.5279 0.5163 0.4606 0.4606
LLIK 0 0.1884 0.6497 0.6492 0.5391 0.4108
ACPRS 0 0.0006 0.0022 0.0022 0.0022 0.0019

Note: Methods: RW¼Random walk model; AR2¼second-order autoregressive model; DMA-R¼reduced DMA method; DMA-E¼expanded DMA method;
DMS-R¼reduced DMS method; DMS-E¼expanded DMS method.
Metrics: RMSE¼root mean squared error; MAE¼mean absolute error; MAX¼maximum absolute error; LLIK¼average log score; ACPRS¼average
continuously ranked probability score. The best method by each metric is shown in bold font.
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The statistics in Table 4 show that, compared to the DMA where the full set of regressors considered was chosen by the
forecaster, there is only a small deterioration in forecasting performance. The performance of DMS also deteriorates due to
the frequent changes in the model chosen to forecast but improves slightly in relative terms.

This result suggests that, while it is still preferable to use expert judgement and theoretical guidance in the choice of
potential regressors, overall the DOW is quite robust to the introduction of many, noisy regressors, and can be applied to
wide datasets even without a previous selection of variables.

6. Discussion

We have proposed a new method for carrying out Dynamic Model Averaging when the model space is too large to allow
exhaustive evaluation, so that the original DMA method of Raftery et al. (2010) is not feasible. This method, based on
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Occam's window and called Dynamic Occam's Window (DOW), is particularly efficient when many time series of limited
length are available, as is typically the case in macroeconomics. Our procedure allows us to perform Dynamic Model
Averaging without considering the whole model space but using a subset of models and dynamically optimizing the choice
of models at each point in time.

We assessed the model in an important empirical application, nowcasting GDP in the euro area. We showed that the
forecasting performance was satisfactory compared to common benchmarks, and the computational burden was
substantially lower. Several sensitivity analyses confirm the robustness of our approach to the choice of the user-
specified control parameters.

There are several areas we left for future research. Additional sensitivity analyses could be useful, for example using
linear and non linear models, or data at higher frequency. Furthermore, a forecast comparison and a deeper analysis of the
pros and cons of DMA and other comparable techniques would help put this new method into broader context.
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