
Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian
Model Averaging

J. MCLEAN SLOUGHTER

Seattle University, Seattle, Washington

TILMANN GNEITING

Heidelberg University, Heidelberg, Germany

ADRIAN E. RAFTERY

University of Washington, Seattle, Washington

(Manuscript received 30 December 2011, in final form 26 May 2012)

ABSTRACT

Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and re-

newable source of energy, in addition to a wide range of other uses, from aviation to recreational boating.

Unlike other common forecasting problems, which deal with univariate quantities, statistical approaches to

wind vector forecasting must be based on bivariate distributions. The prevailing paradigm in weather fore-

casting is to issue deterministic forecasts based on numerical weather predictionmodels. Uncertainty can then

be assessed through ensemble forecasts, where multiple estimates of the current state of the atmosphere are

used to generate a collection of deterministic predictions. Ensemble forecasts are often uncalibrated, how-

ever, and Bayesian model averaging (BMA) is a statistical way of postprocessing these forecast ensembles to

create calibrated predictive probability density functions (PDFs). It represents the predictive PDF as

a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights reflect the

forecasts’ relative contributions to predictive skill over a training period. In this paper the authors extend the

BMA methodology to use bivariate distributions, enabling them to provide probabilistic forecasts of wind

vectors. The BMAmethod is applied to 48-h-ahead forecasts of wind vectors over the NorthAmerican Pacific

Northwest in 2003 using the University of Washington mesoscale ensemble and is shown to provide better-

calibrated probabilistic forecasts than the raw ensemble, which are also sharper than probabilistic forecasts

derived from climatology.

1. Introduction

While deterministic point forecasts have long been the

standard in weather forecasting, there are many situa-

tions in which probabilistic information can be of value.

In this paper, we consider the case of wind vectors. In

many situations, simultaneously forecasting both the

direction and speed of wind is of interest. For example

boaters need to know not only how strong the winds

might be, but also the direction in which they will be

blowing. As another example, directional information

can be key to predicting the movement of airborne

pollutants.

In these situations, it can be valuable to have more

than just a best guess at the speed and direction of the

wind. Probabilistic forecasts can allow for the assess-

ment of likely scenarios and can provide the probabili-

ties of particular scenarios of interest. This information

can be of particular value in situations calling for a cost–

loss analysis, where probabilities of different outcomes

need to be known in order to make an optimal decision.

The optimal point forecast in these situations is often

a quantile of the predictive distribution (Roulston et al.

2003; Pinson et al. 2007a; Gneiting 2011). Different situ-

ations can require different quantiles, and this needed

flexibility can be provided by forecasts of a full predictive

probability density function (PDF).
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Medium-range forecasts looking several days ahead

are generally based on numerical weather prediction

models, which can then be statistically postprocessed.

To estimate the predictive distribution of a weather quan-

tity, an ensemble forecast is often used. An ensemble

forecast consists of a set ofmultiple forecasts of the same

quantity, based on different estimates of the initial at-

mospheric conditions and/or different physical models

(Palmer 2002; Gneiting and Raftery 2005). By using dif-

ferent estimates of initial conditions or different physical

models, ensemble forecasts attempt to capture the un-

certainty in forecasts. A statistical relationship between

forecast errors and ensemble spread has been estab-

lished for several ensemble systems (Buizza et al. 2005).

However, it has also been shown that ensemble fore-

casts are typically uncalibrated, with a tendency for

observed values to fall outside of the range of the en-

semble too often (Grimit and Mass 2002; Buizza et al.

2005; Gneiting and Raftery 2005).

A number of methods have been proposed for statis-

tically postprocessing ensemble forecasts of wind speed

or wind power (Bremnes 2004; Nielsen et al. 2006; Pinson

et al. 2007b; Møller et al. 2008; Pinson and Madsen 2009;

Sloughter et al. 2010; Thorarinsdottir andGneiting 2010).

These methods only address the scalar wind speed or

power quantity, however, and do not provide forecasts

for the wind vector. Glahn and Lowry (1972) proposed

a method for statistically postprocessing vector wind

forecasts, but their method produces only deterministic

forecasts. Bao et al. (2010) developed a method for sta-

tistically postprocessing wind direction forecasts, but this

only gives a marginal distribution for wind direction and

not a joint distribution for the wind vector.

Bayesian model averaging (BMA) was introduced by

Raftery et al. (2005) as a statistical postprocessing

method for producing probabilistic forecasts from en-

sembles in the form of predictive PDFs. The BMA

predictive PDF of any future weather quantity of in-

terest is a weighted average of component distributions,

each a PDF centered on the individual bias-corrected

forecasts, where the weights can be interpreted as pos-

terior probabilities of themodels generating the forecasts

and reflect the forecasts’ contributions to overall fore-

casting skill over a training period. The original devel-

opment of BMA by Raftery et al. (2005) was for scalar

weather quantities. Here we develop a BMAmethod for

wind vectors by relating the component distribution for

a given ensemble member to a bivariate normal distri-

bution; the BMA PDF is then itself a mixture of the

resulting distributions.

Section 2 describes the data used in this study. In

section 3, we review the BMA technique and describe

our extension of it to wind vectors. Then in section 4 we

give results for 48-h-ahead forecasts of wind vectors over

the North American Pacific Northwest in 2003 based on

the eight-member University of Washington mesoscale

ensemble (Grimit andMass 2002; Eckel andMass 2005).

Throughout the paper we use illustrative examples

drawn from these data, and we find that BMA is better

calibrated than the raw ensemble and sharper than cli-

matology for the period we consider. Finally, in section

5 we discuss alternative approaches and possible im-

provements to the method.

2. Data

This research considers 48-h-ahead forecasts of ‘‘in-

stantaneous’’ wind vectors over the Pacific Northwest in

the period 1 November 2002–31 December 2003, using

the eight-member University of Washington mesoscale

ensemble (Eckel and Mass 2005) at a 12-km resolution

initialized at 0000 UTC, which is 1700 local time in

summer, when daylight saving time operates, and 1600

local time otherwise. The dataset contains observations

and forecasts at surface airway observation (SAO) sta-

tions, a network of automated weather stations located

at airports throughout the United States and Canada.

Observations are recorded at a temporal resolution of

1 min. An hourly instantaneous wind vector is a 2-min

average from the period of 2 min before the hour to on

the hour. Data were available for 343 days, and data for

83 days during this period were unavailable due to fail-

ures in the model runs for those days. In all, 38 091

station observations were used, an average of about 111

station observations (with a single observation per sta-

tion) per day. Figure 1 shows observations of maximum

wind speeds from a typical day. Data from 2003 were

used for verification, and the November and December

2002 data were used only as initial training data for the

model.

We use a sliding training period for the model. For

each day, newmodel parameters are estimated based on

data over the previous 30 days. Thus, the model is con-

tinually updated to reflect current trends, and all verifi-

cation is conducted out of sample.

The forecasts were produced for observation loca-

tions by bilinear interpolation from forecasts generated

on a 12-km grid, as is common practice in the meteo-

rological community. The wind vector observations

were subject to the quality control procedures described

by Baars (2005).

The wind vector data we analyze come from recording

stations with a startup speed of 3 kt, so that any wind

vector whosemagnitude is less than 3 kt is recorded as 0.

Previous work on modeling wind speed found that

models that address discretizations such as this are
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computationally more expensive, while not significantly

improving forecasting results (Sloughter et al. 2010).

As such, our model here does not attempt to model

this discretization, instead treating these values as zero.

One knot is equal to approximately 0.514 m s21, or

1.151 miles h21.

3. Methods

a. Bias correction

We aim to model the distribution of observed wind

vectors conditional on the forecast wind vectors. To

simplify the model, we assume that the mean of this

conditional distribution is some function of the forecast

vector, and that the covariance matrix does not depend

upon the forecast. This assumption of homoscedasticity

was assessed by examining the residuals (the error vectors

after bias correction), and appears to be valid in our data.

Then our model, conditional upon a single forecast

vector, can be expressed as

y j fk; h(fk)1BV,

where BV is some bivariate distribution centered at 0.

That is, if we think of h(fk) as a bias-corrected forecast,

then we can reframe the problem to consider modeling

the bivariate distribution of the error vector rather than

the observation vector. This allows us tomodel themean

and the covariance matrix separately.

For simplicity, we restrict ourselves here to consid-

ering bias-correction techniques that take the form of

affine transformations. We look at two possible models,

one modeling only an additive transformation:

Y5 ak1 fk ,

and the other a full affine transformation:

Y5 ak1Bkfk .

Both methods are fit via least squares linear re-

gression. We use a sliding training period for the model.

For each day, new model parameters are estimated

based on data over the previous 30 days. We evaluate

performance here in terms of the bivariate root-mean-

squared error, that is, the square root of the mean of the

squared Euclidian norm of the error vectors. Table 1

shows how these two methods compare when applied to

each of the eight ensemble members. We can see that

the additive bias correction shows a lower bivariate root-

mean-squared error than the raw forecasts, while the full

affine bias correction shows further improvement over

the additive bias correction. We therefore proceed with

the full affine bias correction.

b. Bayesian model averaging

BMA (Leamer 1978; Madigan and Raftery 1994;

Hoeting et al. 1999) was originally developed as a way to

combine inferences and predictions from multiple sta-

tistical models, and was applied to statistical linear re-

gression and related models in social and health sciences.

Raftery et al. (2005) extended BMA to ensembles of

dynamical models and showed how it can be used as

a statistical postprocessing method for forecast ensem-

bles, yielding calibrated and sharp predictive PDFs of

future weather quantities.

In BMA for ensemble forecasting, each ensemble

member forecast fk is associated with a conditional PDF

FIG. 1. Observation locations at SAO stations over the Pacific

Northwest on 7 Aug 2003.

TABLE 1. Bivariate root-mean-squared error (kt) for bias-correction methods applied to each ensemble member.

GFS GEM ETA GASP JMA NOGAPS TCWB UKMO

Raw forecasts 8.45 8.54 8.60 8.65 8.58 8.61 8.76 8.56

Additive bias correction 8.35 8.46 8.50 8.55 8.50 8.56 8.69 8.46

Affine bias correction 7.26 7.39 7.39 7.48 7.42 7.47 7.55 7.33
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pk(y j fk), which can be thought of as the PDF of the

weather quantity y, given fk, conditional on fk being the

best forecast in the ensemble. The BMApredictive PDF

is then

p(y j f1, . . . , fK)5 �
K

k51

wk pk(y j fk) , (1)

where wk is the posterior probability of forecast k being

the best one and is based on forecast k’s relative per-

formance in the training period. The wks are probabili-

ties and so they are nonnegative and add up to 1, that

is, �K
k51wk 5 1. Here, K is the number of ensemble

members.

c. Bivariate error model

For univariate weather quantities, BMA methods

have been developed that fit the conditional PDFs using

normal distributions (Raftery et al. 2005) or (possibly

power transformed) gamma distributions (Sloughter

et al. 2007).

For two-dimensional wind vectors, we consider bivar-

iate normal distributions, centered at the bias-corrected

forecasts. This is equivalent tomodeling the error vector

with a bivariate normal distribution with mean 0. Explor-

atory work showed that our error vectors had heavier tails

than could be accounted for by the bivariate normal

distribution. We address this by considering a transfor-

mation of the error vectors. Various transformations

were assessed by quantile plots. We found that raising

the magnitude of the error vector to the four-fifths

power while preserving the angle produces values that

can be modeled well by a bivariate normal distribution.

It should be noted that there is no reason to assume

that this particular transformation is universal, and

similar exploratory work should be used in any new

setting to determine what, if any, transformation would

be appropriate.

We first consider the bias correction:

hk(fk)5 ak1Bkfk .

We then find the angle uk and magnitude rk of the error

vector, y2 hk(fk), and produce a new transformed error

vector:

ek(y)5

 
r4/5k cosuk
r4/5k sinuk

!
.

Thus our model is

ek(y);BVN(0,§) . (2)

Our final BMA model for the predictive PDF of the

weather quantity y, here the wind vector, is thus (1) with

pk the distribution of y implied by (2). We restrict the

covariance matrix § to be equal across all ensemble

members. This simplifies the model by reducing the

number of parameters to be estimated, makes parame-

ter estimation computationally easier, and reduces the

risk of overfitting.We found that it led to no degradation

in predictive performance.

d. Parameter estimation

Parameter estimation is based on forecast–observation

pairs from a training period, which we take here to be

the N most recent available days preceding initializa-

tion. The training period is a sliding window, and the

parameters are reestimated for each new initialization

period.

As mentioned above, bias-correction parameters

were fit using linear regression. These parameters are

member specific and are thus estimated separately for

each ensemble member using the observed wind vector

as the dependent variable and the forecasted wind vec-

tor fk as the independent variable.

We estimate the remaining parameters, w1, . . . , wK,

and §, by maximum likelihood from the training data.

Assuming independence of forecast errors in space and

time, the log-likelihood function for the BMA model is

‘(w1, . . . ,wK;§)5 �
s,t
logp(yst j f1st, . . . , fKst) ,

where the sum extends over all station locations s and

times t in the training data.

The log-likelihood function cannot be maximized

analytically, and instead we maximize it numerically

using the expectation–maximization (EM) algorithm

(Dempster et al. 1977; McLachlan and Krishnan 1997).

The EM algorithm is iterative, alternating between two

steps, the expectation (E) step, and the maximization

(M) step. It uses the unobserved quantities zkst, which

are latent variables equal to 1 if observation yst comes

from the kth mixture component and to 0 otherwise.

In the E step, the zkst are estimated given the current

estimate of the parameters. Specifically,

ẑ
( j11)
kst 5

w
(j)
k g

(j)
k [ek(yst)]

�
K

l51

w
(j)
l g

(j)
l [el(yst)]

,

where the superscript j refers to the jth iteration of the

EM algorithm, and thus w
(j)
k refers to the estimate of wk

at the jth iteration. The quantity g
(j)
k [ek(yst)] is defined as

the probability density function for ek(yst) using the
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estimate of§ from the jth iteration. Note that, although

the zkst are equal to either 0 or 1, the ẑkst are real num-

bers between 0 and 1. The ẑ1st, . . . , ẑKst are nonnegative

and sum to 1 for each (s, t).

The M step then consists of maximizing the expected

log-likelihood as a function of w1, . . . , wK, and§, where

the expectation is taken over the distribution of zkst
given the data and the previous estimates. This is the

same as maximizing the log-likelihood given the zkst as

well as w1, . . . , wK, and §, evaluated at zkst 5 ẑ
( j11)
kst .

Thus,

w
( j11)
k 5

1

n
�
s,t
ẑ
( j11)
kst ,

where n is the number of cases in the training set, that is,

the number of distinct values of (s, t). Also,

§( j11) 5

�
K

l51

S
( j11)
l

n
,

where

S
(j11)
l 5 �

s,t
ẑ
( j11)
lst el(yst)el(yst)

T .

These updated parameter estimates result in an

updated likelihood function, which is then used in the

subsequent iteration. The E and M steps are iterated to

convergence, which we define as a change no greater

than some small tolerance in the log-likelihood in one

iteration. The log-likelihood is guaranteed to increase at

each EM iteration (Wu 1983), which implies that in

general it converges to a local maximum of the likeli-

hood. Convergence to a global maximum cannot be

guaranteed, so the solution reached by the algorithm can

be sensitive to the starting values. Choosing the starting

values based on equal weights and themarginal variance

usually led to a good solution in our experience.

e. Forecasting

Once the parameters of the model have been fit, it

remains to use the model to generate probabilistic

forecasts. As the interest may be in either the forecast

of the full wind vector or of some derived quantity such

as wind speed or direction, we simulate a large number

of forecasts from the distribution. We can then use the

empirical distribution of these simulated forecasts, or

of any derived quantity from these forecasts, as our

forecast distribution. This essentially creates a new,

larger, and better-calibrated ensemble of vector wind

forecasts.

4. Results

We begin by looking at aggregate results over the

entire Pacific Northwest domain for the full 2003 cal-

endar year, with the data available from late 2002 used

only as training data, to allow us to create forecasts

starting in January. We then examine using the vector

forecasts to create forecasts for marginal wind speed

and wind direction. Finally, we look at some more

specific examples of results for individual locations and/

or times.

a. Vector forecast results

In assessing probabilistic forecasts of wind vectors, we

aim to maximize the sharpness of the predictive PDFs

subject to calibration (Gneiting et al. 2007). Calibration

refers to the statistical consistency between the forecast

PDFs and the observations. For ensembles of univariate

quantities, calibration is often assessed using a verifica-

tion rank histogram. For multivariate quantities as we

have here, the analog is to use the multivariate rank

histogram (Gneiting et al. 2008). If the observation and

the ensemble members come from the same distribu-

tion, then the observed and forecasted values are ex-

changeable which should result in a flat multivariate

rank histogram.

Figure 2 shows these results for our data. The multi-

variate rank histogram illustrates the lack of calibration

in the raw ensemble, which is underdispersed, similarly

to results reported by Eckel and Walters (1998), Hamill

and Colucci (1998), and Mullen and Buizza (2001) for

other ensembles. From the multivariate rank histogram

for the BMA forecast distribution, we see that our

forecast is substantially better calibrated than the raw

ensemble. It has been noted that in some situations, rank

histograms are insufficient to accurately assess calibra-

tion (Hamill 2001; Gneiting et al. 2007; Marzban et al.

2011; Kolczynski et al. 2011). As such, we consider other

results that also examine calibration.

Scoring rules provide summarymeasures of predictive

performance that address calibration and sharpness si-

multaneously. A particularly attractive scoring rule for

probabilistic forecasts of a multivariate variable is the

energy score, a multivariate analog of the continuous

ranked probability score. It is a proper scoring rule and

is defined as

es(P, x)5EPkX2 xk2 1

2
EPkX2X9k ,

where P is the predictive distribution, x is the observed

wind vector, and X and X9 are independent random

variables with distribution P (Gneiting et al. 2008). The
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energy score is negatively oriented (i.e., the smaller the

better).

A point forecast can be created from a forecast distri-

bution by finding the spatial median of the predictive

distribution. The spatial median is the unique value that

minimizes themultivariatemean absolute error (Milasevic

and Ducharme 1987), that is, the mean magnitude of the

error vectors. It is the multivariate analog of themedian,

reducing to the median in the one-dimensional case.

Table 2 shows energy score and multivariate mean

absolute error values for climatology, that is, the mar-

ginal distribution of observed wind speed across space

and time for the dataset, the raw ensemble forecast, and

the BMA forecasts, all in units of knots. We see that

BMA outperforms both climatology and the raw en-

semble in both of these measures.

b. Wind speed forecast results

We can also consider the performance of the marginal

forecast distribution for wind speed obtained from this

method. In the univariate case, to assess calibration, we

consider Fig. 3, which shows the verification rank his-

togram for the raw ensemble forecast and probability

integral transform (PIT) histograms for the BMA

forecast distributions. In both cases, a more uniform

histogram indicates better calibration. The verification

rank histogram plots the rank of each observed wind

speed relative to the eight ensemble member forecasts.

If the observation and the ensemble members come

from the same distribution, then the observed and

forecasted values are exchangeable so that all possible

ranks are equally likely. The PIT is the value that the

predictive cumulative distribution function attains at the

observation and is a continuous analog of the verifica-

tion rank.

We again see the lack of calibration in the raw ensem-

ble, which is underdispersed. From the PIT histograms

for the BMA forecast distribution, we see substantially

improved calibration.

FIG. 2. Calibration checks for probabilistic forecasts of vector wind

over the Pacific Northwest in 2003. Multivariate rank histogram for

(a) the raw ensemble and (b) the BMA forecast distribution.

TABLE 2. Mean energy score (ES) and multivariate mean ab-

solute error (MMAE) for probabilistic forecasts of wind vectors

over the Pacific Northwest in 2003 (kt). The MMAE refers to the

point forecast given by the spatial median of the respective forecast

distribution.

Forecast ES MMAE

Climatology 5.303 7.187

Ensemble 5.421 6.793

BMA 4.323 6.037

FIG. 3. As in Fig. 2, but for wind speed. Verification rank histo-

gram for (a) the raw ensemble and (b) PIT histogram for the BMA

forecast distribution.
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If the eight-member raw ensemble were calibrated,

there would be a 1/9 probability of the wind speed ob-

servation falling below the ensemble range, and a 1/9

probability of it falling above the ensemble range. As

such, to allow direct comparisons to the raw ensemble,

we will consider 7/9 or 77.8% central prediction intervals

from the BMA PDF. Table 3 shows the empirical cov-

erage of 77.8% prediction intervals, and the results echo

what we see in the verification rank and PIT histograms.

The raw ensemble was highly uncalibrated. The BMA

intervals were much better calibrated. The table also

shows the averagewidth of the prediction intervals, which

characterizes the sharpness of the forecast distributions.

While the raw ensemble provides a narrower interval,

this comes at the cost of much poorer calibration.

The continuous ranked probability score (CRPS) is

the scalar equivalent of the energy score. A general-

ization of the mean absolute error (MAE), it can be

directly compared to the latter. It is a proper scoring rule

and is defined as

crps(P, x)5

ð‘
2‘

[P(y)2 I(y$ x)]2dy

5EPjX2 xj2 1

2
EPjX2X9j ,

whereP is the predictive distribution, here taking the form

of a cumulative distribution function; x is the observed

wind speed; and X and X9 are independent random

variables with distribution P (Grimit et al. 2006; Wilks

2006; Gneiting and Raftery 2007). Both CRPS andMAE

are negatively oriented (i.e., the smaller the better).

Table 3 shows CRPS and MAE values for climatol-

ogy, the raw ensemble forecast, and the BMA forecasts,

all in units of knots. A point forecast can be created from

the BMA forecast distribution by finding the median of

the predictive distribution, and the MAE refers to this

forecast. Similarly, we show the MAE for the median of

the eight-member forecast ensemble, with the results for

BMA being by far the best. The results for the CRPS

were similar, in that BMA outperformed the raw en-

semble and climatology.

c. Wind direction forecast results

We can then also consider the performance of the

marginal forecast distribution of wind direction obtained

through our method. The verification rank histogram

requires an ability to rank the observation relative to the

ensemble forecast. For a circular variable, there is no

absolute starting or ending point, and so we must in

some fashion choose a starting point in order to be able

to define a rank. While it would be possible to choose an

arbitrary direction, say 08, as the starting point, the his-

togram would no longer have the easy interpretability

that it has in other situations. To retain the ability to

interpret over- and underdispersion from these histo-

grams, we wish to define a starting point that captures

a sense of the ‘‘inside’’ and ‘‘outside’’ of the ensemble

range.

We propose doing so by first finding the directional

mean (Fisher 1993). This seems a reasonable candidate

to be considered inside the ensemble range. Because we

are effectively testing an assumption of exchangeability

with the observation and the ensemble, this directional

mean is calculated using both the observation and the

ensemble. We then take a point 1808 opposite the di-

rectional mean, which should be outside the ensemble

range, and consider that to be our starting point. We

then count counterclockwise to obtain the rank of the

observation relative to the ensemble. Thus observations

‘‘below’’ the majority of the ensemble member forecasts

will have a low rank, and observations ‘‘above’’ the

majority of the ensemble member forecasts will have

a high rank.

Figure 4 shows these histograms for both the raw en-

semble and a simulated BMA ensemble. As in the ear-

lier instances we see a more uniform histogram for the

simulated BMA ensemble, indicating better calibration

of the BMA forecast than that of the raw ensemble.

The directional CRPS is an analog of the CRPS that

can be applied to circular variables (Grimit et al. 2006).

It too is a proper scoring rule and is defined as

dcrps(P, u)5EPa(Q, u)2
1

2
EPa(Q,Q9) ,

where a(u, u9) denotes the angular distance between any
two directions u and u9 on the circle [2p, p) and where

Q and Q9 are independent random variables with com-

mon circular probability distribution P.

Point forecasts can be obtained by calculating the di-

rectional median (Fisher 1993), and they can be assessed

by considering the mean directional error. Table 4

compares these results from BMA to the raw ensemble,

and we again see improved performance from the BMA

forecast.

TABLE 3. Mean CRPS and MAE, and coverage and average

width of 77.8% central prediction intervals for probabilistic fore-

casts of wind speed over the Pacific Northwest in 2003. Coverage is

in percent; all other values in kt. The MAE refers to the point

forecast given by themedian of the respective forecast distribution.

Forecast CRPS MAE Coverage Width

Climatology 2.856 3.982 77.8 12.99

Ensemble 3.064 3.713 42.7 5.38

BMA 2.591 3.468 69.4 9.16
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d. Example

To illustrate the BMA forecast distributions for wind

vectors, we show an example on 4 February 2003, at

Omak, Washington. Table 5 gives the parameters of the

BMAdensity at this location for this day. Figure 5 shows

a contour plot of the BMA forecast density, as well as

the ensemble member forecasts and the observed wind

vector. We can see that the observation is outside of the

range of the raw ensemble, as well as being slightly

outside of the range of the bias-corrected ensemble, but

well within the BMA density.

We can examine some of the details of the parameters

in this instance. Figure 5 has the BMA weights labeled

next to each of the ensemble member forecasts. As one

would expect, the density is largely centered around the

forecasts with higher weights.

We then examine the bias-correction parameters.

There is first an additive bias-correction vector. In this

case, we see that the first component, corresponding to

east–west direction, is very close to zero in all cases, while

the second component is consistently negative, suggesting

a small northerly bias to the forecasts. We then de-

compose the transformation matrix Bk in terms of skew,

squeeze, rotation, and scaling, for interpretability. For

a matrix of the form

�
a b

c d

�
,

we first define

f 5
1

a21 c2
.

The skew can then be calculated as

n5 (ab1 cd)f .

The squeeze can be calculated as

t5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f (ad2 bc)
p .

The scaling can be calculated as

r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ad2bc)

p
.

The rotation can then be calculated as

w5 arccos
a

rt
.

We see a negative skew—this indicates that the y axis is

being transformed from a vertical line to a line with a

negative slope. The squeeze values indicate a change in

the relative dimensions along the x and y axes—in this

case, they are close to one, suggesting very little change in

the relative dimensions. The rotation is an angular rotation

of the forecast vector; here we see a small but relatively

consistent counterclockwise rotation. Finally we see that

the scaling is less than one, indicating that the bias cor-

rection is decreasing themagnitude of the forecast vectors.

We additionally compare the BMA forecasts at Omak

over the 2003 calendar year to the raw ensemble fore-

cast. Table 6 shows energy scores and multivariate mean

absolute errors for climatology (here a station-specific

climatology considering only the marginal distribution

of observed values at this station over the entire data

period), the raw ensemble, and BMA at this location.

FIG. 4. Calibration checks for probabilistic forecasts of wind di-

rection over the Pacific Northwest in 2003. Directional verification

rank histogram for (a) the raw ensemble and (b) the BMA forecast

distribution.

TABLE 4. Mean directional continuous ranked probability score

(DCRPS) and mean directional error (MDE) for probabilistic

forecasts of wind direction over the Pacific Northwest in 2003 (8).

Forecast DCRPS MDE

Climatology 30.24 45.42

Ensemble 36.76 46.86

BMA 28.82 43.29
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The BMA forecast showed substantially better scores

than the raw ensemble. Furthermore, the multivariate

rank histograms in Fig. 6 show that the BMA forecast

distribution was substantially better calibrated than the

raw ensemble.

e. Weights

There was substantial variability in the weights over

time. Figure 7 shows the weights over time. On average,

the most highly weighted ensemble member was the

National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS; with an average weight

of 0.32), followed by the Met Office (UKMO; average

weight of 0.23), then the ETA Model (0.10), Canadian

Meteorological Centre (CMC) Global Environmental

Multiscale Model (GEM) (0.08), Japan Meteorologi-

cal Agency (JMA; 0.08), Taiwan Central Weather

Bureau Operational Model (TCWB) (0.07), Navy

Operational Global Atmospheric Prediction System

(NOGAPS) (0.06), and Australian Bureau of Meteo-

rology (BoM) Global Analysis and Prediction model

(GASP) (0.06).

TABLE 5. BMA forecast parameters for 4 Feb 2003.

GFS GEM ETA GASP JMA NOGAPS TCWB UKMO

Weight 0.33 0.11 0.01 0.00 0.04 0.17 0.07 0.27

Additive bias 0.059 20.074 20.053 0.024 20.048 0.049 20.061 0.013

Correction 20.323 20.174 20.185 20.269 20.208 20.240 20.140 20.343

Skew 20.321 20.300 20.265 20.291 20.223 20.326 20.268 20.225

Squeeze 0.944 0.932 0.939 0.935 0.914 0.945 0.980 0.935

Rotation 7.24 7.26 7.59 12.57 11.17 6.00 8.69 12.81

Scaling 0.448 0.450 0.422 0.409 0.429 0.434 0.401 0.423

FIG. 5. BMA forecast density for 4 Feb 2003, at Omak,WA.Contours represent theBMAdensity, the small circles are the raw ensemble

forecasts, the crosses are the bias-corrected ensemble forecasts, and the triangle is the observed wind vector. The dashed lines connect the

raw ensemble forecasts to the corresponding bias-corrected forecasts.
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f. Comparison to independent BMA model

To further demonstrate the value of this new multi-

variate BMA model, we compare the results to what

could have been achieved using existing methodologies.

We construct independent BMAmodels for theU andV

components of the wind vector, each using a mixture of

normal distributions, similar to themodels developed by

Raftery et al. (2005). By simulating from these inde-

pendently modeled U and V components, we create an

empirical BMA distribution for wind vectors that does

not use a multivariate modeling approach. We show here

that such an approach, while improving over the raw

ensemble, does not provide the same quality of forecasts

that the multivariate BMA model provides.

As discussed above, Table 2 shows energy score and

multivariate mean absolute error values for climatology,

the raw ensemble forecast, and the multivariate BMA

forecasts, all in units of knots. For the independent

BMA model, the mean energy score was 4.430 and the

multivariate mean absolute error was 6.209. We see that

the multivariate BMA outperforms both the raw en-

semble and the independent BMA in both of these

measures. Figure 2, as previously discussed, shows the

multivariate rank histograms for the raw ensemble and

the multivariate BMA forecasts. Figure 8 shows that the

independent BMA forecast, while better calibrated than

the raw ensemble, is not as well calibrated as the mul-

tivariate BMA forecast.

5. Discussion

We have shown how to apply BMA to wind vector

forecasts. This provides a statistical postprocessing

method for ensembles of numerical weather predictions

that yields a full predictive distribution for wind vectors.

In our experiments with theUniversity ofWashington

mesoscale ensemble, the BMA forecast PDFs were

better calibrated than the raw ensemble, which was

underdispersive. The BMA spatial median forecast had

lower multivariate mean absolute error than the en-

semble spatial median, and the BMA forecast PDFs had

a substantially lower energy score than the raw ensem-

ble or climatology. We also saw that the marginal

probabilistic forecasts for both wind speed and wind

direction that can be obtained from the BMA forecast

outperformed the raw ensemble forecasts.

While our implementation has been for a situation

where the ensemble members come from clearly distin-

guishable sources, it can easily be modified to deal with

situations in which ensemble members come from the

same model, differing only in some random perturbations.

Examples include the global ensembles that are cur-

rently used by the National Centers for Environmental

Prediction and the European Centre for Medium-Range

Weather Forecasts (Buizza et al. 2005). In these cases,

members coming from the same source should be treated

as exchangeable, and thus should have equal weight and

equal BMA parameter values across members. This

would be analogous to the method described by Raftery

et al. (2005, p. 1170),Wilson et al. (2007), and Fraley et al.

(2010).

Our method produces forecasts at individual locations,

which is the focus of many, and possibly most applica-

tions. As a result we have not had to model spatial cor-

relation between observed values, although these are

definitely present. In applications that involve forecasting

at more than one location simultaneously, it would be

vital to take account of spatial correlation. These include

TABLE 6. Mean ES and MMAE for probabilistic forecasts of

wind vectors at Omak, WA, in 2003 (kt). The MMAE refers to the

point forecast given by the spatial median of the respective forecast

distribution.

Forecast ES MMAE

Climatology 5.341 7.202

Ensemble 5.335 6.773

BMA 4.256 5.974

FIG. 6. As in Fig. 2, but at Omak, WA, in 2003.
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forecasting maximum wind speeds over an area or tra-

jectory, for example for shipping or boating, and fore-

casting the total energy from several wind farms in a

region. Methods for probabilistic weather forecasting at

multiple locations simultaneously have been developed

for temperature (Gel et al. 2004; Berrocal et al. 2007),

for precipitation (Berrocal et al. 2008), and for tem-

perature and precipitation simultaneously (Berrocal

et al. 2010). These methods could potentially be ex-

tended to variables such as wind speed and wind vectors.

Schuhen et al. (2012) discuss the ensemble copula cou-

pling approach to forecasting wind vectors, which can

model spatial correlation in forecasts.

Spatial information could also improve forecasts by

taking into consideration the differing statistical relation-

ships between forecasts and observations at different lo-

cations. Our method estimates a single set of parameters

across the entire domain. Nott et al. (2001) noted that lo-

calized statistical postprocessing can address issues of

locally varying biases in numerical weather forecasts. Lo-

calized versions of BMA for temperature, based on

modeling the spatial variation in the bias of the forecasts or

on taking sets of forecasts and observations within a care-

fully selected neighborhood, have shown substantial im-

provements over the global version (Kleiber et al. 2011),

and it seems plausible that similar improvements would

be seen for a localized version of BMA for wind vectors.

We have shown how to extend BMA to model mul-

tivariate quantities whose errors have an ellipsoidal

distribution.While we have only investigated this for the

particular case of wind vectors, it seems likely that this

family of power-transformed multivariate normal distri-

butions could provide the flexibility to model a variety of

multivariate quantities whose error distributions are el-

lipsoidal. Additionally, this method could be reduced to

the univariate case, where power-transformed normal

distributions could potentially be used tomodel quantities

whose error distributions are symmetric but nonnormal.

FIG. 7. BMA ensemble member weights across time.

FIG. 8. Calibration checks for probabilistic forecasts of vector

wind over the Pacific Northwest in 2003 for the independent BMA

forecasts.
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One general open modeling question is how to model

multivariate quantities in which the error distribution is

not ellipsoidal. This issue may arise in other wind vector

situations, or in situations where a joint distribution of

two or more skewed weather quantities is of interest

(such as modeling a joint distribution for wind speed and

pressure, or temperature and precipitation). Other work

has investigated modeling wind vectors using a bivariate

skew-t distribution (Hering and Genton 2008), and

a BMA method could be developed using these as the

component distributions, or possibly by fitting each

component as a mixture of multiple multivariate normal

distributions. Pinson (2012) has proposed an alternative

method that, unlike what we do here, does not fit prob-

ability distributions based on the ensembles. Instead, he

carries out a two-dimensional translation and dilation of

the set of ensemble forecasts based on an estimated bi-

variate Gaussianmodel, to yield an ensemble of the same

nature as the original one, but that is calibrated. Schuhen

et al. (2012) propose an approach to forecasting wind

vectors via ensemble model output statistics.
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