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The current weather forecasting paradigm is deterministic, based on numerical models. Multiple estimates of the current state of the at-
mosphere are used to generate an ensemble of deterministic predictions. Ensemble forecasts, while providing information on forecast un-
certainty, are often uncalibrated. Bayesian model averaging (BMA) is a statistical ensemble postprocessing method that creates calibrated
predictive probability density functions (PDFs). Probabilistic wind forecasting offers two challenges: a skewed distribution, and observa-
tions that are coarsely discretized. We extend BMA to wind speed, taking account of these challenges. This method provides calibrated and
sharp probabilistic forecasts. Comparisons are made between several formulations.
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1. INTRODUCTION

While deterministic point forecasts have long been the stan-
dard in weather forecasting, there are many situations in which
probabilistic information can be of value. In this paper, we con-
sider the case of wind speed. Often, ranges or thresholds can be
of interest—recreational sailors are likely to be more interested
in the probability of there being enough wind to go out sailing
than in simply the best guess at the wind speed, and farmers
may be interested in the chance of winds being low enough to
safely spray pesticides. Possible extreme values are of partic-
ular interest, where it can be important to know the chance of
winds high enough to pose dangers for boats or aircraft.

In situations calling for a cost/loss analysis, the probabilities
of different outcomes need to be known. For wind speed, this
issue often arises in the context of wind power, where under-
forecasting and overforecasting carry different financial penal-
ties. The optimal point forecast in these situations is often a
quantile of the predictive distribution (Roulston et al. 2003; Pin-
son, Chevallier, and Kariniotakis 2007; Gneiting 2008). Differ-
ent situations can require different quantiles, and this needed
flexibility can be provided by forecasts of a full predictive prob-
ability density function (PDF). Environmental concerns and cli-
mate change have made wind power look like an appealing
source of clean and renewable energy, and as this field con-
tinues to grow, calibrated and sharp probabilistic forecasts can
help to make wind power a more financially competitive alter-
native.

Purely statistical methods have been applied to short-range
forecasts for wind speed only a few hours into the future
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(Brown, Katz, and Murphy 1984; Kretzschmar et al. 2004;
Gneiting et al. 2006; Genton and Hering 2007). A detailed sur-
vey of the literature on short-range wind forecasting can be
found in Giebel, Brownsword, and Kariniotakis (2003).

Medium-range forecasts looking several days ahead are gen-
erally based on numerical weather prediction models, which
can then be statistically postprocessed. To estimate the predic-
tive distribution of a weather quantity, an ensemble forecast is
often used. An ensemble forecast consists of a set of multi-
ple forecasts of the same quantity, based on different estimates
of the initial atmospheric conditions and/or different physical
models (Palmer 2002; Gneiting and Raftery 2005). An exam-
ple of an ensemble forecast for wind speed can be seen in Fig-
ure 1. Ensemble forecasts can give an indication of uncertainty,
and a statistical relationship between forecast errors and ensem-
ble spread has been established for several ensemble systems.
However, it has also been shown that ensemble forecasts typi-
cally are uncalibrated, with a tendency for observed values to
fall outside of the range of the ensemble too often (Grimit and
Mass 2002; Buizza et al. 2005; Gneiting and Raftery 2005).

In this light, a number of methods have been proposed for
statistically postprocessing ensemble forecasts of wind speed or
wind power. These approaches have largely focused on the use
of quantile regression to generate forecast bounds and/or inter-
vals (Bremnes 2004; Nielsen et al. 2004; Nielsen, Madsen, and
Nielsen 2006; Pinson et al. 2007; Møller, Nielsen, and Madsen
2008). However, in order to obtain a full PDF from these meth-
ods, it requires running a large number of regression models to
generate many quantiles, and then interpolating between them
(and correcting for possible problems with quantiles crossing
over one another), rather than explicitly modeling a full predic-
tive PDF.

Bayesian model averaging (BMA) was introduced by Raftery
et al. (2005) as a statistical postprocessing method for produc-
ing probabilistic forecasts from ensembles in the form of pre-
dictive PDFs. The BMA predictive PDF of any future weather
quantity of interest is a weighted average of PDFs centered on
the individual bias-corrected forecasts, where the weights can
be interpreted as posterior probabilities of the models generat-

© 2010 American Statistical Association
Journal of the American Statistical Association

March 2010, Vol. 105, No. 489, Applications and Case Studies
DOI: 10.1198/jasa.2009.ap08615

25

mailto:sloughtj@seattleu.edu
mailto:t.gneiting@uni-heidelberg.de
mailto:raftery@u.washington.edu
http://www.amstat.org
http://pubs.amstat.org/loi/jasa
http://dx.doi.org/10.1198/jasa.2009.ap08615
mailto:sloughtj@seattleu.edu


26 Journal of the American Statistical Association, March 2010

Figure 1. 48-hour-ahead ensemble forecast of maximum wind speed over the Pacific Northwest on August 7, 2003 using the eight-member
University of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and Mass 2005).

ing the forecasts and reflect the forecasts’ contributions to over-
all forecasting skill over a training period. The original devel-
opment of BMA by Raftery et al. (2005) was for weather quan-
tities whose predictive PDFs are approximately normal, such
as temperature and sea-level pressure. This method was modi-
fied by Sloughter et al. (2007) to apply to quantitative precip-
itation forecasts. These forecasts used component distributions
that had a positive probability of being equal to zero, and, when
not zero, were skewed, and modeled using power-transformed
gamma distributions.

As with precipitation, wind speed has a skewed distribution.
Unlike for precipitation, there is no need to model the sepa-
rate probability of wind speed being equal to zero, at least in
the geographic region we consider. Here we develop a BMA
method for wind speed by modeling the component distribu-
tion for a given ensemble member as a gamma distribution; the
BMA PDF is then itself a mixture of such distributions.

In Section 2 we review the BMA technique and describe our
extension of it to wind speed. Statistical approaches to wind
forecasting offer a unique challenge in that observed values are
reported discretized to the nearest whole knot, a much coarser
discretization than is seen in other weather quantities. We com-
pare a number of methods for estimating the parameters of
the BMA PDF which account for the discretization in differ-
ent ways. Then in Section 3 we give results for 48-hour-ahead
forecasts of maximum wind speed over the North American Pa-
cific Northwest in 2003 based on the eight-member University
of Washington mesoscale ensemble (Grimit and Mass 2002;
Eckel and Mass 2005). Throughout the paper we use illustra-
tive examples drawn from these data, and we find that BMA
is calibrated and sharp for the period we consider. Finally, in

Section 4 we discuss alternative approaches and possible im-
provements to the method.

2. DATA AND METHODS

2.1 Forecast and Observation Data

This research considers 48-hour-ahead forecasts of maxi-
mum wind speed over the Pacific Northwest in the period from
November 1, 2002 through December 31, 2003, using the eight-
member University of Washington mesoscale ensemble (Eckel
and Mass 2005) initialized at 00 hours UTC in international
standard time, which is 5 p.m. local time in summer, when
daylight saving time operates, and 4 p.m. local time other-
wise. The dataset contains observations and forecasts at sur-
face airway observation (SAO) stations, a network of automated
weather stations located at airports throughout the United States
and Canada. Maximum wind speed is defined as the maxi-
mum of the hourly “instantaneous” wind speeds over the pre-
vious 18 hours, where an hourly “instantaneous” wind speed
is a 2-minute average from the period of two minutes before
the hour to on the hour. Data were available for 340 days,
and data for 86 days during this period were unavailable. In
all, 35,230 station observations were used, an average of about
104 per day. The forecasts were produced for observation lo-
cations by bilinear interpolation from forecasts generated on a
12-kilometer grid, as is common practice in the meteorological
community. The wind speed observations were subject to the
quality control procedures described by Baars (2005).

The wind speed data we analyze are discretized when
recorded—wind speed is rounded to the nearest whole knot.
Additionally, any wind speeds below one knot are recorded as
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zero. One knot is equal to approximately 0.514 meters per sec-
ond, or 1.151 miles per hour.

2.2 Bayesian Model Averaging

BMA (Leamer 1978; Kass and Raftery 1995; Hoeting et al.
1999) was originally developed as a way to combine inferences
and predictions from multiple statistical models, and was ap-
plied to statistical linear regression and related models in the so-
cial and health sciences. Raftery et al. (2005) extended BMA to
ensembles of deterministic prediction models and showed how
it can be used as a statistical postprocessing method for fore-
cast ensembles, yielding calibrated and sharp predictive PDFs
of future weather quantities.

In BMA for forecast ensembles, each ensemble member
forecast fk is associated with a component PDF, gk(y|fk). The
BMA predictive PDF for the future weather quantity, y, is then
a mixture of the component PDFs, namely

p(y|f1, . . . , fK) =
K∑

k=1

wkgk(y|fk), (1)

where the BMA weight wk is based on forecast k’s relative per-
formance in the training period. The wk’s are probabilities and
so they are nonnegative and add up to 1, that is,

∑K
k=1 wk = 1.

Here K is the number of ensemble members.
The component PDF gk(y|fk) can be thought of roughly as

the conditional PDF of the weather quantity y given the kth
forecast, fk, conditional on fk being the best forecast in the en-
semble. This heuristic interpretation is in line with how oper-
ational weather forecasters often work, by selecting one or a
small number of “best” forecasts from a potentially large num-
ber available, based on recent predictive performance (Joslyn
and Jones 2008).

2.3 Gamma Model

For weather variables such as temperature and sea level pres-
sure, the component PDFs can be fit reasonably well using
a normal distribution centered at a bias-corrected forecast, as
shown by Raftery et al. (2005). For precipitation, Sloughter
et al. (2007) modeled the component PDFs using a mixture of
a point mass at zero and a power-transformed gamma distribu-
tion.

Haslett and Raftery (1989) modeled the square root of wind
speed using a normal distribution. Wind speed distributions
have also often been modeled by Weibull densities (Justus, Har-
graves, and Yalcin 1976; Hennessey 1977; Justus et al. 1978;
Stevens and Smulders 1979). Tuller and Brett (1984) noted that
the necessary assumptions for fitting a Weibull distribution are
not always met. Here we generalize the Weibull approach by
considering gamma distribution fits to power transformations
of the observed wind speeds. We found that gamma distribu-
tions for the raw observed wind speeds themselves gave a good
fit, and, perhaps surprisingly, fit better than using any power
transformation. In determining the power transformation to use
for the model, we fit gamma distributions to sets of the (possi-
bly transformed) observed wind speeds, conditional on forecast
values being within some bin (e.g., all observations for which
the forecast was less than 5 knots). This is an approximation
to the goal of our model, where we want to fit a distribution

to observed wind speeds conditional on forecast values. Fig-
ure 2 shows examples of quantile–quantile plots for the un-
transformed observed wind speeds, demonstrating that the con-
ditional gamma distributions provided a good fit.

In light of this, we model the component PDFs of wind speed
as untransformed gamma distributions. The gamma distribution
with shape parameter α and scale parameter β has the PDF

g(y) = 1

βα�(α)
yα−1 exp(−y/β) (2)

for y ≥ 0, and g(y) = 0 for y < 0. The mean of this distribution
is μ = αβ , and its variance is σ 2 = αβ2.

It remains to specify how the parameters of the gamma dis-
tribution depend on the numerical forecast. An exploratory data
analysis showed that the observed wind speed is approximately
linear as a function of the forecasted wind speed, with a stan-
dard deviation that is also approximately linear as a function
of the forecast. This is illustrated in Figure 3, which shows the
relation between the forecasted values (here represented by the
midpoint of the forecast bin) and the means and standard devi-
ations for gamma distribution fits to the observed wind speeds,
conditional on the forecast being within the bin. These plots
are based on the first ensemble member, though similar results
were found for all ensemble members. Here the maximum bin
considered was for forecasts between 30 and 35 knots, as there
were very few instances of forecasts above 35 knots.

Putting these observations together, we get the following
model for the component gamma PDF of wind speed:

gk(y|fk) = 1

β
αk
k �(αk)

yαk−1 exp(−y/βk). (3)

The parameters of the gamma distribution depend on the en-
semble member forecast, fk, through the relationships

μk = b0k + b1kfk (4)

and

σk = c0k + c1kfk, (5)

where μk = αkβk is the mean of the distribution, and σk =√
αkβk is its standard deviation. Here we restrict the standard

deviation parameters to be constant across all ensemble mem-
bers. This simplifies the model by reducing the number of pa-
rameters to be estimated, makes parameter estimation compu-
tationally easier, and reduces the risk of overfitting. We found
that it led to no degradation in predictive performance. The c0k

and c1k terms are replaced by c0 and c1.
Our BMA model for the predictive PDF of the weather quan-

tity, y, here the maximum wind speed, is thus (1) with gk as
defined in (3).

2.4 Parameter Estimation

Parameter estimation is based on forecast-observation pairs
from a training period, which we take here to be the N most
recent available days preceding initialization. The training pe-
riod is a sliding window, and the parameters are reestimated for
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(a) (b)

(c) (d)

Figure 2. Gamma quantile–quantile plots for observed wind speeds conditional on the first ensemble member forecast being (a) less than
5 knots, (b) between 5 and 10 knots, (c) between 10 and 15 knots, and (d) between 15 and 20 knots. Data used is the full dataset as described
above, from November 2002 through December 2003.

each new initialization period. We considered training periods
ranging from the past 20 to 45 days. An examination of the sen-
sitivity of our results to training period length showed very sim-

ilar performance across potential training period lengths. Dif-
ferences in average errors were only seen three decimal places
out. Within this range, we consistently saw that a 25-day train-

(a) (b)

Figure 3. Fitted means and standard deviations for the forecast bins. Again using the full November 2002 through December 2003 data.



Sloughter, Gneiting, and Raftery: Probabilistic Wind Speed Forecasting 29

ing period gave very slightly better performance, and we will
present results here based on this period.

2.4.1 Standard Method. We first consider a standard meth-
od of parameter estimation similar to the method used for quan-
titative precipitation in Sloughter et al. (2007). We estimate the
mean parameters, b0k and b1k, by linear regression. These para-
meters are member specific, and are thus estimated separately
for each ensemble member, using the observed wind speed as
the dependent variable and the forecasted wind speed, fk, as the
independent variable.

We estimate the remaining parameters, w1, . . . ,wK , c0, and
c1, by maximum likelihood from the training data. Assuming
independence of forecast errors in space and time, the log-
likelihood function for the BMA model is

�(w1, . . . ,wK; c0; c1) =
∑
s,t

log p(yst|f1st, . . . , fKst), (6)

where the sum extends over all station locations, s, and times,
t, in the training data. As noted above, wind speed observations
below one knot are recorded as zero knots. The log-likelihood
requires calculating the logarithm of each observed wind speed,
which is not possible with values of zero.

Wilks (1990) suggested a method for maximum likelihood
estimation of gamma distribution parameters with data contain-
ing zeroes due to rounding by, for each value of zero, replac-
ing the corresponding component of the log-likelihood with
the aggregated probability of the range of values that would be
rounded to zero (in our case, between 0 and 1 knots). To incor-
porate this, for each observed yst recorded as a zero, we replace
p(yst|f1st, . . . , fKst) above by

p(yst|f1st, . . . , fKst) = P(1|f1st, . . . , fKst), (7)

where

P(a|f1st, . . . , fKst) =
∫ a

0
p(y|f1st, . . . , fKst)dy. (8)

The log-likelihood function cannot be maximized analyti-
cally, and instead we maximize it numerically using the ECME
algorithm (Liu and Rubin 1994), a variant of the EM algorithm
(Dempster, Laird, and Rubin 1977; McLachlan and Krishnan
1997). Like the EM algorithm, the ECME algorithm is itera-
tive, alternating between expectation (E) steps, and a series of
conditional maximization (CM) steps, each maximizing either
the expected complete data log-likelihood or the mixture log-
likelihood conditional on the current estimates of the weights. It
uses unobserved quantities zkst, which are latent variables equal
to 1 if observation yst comes from the kth mixture component,
and to 0 otherwise.

In the E step, the zkst are estimated given the current estimate
of the parameters. Specifically,

ẑ(j+1)

kst = w(j)
k p(j)(yst|fkst)∑K

l=1 w(j)
l p(j)(yst|flst)

, (9)

where the superscript j refers to the jth iteration of the ECME
algorithm, and thus w(j)

k refers to the estimate of wk at the jth it-
eration. The quantity p(j)(yst|fkst) is defined using the estimates
of c0 and c1 from the jth iteration, and is either gk(yst|fkst) as

defined in (3), if yst is nonzero, or is Gk(1|fkst), if yst is zero,
where

Gk(a|fkst) =
∫ a

0
gk(y|fkst)dy. (10)

Note that, although the zkst are equal to either 0 or 1, the ẑkst are
real numbers between 0 and 1. The ẑ1st, . . . , ẑKst are nonnega-
tive and sum to 1 for each (s, t).

The CM-1 step then consists of maximizing the expected
complete data log-likelihood as a function of w1, . . . ,wK ,
where the expectation is taken over the distribution of zkst given
the data and the previous parameter estimates. This is the same
as maximizing the log-likelihood given the zkst, c0, and c1, eval-
uated at zkst = ẑ(j+1)

kst . Thus

w(j+1)

k = 1

n

∑
s,t

ẑ(j+1)

kst , (11)

where n is the number of cases in the training set, that is, the
number of distinct values of (s, t).

The CM-2 step maximizes the mixture log-likelihood as
a function of c0, and c1, conditional upon the estimated
w1, . . . ,wK . There are no analytic solutions for the CM-2 step
estimates, and so they must be found numerically.

The E and CM steps are then iterated to convergence, which
we define as a change no greater than some small tolerance in
the mixture log-likelihood in one iteration. The log-likelihood
is guaranteed to increase at each ECME iteration (Liu and Ru-
bin 1994), which implies that in general it converges to a local
maximum of the likelihood. Convergence to a global maximum
cannot be guaranteed, so the solution reached by the algorithm
can be sensitive to the starting values. Choosing the starting val-
ues based on equal weights and the marginal variance usually
led to a good solution in our experience.

Due to the numerical estimates in the CM-2 step, this algo-
rithm can be computationally intensive. We found that comput-
ing time could be significantly reduced through a modification
to the algorithm, in which we computed a CM-2 step only once
for every 50 E and CM-1 steps. For our data, this modified algo-
rithm gives nearly identical parameter estimates to the original
algorithm.

2.4.2 Fully Discretized Method. While our standard meth-
od addresses the computational issues associated with recorded
observations of zero, it does not more generally address the dis-
cretization of the wind speed values. We therefore consider a
fully discretized method of parameter estimation that general-
izes the method of Wilks (1990). Each component of the log-
likelihood is replaced by the aggregated probability of the range
of values that would be rounded to the recorded value. In our
case, a recorded observation of 0 indicates a true value between
0 and 1, a recorded observation of 1 indicates a true value be-
tween 1 and 3

2 , and for any integer i > 1, a recorded observation
of i indicates a true value between i − 1

2 and i + 1
2 .

To extend the approach of our initial method, we first leave
p(yst|f1st, . . . , fKst) as defined in (7) for observed values of 0.
For observed values of 1, we have

p(yst|f1st, . . . , fKst) = P
( 3

2 |f1st, . . . , fKst
)

− P(1|f1st, . . . , fKst), (12)
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and for observed values i where i > 1,

p(yst|f1st, . . . , fKst) = P
(
i + 1

2 |f1st, . . . , fKst
)

− P
(
i − 1

2 |f1st, . . . , fKst
)
. (13)

Analogously, in the E step of the ECME algorithm, for observed
values of 0, we put

p(j)(yst|fkst) = Gk(1|fkst) (14)

for observed values of 1,

p(j)(yst|fkst) = Gk
( 3

2 |fkst
) − Gk(1|fkst) (15)

and for observed values i where i > 1,

p(j)(yst|fkst) = Gk
(
i + 1

2 |fkst
) − Gk

(
i − 1

2 |fkst
)
. (16)

The rest of the ECME algorithm remains unchanged.

2.4.3 Doubly Discretized Method. In the fully discretized
method, the discretization of observations is taken into account
in the log-likelihood. This allows us to account for the dis-
cretization when estimating the BMA weights and the standard
deviation parameters, which are estimated via maximum like-
lihood. However, this does not address the mean parameters,
which are fit via linear regression. To take account of the dis-
cretization in estimating the mean parameters, we additionally
discretize the forecasts in the same manner that the observations
have been. The parameters are then estimated as in the fully dis-
cretized method, replacing the ensemble member forecasts with
the discretized forecasts.

2.4.4 Pure Maximum Likelihood Method. We next investi-
gate the possibility of estimating the mean parameters by maxi-
mum likelihood as well. To avoid computational problems with
a parameter space of too high a dimension, we restrict the mean
parameters to be constant across ensemble members, similar to
the constraint already placed on the standard deviation para-
meters. We then estimate the BMA weights, mean parameters,
and standard deviation parameters simultaneously via maxi-
mum likelihood, using the discretized log-likelihood function
from the fully discretized method. The log-likelihood is opti-
mized numerically.

2.4.5 Parsimonious Method. We finally consider one ad-
ditional method, taking the partially discretized log-likelihood
from the standard method but adding the constraint that the
mean parameters must be constant across ensemble members.
This represents the most parsimonious model, in that it has the
smallest number of parameters.

3. RESULTS

We begin by looking at aggregate results over the entire Pa-
cific Northwest domain, for the full 2003 calendar year, with
the data available from late 2002 used only as training data, to
allow us to create forecasts starting in January. The following
section will then look at some more specific examples of results
for individual locations and/or times.

3.1 Results for the Pacific Northwest

In assessing probabilistic forecasts of wind speed, we aim to
maximize the sharpness of the predictive PDFs subject to cal-
ibration (Gneiting, Balabdaoui, and Raftery 2007). Calibration
refers to the statistical consistency between the forecast PDFs
and the observations. To assess calibration, we consider Fig-
ure 4, which shows the verification rank histogram for the raw
ensemble forecast and probability integral transform (PIT) his-
tograms for the BMA forecast distributions. In both cases, a
more uniform histogram indicates better calibration. The ver-
ification rank histogram plots the rank of each observed wind
speed relative to the combined set of the observation and the
eight ensemble member forecasts. That is, a rank of 1 indicates
that the observed value was the lowest number in the set and
thus below all eight ensemble members, a rank of 2 indicates
that the observed value was greater than only one of the ensem-
ble members, and so on up to a rank of 9 indicating that the ob-
served value was greater than all eight ensemble members. We
then record the frequency with which each possible rank oc-
curs. If the observation and the ensemble members come from
the same distribution, then the observed and forecasted values
are exchangeable so that all possible ranks are equally likely.
The PIT is the value that the predictive cumulative distribution
function attains at the observation and is a continuous analog of
the verification rank.

For our data, the verification rank histogram illustrates the
lack of calibration in the raw ensemble, which is underdis-
persed, similar to results reported by Eckel and Walters (1998),
Hamill and Colucci (1998), and Mullen and Buizza (2001) for
other ensembles. From the PIT histograms for the BMA fore-
cast distributions, all five methods of parameter estimation gave
similar results, in all cases substantially better calibrated than
the raw ensemble.

If the eight-member raw ensemble were properly calibrated,
there would be a 1

9 probability of the wind speed observa-
tion falling below the ensemble range, and a 1

9 probability of
it falling above the ensemble range. As such, to allow direct
comparisons to the raw ensemble, we will consider 7

9 or 77.8%
central prediction intervals from the BMA PDF. Table 1 shows
the empirical coverage of 77.8% prediction intervals, and the
results echo what we see in the verification rank and PIT his-
tograms. The raw ensemble was highly uncalibrated. The BMA
intervals were well calibrated. The table also shows the aver-
age width of the prediction intervals, which characterizes the
sharpness of the forecast distributions. While the raw ensem-
ble provides a narrower interval, this comes at the cost of much
poorer calibration.

Scoring rules provide summary measures of predictive per-
formance that address calibration and sharpness simultane-
ously. A particularly attractive scoring rule for probabilistic
forecasts of a scalar variable is the continuous ranked proba-
bility score (CRPS), which generalizes the mean absolute error
(MAE), and can be directly compared to the latter. It is a proper
scoring rule and is defined as

crps(P, x) =
∫ ∞

−∞
(P(y) − I{y ≥ x})2 dy

= EP|X − x| − 1

2
EP|X − X′|, (17)
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(a) (b) (c)

(d) (e) (f)

Figure 4. Calibration checks for probabilistic forecasts of wind speed over the Pacific Northwest in 2003. (a) Verification rank histogram
for the raw ensemble, and PIT histograms for the BMA forecast distributions estimated using (b) the standard method, (c) the fully discretized
method, (d) the doubly discretized method, (e) the pure maximum likelihood method, and (f) the parsimonious method.

where P is the predictive distribution, here taking the form of a
cumulative distribution function, x is the observed wind speed,
and X and X′ are independent random variables with distribu-
tion P (Matheson and Winkler 1976; Grimit et al. 2006; Wilks
2006; Gneiting and Raftery 2007). Both CRPS and MAE are
negatively oriented, that is, the smaller the better.

Table 1 shows CRPS and MAE values for climatology, that
is, the marginal distribution of observed wind speed across
space and time for the dataset, the raw ensemble forecast, and
the BMA forecasts, all in units of knots. A point forecast can be
created from the BMA forecast distribution by finding the me-
dian of the predictive distribution, and the MAE refers to this
forecast. As the median does not have any closed form solu-

Table 1. Mean continuous ranked probability score (CRPS) and mean
absolute error (MAE), and coverage and average width of 77.8%

central prediction intervals for probabilistic forecasts of wind speed
over the Pacific Northwest in 2003. Coverage in percent, all other

values in knots. The MAE refers to the point forecast given
by the median of the respective forecast distribution

Forecast CRPS MAE Coverage Width

Climatology 2.972 4.143 77.8 13.00
Ensemble 2.918 3.544 33.3 3.98
BMA standard 2.397 3.382 77.5 10.32
BMA fully discretized 2.397 3.382 77.3 10.27
BMA doubly discretized 2.397 3.383 77.3 10.28
BMA pure MLE 2.392 3.376 77.3 10.20
BMA parsimonious 2.398 3.384 77.7 10.36

tion for our model, it is approximated numerically, in our case
by the bisection method. Similarly, we show the MAE for the
median of the eight-member forecast ensemble, with the results
for BMA being by far the best. The results for the CRPS were
similar, in that BMA outperformed the raw ensemble and cli-
matology.

These results show that all the parameter estimation methods
considered performed similarly. While the pure maximum like-
lihood method gave very slightly better results, it was much
slower computationally. We therefore recommend the use of
the parsimonious method, which is the simplest in terms both
of number of parameters to be estimated and of computational
needs.

In particular, for the parsimonious method the parameters b0k
and b1k in the regression equation (4) do not depend on the en-
semble member forecast, k. Over the course of the entire 2003
year, the average estimate for the common intercept b0 was
2.94. The average estimate for the slope b1 was 0.72. Turning to
the variance parameters in (5), the average estimate for c0 was
1.41, while the average estimate for c1 was 0.25.

3.2 Examples

To illustrate the BMA forecast distributions for wind speed,
we show an example, on August 7, 2003 at Shelton, Wash-
ington. Figure 5 shows the ensemble values, the BMA com-
ponent distributions, the BMA PDF, the BMA central 77.8%
forecast interval, and the observation. The observed wind speed
of 12 knots fell just above the ensemble range, while it was
within the range of the BMA interval.
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Figure 5. 48-hour-ahead BMA predictive PDF for maximum wind speed at Shelton, Washington on August 7, 2003. The upper solid curve
is the BMA PDF. The lower curves are the components of the BMA PDF, namely, the weighted contributions from the ensemble members. The
dashed vertical lines represent the 11th and 89th percentiles of the BMA PDF; the dashed horizontal line is the respective prediction interval;
the circles represent the ensemble member forecasts; and the solid vertical line represents the verifying observation.

Figure 6 shows maps of the BMA median and BMA 90th
percentile upper bound forecast for August 7, 2003. If we com-
pare these to the ensemble forecast in Figure 1 we see that the
general spatial structure is largely preserved in the BMA fore-
cast. Figure 7 shows the verifying wind observations over the
Pacific Northwest on August 7, 2003. It is evident that the raw
ensemble was underforecasting in a number of areas where the
BMA forecast was not.

Finally, we compare the BMA forecasts at Shelton, Washing-
ton over the 2003 calendar year to the raw ensemble forecast
and the station climatology, that is, the marginal distribution
of all observed values at Shelton over the time period consid-
ered. Table 2 shows CRPS and MAE scores along with predic-
tion interval coverage and average width for station climatol-
ogy, the raw ensemble, and BMA at this location. The BMA
forecast showed substantially better CRPS and MAE than both
station climatology and the raw ensemble. Furthermore, BMA
gave sharper intervals on average than station climatology, and
a better calibrated interval than the raw ensemble.

It should be noted that wind forecasting is notoriously diffi-
cult. While in this example BMA outperformed station clima-
tology, that is not to be taken for granted, and may not be the
case at stations at which there is substantial topography at sub-
grid scales (Gneiting et al. 2008).

4. DISCUSSION

We have shown how to apply BMA to wind speed forecasts.
This provides a statistical postprocessing method for ensembles
of numerical weather predictions that yields a full predictive
distribution for maximum wind speed. In our experiments with
the University of Washington mesoscale ensemble, the BMA
forecast PDFs were better calibrated than the raw ensemble,
which was underdispersed on average. The BMA median fore-
cast had lower MAE than the ensemble median, and the BMA
forecast PDFs had substantially lower CRPS than the raw en-
semble or climatology.

Nielsen et al. (2004) presented a probabilistic forecasting
method based on correcting quantiles of an ensemble, while

(a) (b)

Figure 6. 48-hour-ahead (a) BMA median forecast, and (b) BMA 90th percentile forecast of maximum wind speed over the Pacific Northwest
on August 7, 2003.
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Figure 7. Observed maximum wind speeds at meteorological sta-
tions over the Pacific Northwest on August 7, 2003. The arrow indi-
cates the station at Shelton, Washington.

other approaches have used climatology conditioned on ensem-
ble forecasts (Roulston et al. 2003) or on numerical weather
prediction model output (Bremnes 2006). The model based ap-
proach of BMA allows for the fitting of a predictive distribu-
tion using sparse training data. By modeling the relation be-
tween forecasts and observations, BMA allows for the creation
of forecast distributions in situations where the raw forecasts
may not have any close analogues in the training set.

The method described here differs in some respects from the
more traditional sense of BMA, and can also be thought of as
a mixture model, where the component weights are estimated
from training data. Because the training data are changing every
day, the component weights are also changing day by day, a
paradigm that is in line with operational weather forecasting,
where forecasters adapt the attention they give to different mod-
els each day based on recent past performance.

Raftery et al. (2007) and Pinson and Madsen (2009) proposed
the use of recursive-adaptive techniques for updating forecast
parameters each day. These approaches could potentially be
adapted to our model as well, potentially reducing the comput-
ing burden of fitting the model for successive days.

Here we assume that, for any given training period, the
weights for each model are fixed. Given the performance of the

Table 2. Mean continuous ranked probability score (CRPS) and mean
absolute error (MAE), and coverage and average width of 77.8%

central prediction intervals for probabilistic forecasts of wind speed at
Shelton, Washington in 2003. Coverage in percent, all other values in
knots. The MAE refers to the point forecast given by the median of

the respective forecast distribution

Forecast CRPS MAE Coverage Width

Station climatology 2.64 3.82 77.8 12.0
Ensemble 2.80 3.49 35.1 4.2
BMA 2.14 3.01 78.9 10.0

BMA method presented here, this assumption seems reason-
able. A more complicated model could be considered if there
were reason to suspect that the relative value of each ensem-
ble member differed based on differing forecasts. The approach
of Greybush, Haupt, and Young (2008) addresses this issue, by
restricting training data to atmospheric regimes. It could also
be possible to adapt the mixture of experts model from Jacobs
et al. (1991) to combine predictive models that are tailored to
atmospheric regimes.

Our results showed no appreciable difference in performance
between parameter estimation methods that took into account
the discretization of the data and those that did not. A de-
tailed simulation study looking at the effects of discretization
for meteorological data was carried out by Cooley, Nychka,
and Naveau (2007). Perrin, Rootzén, and Taesler (2006) found
that discretized wind speed values can result in erroneously
low standard errors for parameter estimates. However, we do
not look at standard errors of our parameter estimates here, as
we are interested primarily in prediction, and not in parame-
ter estimation for its own sake. Vrugt, Diks, and Clark (2008)
compared using the EM algorithm to using a fully Bayesian,
Markov chain Monte Carlo (MCMC) based method to fit the
BMA parameters for temperature forecasts, and found that the
fully Bayesian approach gave comparable performance to the
EM method. Their method allows for the examination of poste-
rior distributions of the BMA parameters, which showed those
parameters to have relatively little uncertainty. This is to be ex-
pected, as we have large amounts of data at hand in estimating
these parameters.

Our results also showed that constraining the mean parame-
ters to be equal across ensemble members did not impact the
predictive performance. This suggests that there are no appre-
ciable differences in the ideal mean parameters across mem-
bers. This result, however, may not hold in other situations.
If different ensemble members had distinct patterns of bias it
may be necessary to preserve the distinct individual mean pa-
rameters. In our situation, by assuming equal mean parameters
across members, we are able to greatly reduce the parameter
space being considered.

Our approach has not incorporated temporal autocorrelation.
While wind speeds in successive time periods are certainly au-
tocorrelated, our method implicitly addresses forecast errors
rather than raw wind speeds, because it models the predictive
distribution conditional on the numerical forecasts. Exploratory
work has shown that there is little or no autocorrelation in fore-
cast errors of wind speeds, so the numerical forecasts effec-
tively take care of the autocorrelation in the wind speeds them-
selves. To incorporate temporal autocorrelation, the method
would have to be made considerably more complicated, and it
seems unlikely that this would improve its predictive perfor-
mance appreciably.

While our implementation has been for a situation where the
ensemble members come from clearly distinguishable sources,
it is easily modifiable to deal with situations in which ensemble
members come from the same model, differing only in some
random perturbations, such as the global ensembles that are
currently used by the National Centers for Environmental Pre-
diction and the European Centre for Medium-Range Weather
Forecasts (Buizza et al. 2005). In these cases, members com-
ing from the same source should be treated as exchangeable,
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and thus should have equal weight and equal BMA parame-
ter values across members. As our recommended parsimonious
method already constrains the mean and standard deviation pa-
rameters to be equal across all members, the only change that
would need to be made would be to add the constraint that the
BMA weights be equal, as described by Raftery (2005, p. 1170)
and Wilson et al. (2007).

There are a number of potential wind quantities of inter-
est. Our method was developed for forecasting maximum wind
speed over a particular time interval. Instantaneous wind speed,
or maximum wind speed over some other time interval, could
well have different distributional properties. These differences
could possibly be accounted for by fitting a gamma distribution
to some power transformation of the wind speed, rather than to
the raw wind speed. The power transformation appropriate for
any given situation would need to be determined empirically.

Our method produces wind speed forecasts at individual lo-
cations, which is the focus of many, and possibly most, appli-
cations. As a result we have not had to model spatial correla-
tion between wind speeds, although these definitely are present,
as can be seen in Figure 7. However, in applications that in-
volve forecasting wind speeds at more than one location si-
multaneously, it would be vital to take account of spatial cor-
relation in forecast errors. Such applications include forecast-
ing the maximum wind speed over an area or trajectory, for
example for shipping or boating, and forecasting the total en-
ergy from several wind farms in a region. Methods for proba-
bilistic weather forecasting at multiple locations simultaneously
have been developed for temperature (Gel, Raftery, and Gneit-
ing 2004; Berrocal, Raftery, and Gneiting 2007), for precipita-
tion (Berrocal, Raftery, and Gneiting 2008), and for temperature
and precipitation simultaneously (Berrocal et al. 2007). These
methods could possibly be extended to wind speeds.

Our method estimates a single set of parameters across the
entire domain. Nott et al. (2001) noted that localized statistical
postprocessing can address issues of locally varying biases in
numerical weather forecasts. A localized version of BMA for
temperature, based on taking sets of forecasts and observations
within a carefully selected neighborhood, has shown substantial
improvement over the global version (Mass et al. 2009), and it is
likely that similar improvements would be seen for a localized
version of BMA for wind speed.

Either the global or localized parameter estimation can be
used to create probabilistic forecasts of wind speed on a spatial
grid. These methods have already been implemented for tem-
perature and precipitation and provide real-time probabilistic
weather forecasts over the Pacific Northwest (Mass et al. 2009),
which are available to the general public at http://probcast.
washington.edu. We intend to make similar, gridded probabilis-
tic forecasts for wind speed available also. Additionally, for
specialized uses where only a single location is of interest, such
as a wind farm or a windsurfing or sailing location, BMA para-
meters could be fit using the same methodology as described in
this paper, but restricting it to use only data from that particular
location.

[Received November 2008. Revised July 2009.]
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