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ABSTRACT

Bayesian model averaging (BMA) is a statistical way of postprocessing forecast ensembles to create
predictive probability density functions (PDFs) for weather quantities. It represents the predictive PDF as
a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are
posterior probabilities of the models generating the forecasts and reflect the forecasts’ relative contributions
to predictive skill over a training period. It was developed initially for quantities whose PDFs can be
approximated by normal distributions, such as temperature and sea level pressure. BMA does not apply in
its original form to precipitation, because the predictive PDF of precipitation is nonnormal in two major
ways: it has a positive probability of being equal to zero, and it is skewed. In this study BMA is extended
to probabilistic quantitative precipitation forecasting. The predictive PDF corresponding to one ensemble
member is a mixture of a discrete component at zero and a gamma distribution. Unlike methods that predict
the probability of exceeding a threshold, BMA gives a full probability distribution for future precipitation.
The method was applied to daily 48-h forecasts of 24-h accumulated precipitation in the North American
Pacific Northwest in 2003–04 using the University of Washington mesoscale ensemble. It yielded predictive
distributions that were calibrated and sharp. It also gave probability of precipitation forecasts that were
much better calibrated than those based on consensus voting of the ensemble members. It gave better
estimates of the probability of high-precipitation events than logistic regression on the cube root of the
ensemble mean.

1. Introduction

A number of existing methods generate probabilistic
precipitation forecasts based on deterministic forecasts.
Regression techniques such as model output statistics
(MOS) can be used to generate probabilities of exceed-
ing thresholds (Glahn and Lowry 1972; Klein and
Glahn 1974; Bermowitz 1975; Charba 1998; Antolik
2000), or to generate quantiles of expected precipita-
tion (Bremnes 2004; Friederichs and Hense 2007). Ap-
plequist et al. (2002) found that logistic regression can
outperform standard regression, and Hamill et al.
(2004) found that this can be further refined by using
logistic regression on power-transformed forecasts.

These methods, however, do not yield a full predic-
tive probability density function (PDF); rather, they
give only probabilities for certain specific events. They
also do not make use of all the information available in

an ensemble forecast. Ensemble forecasts can give an
indication of uncertainty, and a relationship between
forecast errors and ensemble spread has been estab-
lished for several ensemble systems (Buizza et al. 2005).
Anderson (1996) suggested using the ensemble mem-
ber forecasts to partition the real line into a series of
bins, assuming each bin to be an equally likely range of
possible outcomes, and probabilities uniformly distrib-
uted within the inner bins. Hamill and Colucci (1998)
noted that this approach is not well calibrated, with far
too many observations appearing at the extreme bins.
They proposed an alternative method, fitting gamma
distributions with parameters based on corrected en-
sembles or transformations of the ensemble mean.
While they reported good results, it is not obvious how
to obtain calibrated probability of precipitation (PoP)
forecasts using this approach.

Bayesian model averaging (BMA) was introduced by
Raftery et al. (2005) as a statistical postprocessing
method for producing probabilistic forecasts from en-
sembles in the form of predictive PDFs. The BMA pre-
dictive PDF of any future weather quantity of interest is
a weighted average of PDFs centered on the individual
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bias-corrected forecasts, where the weights are equal to
posterior probabilities of the models generating the
forecasts and reflect the forecasts’ contributions to
overall forecasting skill over a training period. The
original development of BMA by Raftery et al. (2005)
was for weather quantities whose predictive PDFs are
approximately normal, such as temperature and sea
level pressure.

BMA in the form described by Raftery et al. (2005)
does not apply directly to precipitation. This is because
the predictive distribution of precipitation is far from
normal. It is nonnormal in two major ways: it has a
positive probability of being equal to zero, and when it
is not zero the predictive density is skewed. Here we
extend BMA to precipitation by modeling the predic-
tive distribution for a given ensemble member as a mix-
ture of a point mass at zero and a gamma distribution;
the BMA PDF is then itself a mixture of such distribu-
tions. In our experiments we show that BMA was cali-
brated and sharp for the period we considered. This
indicates that BMA has the potential to provide both
calibrated PoP forecasts, and calibrated and sharp pro-
babilistic quantitative precipitation forecasts (PQPFs).

In section 2 we review the BMA technique and de-
scribe our extension of it to precipitation. Then in sec-
tion 3 we give results for daily 48-h forecasts of 24-h
accumulated precipitation over the North American
Pacific Northwest in 2003–04 based on the nine-
member University of Washington mesoscale ensemble
(Grimit and Mass 2002; Eckel and Mass 2005), and as-
sociated verifying observations. Throughout the paper
we use illustrative examples drawn from these data.
Finally, in section 4 we discuss possible improvements
to the method.

2. Methods

a. BMA

BMA (Leamer 1978; Kass and Raftery 1995; Hoeting
et al. 1999) was originally developed as a way to com-
bine inferences and predictions from multiple statistical
models, and was applied to statistical linear regression
and related models in social and health sciences. Raf-
tery et al. (2005) extended BMA to ensembles of dy-
namical models and showed how it can be used as a
statistical postprocessing method for forecast en-
sembles, yielding calibrated and sharp predictive PDFs
of future weather quantities.

In BMA for ensemble forecasting, each ensemble
member forecast fk is associated with a conditional PDF
hk(y | fk), which can be thought of as the PDF of the
weather quantity y given fk, conditional on fk being the

best forecast in the ensemble. The BMA predictive
PDF is then

p�y | f1, . . . , fK� � �
k�1

K

wkhk�y | fk�, �1�

where wk is the posterior probability of forecast k being
the best one, and is based on forecast k’s relative per-
formance in the training period. The wk’s are probabili-
ties and so they are nonnegative and add up to 1, that
is, �K

k�1 wk � 1. Here K is the number of ensemble
members.

b. Discrete–continuous model

For temperature and sea level pressure, the condi-
tional PDF can be fit reasonably well using a normal
distribution centered at a bias-corrected forecast, as
shown by Raftery et al. (2005). For precipitation, how-
ever, the normal distribution is not appropriate. Figure
1 illustrates the distribution of precipitation accumula-
tion among the verifying observations in our database
of ensemble forecasts over the Pacific Northwest in
2003 and 2004, stratified by the accumulation amount
predicted by the centroid member (Eckel and Mass
2005) of the forecast ensemble. These histograms show
two important aspects of the distribution of precipita-
tion. First, accumulated precipitation was zero in a large
number of cases. Second, for the cases in which the
accumulated precipitation was not zero, the distribu-
tions were highly skewed. The normal distribution does
not fit data of this kind, and to extend BMA to precipi-
tation we must develop a model for the conditional
PDF hk(y | fk) in (1) that takes account of these facts.

Our model for hk(y | fk) is in two parts. The first part
specifies PoP as a function of the forecast fk. We follow
Hamill et al. (2004) in using logistic regression with a
power transformation of the forecast as a predictor
variable. Hamill et al. (2004) recommended using the
fourth root of the forecast as a predictor variable, but
we found that using the cube root was adequate. All
else being equal, it seems desirable to use a predictor
variable that is as close to the original forecast as pos-
sible, and the cube root is closer than the fourth root,
and so is preferable if its performance is adequate. We
found that this model did not provide the best possible
predictions when the forecast was equal to zero, and so
we included a second predictor �k, equal to 1 if fk � 0
and equal to 0 otherwise. Our logistic regression model
then is

logitP�y � 0 | fk� � log
P�y � 0 | fk�

P�y � 0 | fk�

� a0k � a1kf k
1�3 � a2k�k . �2�
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The probability P(y � 0 | fk) is the probability of non-
zero precipitation given the forecast fk, if fk is the best
ensemble member forecast for that day.

The second part of our model specifies the PDF of
the amount of precipitation given that it is not zero.
Previous authors have fit gamma distributions to pre-
cipitation amounts (Coe and Stern 1982; Stern and Coe
1984; Wilks 1990; Hamill and Colucci 1998; Wilson et
al. 1999) as they can fit skewed data and are quite flex-
ible, and we also took the gamma distribution as our
starting point. The gamma distribution with shape pa-
rameter 	 and scale parameter 
 has the PDF

g�y� �
1

������
y��1 exp��y���

for y � 0, and g(y) � 0 for y � 0. The mean of this
distribution is � � 	
, and its variance is 2 � 	
2. We
found that fitting gamma distributions to the raw ob-
served accumulation amounts did not give an especially
good fit. We found the same issues with high values
being fit poorly that Hamill and Colucci (1998) re-
ported. In light of this, rather than fitting the gamma
distribution to the observed precipitation amounts
themselves, we fit the gamma distribution to powers of

FIG. 1. Histograms of observed precipitation accumulation for cases in which the centroid member forecast of
precipitation was (a) zero, (b) between 6.4 and 9.6 hundredths of an inch, and (c) greater than 0.0594 in., and (d)
all cases.
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the observed values. We found that the best fit was
achieved when the gamma distribution was fit to the
cube root of the observed precipitation amounts.

It remains to specify how the parameters of the
gamma distribution depend on the forecast. We found
that the mean of the fitted gamma distribution of the
cube root of precipitation was approximately linear as a
function of the cube root of the forecasted accumula-
tion. We also found that the variance of the fitted
gamma distribution was approximately linear as a func-
tion of the forecast.

Putting these components together, we get the fol-
lowing model for the conditional PDF of precipitation
accumulation, given that forecast fk is best:

hk�y | fk� � P�y � 0 | fk�I �y � 0�

� P�y � 0 | fk�gk�y | fk�I �y � 0�,

where y is the cube root of the precipitation accumula-
tion, the general indicator function I[] is unity if the
condition in brackets holds and zero otherwise, and
P(y � 0 | fk) is specified by (2). The conditional PDF
gk(y | fk) of the cube root precipitation amount y given
that it is positive is a gamma distribution with PDF

gk�y | fk� �
1

�k
�k���k�

y�k�1 exp��y��k�.

The parameters of the gamma distribution depend on
the original forecast fk through the relationships

�k � b0k � b1kf k
1�3

and

	k
2 � c0k � c1kf k, �3�

where �k � 	k
k is the mean of the distribution, and
2

k � 	k
2
k is its variance.

c. BMA for discrete–continuous models

For the variances, we observed that the parameters
c0k and c1k in (3) did not vary much from one model to
another, and so we restricted the variance parameters
to be constant across all ensemble members. This sim-
plifies the model by reducing the number of parameters
to be estimated, makes parameter estimation computa-
tionally easier, and reduces the risk of overfitting. It is
analogous to the assumption of equal variances in Raf-
tery et al. (2005).

Our final BMA model (1) for the predictive PDF of
the weather quantity, y—here the cube root of precipi-
tation accumulation—is thus

p�y | f1, . . . , fK � � �
k�1

K

wk �P�y � 0 | fk�I �y � 0�

� P�y � 0 | fk�gk�y | fk�I �y � 0��, �4�

where wk is the posterior probability of ensemble mem-
ber k being best, fk is the original forecast from this
member,

logitP�y � 0 | fk� � a0k � a1k f k
1�3 � a2k�k ,

where �k is equal to 1 if fk � 0 and equal to 0 otherwise,
and

gk�y | fk� �
1

�k
�k���k�

y�k � 1 exp��y��k�.

The parameters 	k � �2
k /2

k and 
k � 2
k /�k of the

gamma distribution depend on fk through the relation-
ships

�k � b0k � b1k f k
1�3

and

	k
2 � c0 � c1 fk ,

which specify the mean and the variance of the distri-
bution, respectively. While (4) is stated in terms of the
cube root of the precipitation amount, it is easy to ex-
press the resulting probability statements in terms of
the original amounts.

d. Parameter estimation

Parameter estimation is based on data from a train-
ing period, which we take here to be the N days of
forecast and verifying observation data preceding ini-
tialization, following Raftery et al. (2005). The training
period is a sliding window, and the parameters are re-
estimated for each new initialization period. The re-
quired data consist of forecast–observation pairs from a
collection of observation sites for each of the ensemble
members.

To assess the length of the training period, we com-
puted the average continuous ranked probability score
(CRPS) for the probabilistic forecasts and the mean
absolute errors (MAE) of the resulting deterministic
forecasts, for each of a set of possible training period
lengths, N � 15, 20, . . . , 50. The results are shown in
Fig. 2. It is clear that making the training period longer
leads to improved forecasts up to 30 days, but that in-
creasing it beyond that does not yield any further im-
provement. As a result, we used a training period of
length N � 30 days.
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The parameters a0k, a1k, and a2k are member specific,
and they are determined separately for each ensemble
member, using the forecasts from that ensemble mem-
ber only and the associated verifying observations.
They are estimated by logistic regression with precipi-
tation/no precipitation as the dependent variable, and
f 1/3

k and �k as the two predictor variables.
The parameters b0k and b1k are also member specific,

and they are determined by linear regression with the
nonzero precipitation observations as cases, the cube
root of the amount of precipitation as the dependent

variable, and the cube root of the forecasted accumu-
lation amount as the predictor variable.

We estimate wk, k � 1, . . . , K; c0; and c1 by the
maximum likelihood technique (Fisher 1922) from the
training data. The likelihood function is defined as the
probability of the training data given the parameters to
be estimated, viewed as a function of the parameters.
The maximum likelihood estimator is the value of the
parameter vector that maximizes the likelihood func-
tion, that is, the value of the parameter vector under
which the observed data were most likely to have been
observed.

It is convenient to maximize the logarithm of the
likelihood function (or log-likelihood function) rather
than the likelihood function itself, for reasons of both
algebraic simplicity and numerical stability; the same
parameter value that maximizes one also maximizes the
other. Assuming independence of forecast errors in
space and time, the log-likelihood function for the
BMA model (4) is

��w1, . . . , wK ; c0; c1� � �
s, t

logp�yst | f1st , . . . , fKst�,

�5�

where the summation is over values of s and t that index
observations in the training set by space and time, and
p(yst | f1st, . . . , fKst) is given by (4), with subscripts s and
t added to y and fk. This cannot be maximized analyti-
cally, and instead we maximize it numerically using the
expectation–maximization (EM) algorithm (Dempster
et al. 1977; McLachlan and Krishnan 1997).

The EM algorithm is a method for finding the maxi-
mum likelihood estimator when the problem can be
recast in terms of unobserved quantities such that, if we
knew what they were, the estimation problem would be
straightforward. The BMA model (4) is a finite mixture
model (McLachlan and Peel 2000). Here we introduce
the unobserved quantities zkst, where zkst � 1 if en-
semble member k is the best forecast for verification
site s and time t, and zkst � 0 otherwise. For each (s, t),
only one of {z1st, . . . , zKst} is equal to 1; the others are
all zero.

The EM algorithm is iterative, and alternates be-
tween two steps, the expectation (E) step, and the
maximization (M) step. It starts with an initial guess for
the parameters. In the E step, the zkst are estimated
given the current guess for the parameters; the esti-
mates of the zkst are not necessarily integers, even
though the true values are 0 or 1. In the M step, the
parameters are reestimated given the current values of
the zkst.

FIG. 2. Comparison of training period lengths: (a) CRPS of
BMA forecasts and (b) MAE of BMA deterministic forecasts.
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For the BMA model (4), the E step is

ẑkst
� j�1� �

wk
� j�p� j��yst | fkst�

�
l�1

K

wl
� j�p� j��yst | flst�

,

where the superscript j refers to the jth iteration of the
EM algorithm, and thus w( j)

k refers to the estimate of wk

at the jth iteration, and p(j)(yst | fkst) is p(yst | fkst) as de-
fined in (4), using the estimates of c0 and c1 from the jth
iteration. The M step then consists of estimating the wk,
c0, and c1 using as weights the current estimates of zkst,
namely, ẑ( j�1)

kst . Thus

wk
� j�1� �

1
n �

s, t

ẑkst
� j�1�,

where n is the number of cases in the training set, that
is, the number of distinct values of (s, t). There are no
analytic solutions for the maximum likelihood esti-
mates of the parameters c0 and c1, and so they must be
estimated numerically by optimizing (5) using the cur-
rent estimates of the wk parameters.

The E and M steps are then iterated to convergence,
which we defined as changes no greater than some
small tolerances in any of the log-likelihood, the
parameter values, or the ẑ( j)

kst in one iteration. The log-
likelihood is guaranteed to increase at each EM itera-
tion (Wu 1983), which implies that in general it con-

verges to a local maximum of the likelihood. Conver-
gence to a global maximum cannot be guaranteed, so
the solution reached by the algorithm can be sensitive
to the starting values. Choosing the starting value for
day t � 1 to be equal to the converged estimate for day
t usually leads to a good solution.

e. Examples

To illustrate how the method works, we show two
examples. Our first example is on 19 May 2003, at sta-
tion KCLM in Port Angeles, Washington. Table 1
shows the raw ensemble forecasts, the logistic regres-
sion PoP results, the BMA results, and the verifying
observation. The probability of exceeding a given
amount is given in Fig. 3 by the proportion of the area
under the upper curve (BMA PDF) to the right of it,
multiplied by 1 � PoP, that is, by the height of the thick
vertical line at zero.

All nine ensemble members predicted no rain, but it
actually did rain. The BMA predictive PDF is shown in
Fig. 3a; the observation was below the BMA 90th per-
centile upper bound, which is shown as a dashed verti-
cal line, and so was within the BMA 90% prediction
interval.

Our second example is on 26 January 2003, at station
KPWT in Bremerton, Washington. Again, Table 1
shows the raw ensemble forecasts, logistic regression

TABLE 1. Raw ensemble, logistic regression PoP, and BMA forecasts for two example stations. The quantitative precipitation
forecasts and observations are given in hundredths of an inch. Descriptions of the University of Washington ensemble can be found in
Eckel and Mass (2005). CENT is the ensemble centroid, AVN is the Global Forecast System from the National Centers for Environ-
mental Prediction (NCEP), CMCG is the Global Environmental Multi-scale from the Canadian Meteorological Centre, ETA is the
limited-area mesoscale model from NCEP, GASP is the Global Analysis and Prediction Model from the Australian Bureau of
Meteorology, JMA is the Global Spectral Model from the Japan Meteorological Agency, NGPS is the Navy Operational Global
Atmospheric Prediction System from the Fleet Numerical Meteorological and Oceanographic Center, TCWB is the Global Forecast
System from the Taiwan Central Weather Bureau, and UKMO is the Unified Model from the Met Office.

Ensemble member CENT AVN CMCG ETA GASP JMA NGPS TCWB UKMO

Station KCLM on 19 May 2003

BMA weight 0.00 0.39 0.00 0.30 0.19 0.13 0.00 0.00 0.00
Member PoP 0.19 0.16 0.21 0.18 0.17 0.21 0.22 0.23 0.19
BMA PoP 0.17
Member forecast 0 0 0 0 0 0 0 0 0
BMA forecast 0
BMA upper bound 3
Observation 2

Station KPWT on 26 Jan 2003

BMA weight 0.00 0.30 0.23 0.23 0.00 0.00 0.03 0.16 0.05
Member PoP 0.46 0.64 0.74 0.59 0.44 0.44 0.70 0.46 0.72
BMA PoP 0.63
Member forecast 2 8 10 4 1 1 11 1 12
BMA forecast 3
BMA upper bound 32
Observation 26
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PoP results, BMA results, and the observed value. The
BMA deterministic forecast, that is, the median of the
BMA predictive PDF, was about 0.03 in. The BMA
predictive PDF itself is shown in Fig. 3b. The observa-

tion is far outside the ensemble range, but it is con-
tained within the BMA upper bound.

Spatial displays of the BMA PoP forecast, and of the
BMA deterministic forecast and 90th percentile upper
bound for the precipitation amount, are shown in Figs.
4 and 5 for these two dates. Spatial displays of the PoP
seem potentially useful in communicating probability
forecasts to the general public, and might assist in the
use and interpretation of the forecasts (Gigerenzer et
al. 2005). Figure 6 shows a graphical comparison be-
tween the probabilistic precipitation forecasts and the
verifying observations for all stations on 26 January
2003.

3. Results

BMA was applied to 48-h forecasts of 24-h precipi-
tation accumulation in the Pacific Northwest for the
0000 UTC cycle over the 2-yr period of 1 January 2003
through 31 December 2004, using the nine-member
University of Washington mesoscale ensemble (Eckel
and Mass 2005). Data were available for 560 days, and
data for 171 days during these 2 yr were unavailable. In
all, 109 996 station observations were used, an average
of about 196 per day. The forecasts were produced for
observation locations by bilinear interpolation from the
forecast grids. The observations were subject to the
quality control procedures described by Baars (2005).

We begin with a discussion of the PoP forecasts. Fig-
ure 7 shows the reliability diagram (Wilks 2006, section
7.4.4). As can be seen, BMA produced well-calibrated
results, while a consensus vote from the raw ensemble
produced severely uncalibrated results. Table 2 shows
that the Brier score (Wilks 2006, p. 284) for the BMA
PoP forecasts was better than that for either the raw
ensemble or logistic regression based on the cube root
of the ensemble mean.

In assessing probabilistic forecasts of quantitative
precipitation, we follow Gneiting et al. (2005) and aim
to maximize the sharpness of the predictive PDFs, sub-
ject to calibration. Calibration refers to the statistical
consistency between the forecast PDFs and the obser-
vations, and in the context of precipitation forecasts it
was discussed by Krzysztofowicz and Sigrest (1999). To
assess calibration, we consider Fig. 8, which shows the
verification rank histogram for the ensemble forecasts
and the probability integral transform (PIT) histogram
for the BMA forecast distributions. The verification
rank histogram illustrates the lack of calibration in the
raw ensemble, similar to results reported by Hamill and
Colucci (1998), Eckel and Walters (1998), and Mullen
and Buizza (2001) for other ensembles. The PIT histo-
gram is a continuous analog of the verification rank

FIG. 3. BMA-fitted PDFs for (a) station KCLM on 19 May 2003
and (b) station KPWT on 26 Jan 2003. The thick vertical line at
zero represents the BMA estimate of the probability of no pre-
cipitation, and the upper solid curve is the BMA PDF of the
precipitation amount given that it is nonzero. The lower curves
are the components of the BMA PDF, namely, the weighted con-
tributions from the ensemble members. The dashed vertical line
represents the 90th percentile upper bound of the BMA PDF; the
dashed horizontal line is the respective prediction interval; the
dots represent the ensemble member forecasts; and the solid ver-
tical line represents the verifying observation.
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histogram (Gneiting et al. 2005), and it shows that the
BMA forecast distributions were considerably better
calibrated than the raw ensemble.

For the verification rank histogram, there were inci-
dences where the observed value was zero (no precipi-

tation), and one or more forecasts were also zero. To
obtain a rank in these situations, a ranking was ran-
domly chosen between zero and the number of fore-
casts that equaled zero. To calculate the values for the
PIT histogram, each BMA cumulative distribution

FIG. 5. (a) BMA deterministic forecast and (b) BMA 90th percentile upper bound forecast for (left) 19 May
2003 and (right) 26 Jan 2003, in hundredths of an inch.

FIG. 4. BMA PoP forecast for (left) 19 May 2003 and (right) 26 Jan 2003.
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function was evaluated at its corresponding observa-
tion. In the case of an observation of zero, a value was
randomly drawn between zero and the probability of no
precipitation.

Table 3 shows the empirical coverage of lower 50%
and 90% prediction intervals, and the results echo what
we see in the histograms. Sample climatology was per-
fectly calibrated, as expected, while the raw ensemble
was substantially uncalibrated. The BMA intervals
were close to being calibrated. The table also shows the
average width of the prediction intervals, which char-
acterizes the sharpness of the forecast distributions.
The BMA PDFs produced narrower intervals than the
raw ensemble forecasts for both intervals considered,

and narrower intervals than climatology for 90% inter-
vals.

Scoring rules provide summary measures of predic-
tive performance that address calibration and sharpness
simultaneously. A particularly attractive scoring rule
for probabilistic forecasts of a scalar variable is the
CRPS, which generalizes the MAE, and can be directly
compared to the latter (Gneiting et al. 2005; Wilks 2006,
section 7.5.1). Table 2 shows MAE and CRPS values
for sample climatology, raw ensemble forecasts, and
BMA forecasts, all in units of hundredths of an inch. A
deterministic forecast can be created from the BMA

FIG. 7. Reliability diagram of binned PoP forecast vs observed
relative frequency of precipitation, for consensus voting of the raw
ensemble (crosses) and BMA (circles).

TABLE 2. MAE, CRPS, and Brier skill score (BSS) relative to sample climatology for probabilistic precipitation forecasts. The
thresholds, MAE, and CRPS values are given in hundredths of an inch, and the MAE refers to the deterministic forecast given by the
median of the respective forecast distribution.

Score Threshold Sample climatology Ensemble forecast BMA forecast Logistic regression

MAE 8.7 9.4 7.5
CRPS 7.8 7.6 5.6
BSS 0 �0.18 0.38 0.37
BSS 5 0.00 0.36 0.37
BSS 10 �0.02 0.34 0.35
BSS 25 �0.02 0.31 0.33
BSS 50 �0.02 0.26 0.30
BSS 100 0.05 0.21 0.25
BSS 150 0.05 0.17 0.19
BSS 200 0.11 0.14 0.12
BSS 250 0.10 0.11 0.03
BSS 300 0.09 0.09 0.05
BSS 350 0.10 0.08 0.00
BSS 400 0.05 0.07 �0.02

FIG. 6. BMA forecasts and upper bounds (bars) against
observed values (dots) for all locations on 26 Jan 2003.
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forecast by finding the median of the predictive PDF,
and the MAE refers to this forecast. Similarly, we show
the MAE for the median of the sample climatology and
the median of the nine-member forecast ensemble, with
the results for BMA being by far the best. We also
computed MAE values for deterministic forecasts
based on the respective means; these were much higher
than the MAE values for the median forecasts, as is
generally true when the predictive PDFs are highly

skewed. The results for the CRPS were similar, in that
the BMA forecast substantially outperformed the oth-
ers.

Table 2 shows Brier skill scores (Wilks 2006, p. 285)
relative to sample climatology at various thresholds.
These are shown for three probabilistic forecasting
methods: ensemble consensus voting (taking PoP to be
equal to the proportion of ensemble members that pre-
dict precipitation), BMA, and logistic regression based
on the cube root of the ensemble mean.

The ensemble forecast had poor skill at lower thresh-
olds, but better skill at higher thresholds. Logistic re-
gression had good skill at lower thresholds, but not
much skill at higher thresholds (2.5 in. or above). BMA
had good skill at both higher and lower thresholds. Its
skill at higher thresholds indicates that BMA may be
useful for identifying a risk of extreme precipitation
events.

4. Discussion

We have shown how to apply BMA to precipitation
forecasts. This provides a statistical postprocessing
method for ensembles that yields a full predictive dis-
tribution for quantitative precipitation. The predictive
distribution has two components: the probability of
zero precipitation, and the PDF for the precipitation
accumulation given that it is greater than zero. It thus
provides both PoP and PQPF in a unified form. In our
experiments with the University of Washington en-
semble, the BMA forecast PDFs were better calibrated
and sharper than the raw ensemble, which was uncali-
brated. The BMA median forecast had lower MAE
than the ensemble median, and the BMA forecast
PDFs had substantially lower CRPS than the raw en-
semble.

BMA probabilistic forecasts of precipitation above a
given threshold had good Brier skill scores across the
full range of thresholds of interest. In comparison, the
ensemble forecasts had very poor skill at lower thresh-
olds, and power-transformed logistic regression based
on the ensemble mean, as suggested by Hamill et al.
(2004), had less skill at higher thresholds.

FIG. 8. (a) Verification rank histogram for raw ensemble fore-
casts and (b) PIT histogram for BMA forecast distributions of
precipitation accumulation.

TABLE 3. Coverage and average width of lower 50% and 90%
prediction intervals for precipitation accumulation, in percentages
and hundredths of an inch, respectively.

Interval

Coverage Width

50% 90% 50% 90%

Sample climatology 50.0 90.0 0.0 24.0
Ensemble forecast 68.5 92.9 11.8 24.2
BMA forecast 50.7 91.1 3.2 22.8
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Our implementation has been for the situation where
the ensemble members come from clearly distinguish-
able sources. In other cases, such as the current synop-
tic National Centers for Environmental Prediction and
European Centre for Medium-Range Weather Fore-
casts ensembles, it may be more appropriate to con-
sider some or all of the ensemble members as being
from the same source, and hence to treat them equally.
This can be accommodated within our approach with a
small change in the model: for ensemble members
viewed as equivalent, the BMA weights wk in (1) would
be constrained to be equal. The EM algorithm can still
be used, with a small modification, as pointed out by
Raftery et al. (2005, p. 1170).

BMA offers the added advantage, by giving a full
predictive PDF, of being able to give probabilities of
exceeding arbitrary precipitation amounts, rather than
having to create a new logistic regression model for
each threshold of interest. This may explain why it per-
forms well for forecasts at high thresholds where the
amount of training data is small. This suggests that
BMA may be useful both for routine precipitation fore-
casting and for forecasting the risk of extreme precipi-
tation events.

Various improvements to the method may be pos-
sible. The BMA parameters were estimated using data
on observations from the entire Pacific Northwest, and
a more local approach; for example, partitioning the
region into climatologically homogeneous subregions,
or fitting BMA locally for each location using only ob-
servations within a given radius, might perform better.
This latter possibility was suggested by E. Grimit and C.
Mass (2004, personal communication). Our method of
estimation assumes independence of forecast errors in
space and time. This is unlikely to hold, but it is also
unlikely to have much effect on the results, because we
are focusing here on the predictive distribution of a
single scalar quantity. A calibrated probabilistic fore-
casting method for temperature and sea level pressure
that does take account of spatial dependence was pro-
posed by Gel et al. (2004), and it would be interesting to
extend this to precipitation. Herr and Krzysztofowicz
(2005) proposed a generic bivariate probability model
for rainfall accumulation in space and gave a critique of
the simulation technique of Seo et al. (2000), which
generates multiple realizations of downscaled precipi-
tation fields from PQPF.

Hamill et al. (2004) recommended the use of refore-
casts from past years computed on the same basis as the
current ensemble forecasts. If such reforecasts were
available, it seems possible that expanding the training
period to include days from the same season in previous
years could improve performance. The University of

Washington ensemble is frequently updated, however,
and as a result prior forecasts were not available to us.

Our experiments were carried out for 24-h precipita-
tion accumulation, and other experiments not reported
here suggest that the method also performs well for
other accumulation durations, such as 3, 6, or 12 h. This
would have to be verified for the particular forecasting
task at hand.

We used a moving window training dataset of 30
days. Our choice of training period is specific to our
dataset and region, the Pacific Northwest, where it rains
relatively frequently. The best training period could be
different for other regions, and this could be assessed in
a similar way. Nevertheless, our training period of 30
days is similar to training periods for temperature re-
ported elsewhere. Good results for temperature have
been obtained with a 25-day training period in the Pa-
cific Northwest (Raftery et al. 2005), and with a 40-day
training period for stations across Canada (Wilson et al.
2007). Although this should be assessed empirically for
the region to which BMA is to be applied, it does seem
reasonable to expect that a 30-day training period will
often give good results.

Probabilistic forecasts using BMA based on the Uni-
versity of Washington mesoscale ensemble prediction
system are currently being produced in real time for
temperature and precipitation. They are available online
(at http://bma.apl.washington.edu and http://probcast.
washington.edu). These Web sites provide median fore-
casts, upper bound forecasts, and forecasts of exceeding
thresholds for precipitation accumulation. We apply the
BMA technique directly on the model grid, and the Web
site provides the ability to look at the BMA PDF for any
grid cell in the forecast domain.
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