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a b s t r a c t

We consider two difficulties with standard multiple imputation
methods formissing data based on Rubin’s tmethod for confidence
intervals: their often excessive width, and their instability. These
problems are present most often when the number of copies is
small, as is often the case when a data-collection organization
is making multiple completed datasets available for analysis. We
suggest using mixtures of normals as an alternative to Rubin’s
t . We also examine the performance of improper imputation
methods as an alternative to generating copies from the true
posterior distribution for the missing observations. We report the
results of simulation studies and analyses of data on health-related
quality of life in which the methods suggested here gave narrower
confidence intervals and more stable inferences, especially with
small numbers of copies or non-normal posterior distributions of
parameter estimates. A free R software package called MImix that
implements our methods is available from CRAN.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In public health and social research, it is now common for researchers to collect a large amount
of information on a big set of subjects. Organizations that collect and provide data often serve users
that vary in their levels of statistical sophistication. As is standard in the imputation literature, wewill
assume here that the data-collection organization has control over the datasets provided to users, but
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not over the analyses they perform. The goal of the data-collection organization is to provide a set of
data that users can analyze using standard complete data techniques.
Usually, the possible recourses for peoplewhowish to analyze such data are to ignore observations

with missing data (row elimination or complete case analysis), to ignore entire variables for which
there are missing values (column elimination), or to use a more sophisticated statistical technique to
handle the missingness in the data.
None of these recourses is very attractive. The first two, which involve ignoring data that were

collected, are inefficient and can lead to biases if the missing data are not missing completely at
random. For longitudinal clinical studies, they might actually cause one to eliminate a significant
fraction of the data collected. The third is the most desirable from a statistical point of view, but
requires a level of technical sophistication beyond that of many users of large databases.
Multiple imputation, introduced by Rubin for survey researchers [18,19] and popularized by

Schafer [21] and the accompanying software, is intuitively appealing and relatively straightforward,
and is now widely used.
The standard approach to inference about individual parameters frommultiple imputation is to use

a confidence interval based on the t distribution. We will show when the number of copies is small,
this can lead to confidence intervals that are very wide, unstable, or both. Here we take a different
approach, approximating the marginal posterior distribution of parameters or quantities of interest
by amixture of normals, as has long been a standard approach to density estimation [6,28,4,17,7]. We
show that this gives narrower confidence intervals and better overall performance than the t-based
intervals.
A free R software package called MImix that implements our methods is available at http://cran.r-

project.org.
In Section 2 we describe our method, in Section 3 we analyze a simple simulated example, and in

Section 4 we apply our method to a real data set from health-related quality of life research.

2. Methods

We denote the observed data by Y and the missing data by Z , and we assume that the analyst
is interested in estimating a particular vector-valued estimand of interest (Q ) (e.g. means, medians,
regression coefficients, etc.).
Rubin [20] addresses the topic from a Bayesian perspective, which we summarize here. A Bayesian

approach to inference about Q centers on the posterior distribution of Q given the observed data
Y . One can write the posterior distribution of Q as P(Q |Y , X) =

∫
P(Q |Y , Z, X)P(Z |Y , X)dZ , where

P(Z |Y , X) is the posterior distribution of the missing data Z given the observed data and X represents
other information that the imputermay have. Note that the imputer is not necessarily the analyst, and
may, for example, be an agency providing a small number of multiply imputed copies of the dataset
for use by others. If one specifies a full probabilitymodel for themissing data, then one can in principle
make posterior inference about Q . The posterior mean and variance of Q are as follows:

E(Q |Y , X) = EZ (EQ (Q |Y , Z, X)|Y , X) (1)

Var(Q |Y , X) = EZ (VarQ (Q |Y , Z, X)|Y , X)+ VarZ (EQ (Q |Y , Z, X)|Y , X)
= U + B. (2)

These could be estimated by simulating independent draws from the posterior distribution of the
missing data Z , and replacing the expectations over Z in (1) and (2) by sample averages over the
simulated values of Z .
Under the multiple imputation paradigm of [18], the imputer generates copies of the missing data

from P(Z |Y , X), a probability model that attempts to model the missing data based on the observed
responses (Y ) and other information for both complete and incomplete cases (X). Conditionally on the
probability model, the following are consistent estimators of Q , U and B:

Q̄ =
1
M

M∑
m=1

Q∗m → E(Q |Y , X) asm→∞,

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org
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Ū =
1
M

M∑
m=1

U∗m → U asm→∞,

B̄ =
1

M − 1

M∑
m=1

(Q∗m − Q̄ )(Q∗m − Q̄ )′ → B asm→∞,

where Q∗m is the complete data estimate of the posterior mean of Q and U∗m is the complete data
estimate of the posterior variance. Rubin [19] suggested using Q̄ as an estimate of Q and T =
Ū + (1+ 1

M )B̄ as the estimate of the uncertainty about Q conditional only on the observed data.
Rubin [19] proposed approximating the posterior distribution of P(Q |Y ) by a t-distribution with

degrees of freedom that depend on the number of copies, the total number of cases, and an estimate
of the amount of missing information in the problem, namely ν = (m − 1)(1 + r−1m )

2, where rm
is the increase in relative increase in variance due to nonresponse, estimated as rm = (1 + 1

M )B̄/Ū .
Barnard andRubin [1] gave an adjustment to the degrees of freedom for small numbers of imputations,
ν∗ = 1/(1/ν + 1/ν0), where ν0 = (a+ 1) ∗ a/(a+ 3) ∗ Ū/(Ū + (1+ 1/M)B̄) and a is the number of
complete data degrees of freedom. The adjustment performs better for small numbers of copies than
the original degrees of freedom suggested by Rubin [19].
Another approach is to approximate the marginal posterior distribution of interest by a mixture

of estimated complete data posteriors. If one could generate M copies of the missing data from the
correct probabilitymodel, {Z1, . . . , ZM}, then aMonte Carlo approximation can be used for P(Q |Y , X),
i.e. P̂(Q |Y , X) = 1

M

∑M
m=1 P(Q |Y , Z

m, X). If the complete data posterior distribution of the quantity
of interest is approximately normal, we could replace P(Q |Y , Zm, X) by normal distributions having
means Q∗m and variance–covariance matrices U∗m, and thus obtain another approximation to the
marginal posterior distribution [28,4].
Wei and Tanner [27] proposed two alternative approximations to the posterior distribution of the

model parameters θ . The first was Poor Man’s Data Augmentation (PMDA-1) where imputations are
generated from an approximation to p(Z |Y ) based on the maximum likelihood estimator θ̂ , namely
p(Z |Y , X, θ̂ ). The PMDA-1method approximates the posterior of θ by 1M

∑M
m=1 P(θ |Y , Z

m, X). PMDA-
1 produces asymptotically biased estimates of the posterior, but if the observed data posterior is
concentrated around θ̂ (which is the case for small amounts of missing data) then the bias will not be
too large.
Wei and Tanner also suggested an importance sampling based solution, PMDA-2, which

approximates the observed data posterior by

M∑
m1

w(Zm)
M∑
i=1
w(Z i)

p(θ |Y , Zm, X),

where

w(Zm) = (detΣ∗)1/2
p(θ̂∗m|Y , Z

m, X)

p(θ̂ |Y , Zm, X)
,

Σ∗ is the inverse Hessian of log(p(θ |Y , Zm, X)) evaluated at θ̂∗m, the maximum of p(θ |Y , Z
m, X).

The weights, w(Zm), are importance sampling weights designed to correct for the fact that one is
not sampling from the correct posterior, p(Z |Y , X), and so PMDA-2 is an unbiased estimate of the
observed data posterior. If p(θ |Y , Z, X) is not available in closed form, then one can use a different
approximation for the importance weights. We can write the importance weights as

w(Zm) =
p(Zm|Y , X)

p(Zm|θ̂ , Y , X)
=

p(Y , Zm|X)

p(Y |X)p(Zm|θ̂ , Y , X)
. (3)

In (3), P(Y |X) is unknown in general, but it is not needed because it cancels in the importance
sampling calculation. The quantity p(Y , Zm|X) is needed to compute the weights, and it is often
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not available in closed form. This is the complete data log-integrated likelihood, which can often
be approximated by the Schwarz approximation P(Y , Z |X, θ̂m)n−d/2, where d is the number of
parameters and n is the total sample size for the complete data model [23,10].
Summarizing via mixtures of normals rather than using a t distribution only slightly increases

the computational burden on the user. In order to obtain point estimates (via the median of the
posterior density estimate) and 95% confidence (or credible) limits, the user must simply obtain the
required percentiles of the mixture distribution. Obtaining the desired mixture percentile values (say
cj) requires solving

M∑
m=1

w(zm)φ(q, θ̂m, σ (θ̂m)) = cj

for q where φ represents the normal density. Numerical root-finding methods (typically available
in statistical software) can be used to solve for q. If the user does not have access to such software,
they could also generate samples of q from the mixture density and use the Monte Carlo samples to
estimate the percentiles of interest.

3. Simulated data example

In this paper, we compare several multiple imputation methods for estimation of functionals of
interest, focusing on the results for small numbers of copies. It has been shown elsewhere [19,14]
that generating copies from the correct posterior distribution is preferable to generating copies from
an approximation to the correct posterior as the number of copies used in the estimation tends
to infinity. We will focus on both very small numbers of copies (3 or 5) which makes sense for
imputation for ‘‘typical’’ users (and is commonly recommended in texts and software documentation
for computational procedures), and we will also look at performance for 10 and 25 copies, which is
feasible when the storage capacity allows or the research problem demands higher precision. Wewill
compare four methods, two of which are proper, completing the missing observations via their true
posterior distribution, namely Rubin’s t and Monte Carlo methods. One method follows the concept
of PMDA-2, which uses an improper method of imputation generation but still yields asymptotically
correct inference for the parameters of interest. The last method is PMDA-1, which is both improper
and inconsistent.
The simple normal example has proved enlightening in other work [16], and we use it here

as a starting example. Assume that we observe N subjects and wish to estimate a tail probability,
i.e. θ = Pr(X < ξ), where we assume that X is normally distributed with an unknown mean µ and
variance σ 2. If none of the N observations is missing, then one can obtain a model-based estimate of
the tail probability, θ , namely θ̂N = Φ(

ξ−x̄N
sN
), where Φ is the cumulative distribution function of the

standard normal.
Using the asymptotic normality of θ̂N to make inference about θ via the Delta method, we obtain

θ̂N∼̇φ
(
Φ(

ξ−µ

σ
), τ (µ, σ , ξ)

)
where φ(a, b) indicates the normal density with mean a and variance b.

Here ∼̇, denotes approximately distributed and

τ(µ, σ , ξ) =

{
∂
∂µ
Φ(

ξ−µ

σ
)
}2
σ 2 +

{
∂

∂σ 2
Φ(

ξ−µ

σ
)
}2
2σ 4

N
is the resulting variance from the Delta method. Given a sample x1, . . . , xN , we can estimate µ by
x̄N and σ by sN and use the plug-in approach to obtain an approximate confidence set for the tail
probability of interest.
One can also approach the problem as one of estimating the posterior distribution of θ , i.e.

p(θ |x1, . . . , xN). The posterior distribution for θ is not available in closed form, even when
using the standard Normal-Inverse-χ2 conjugate priors for µ and σ 2. However, we can easily
sample from the posterior distribution of µ and σ 2 in closed form, so we could generate an
approximate sample from p(θ |x1, . . . , xN) by first sampling µ and σ 2 from their joint posterior
distribution, and then calculate the resulting θ for each pair. Another possibility is to use a normal



R.J. Steele et al. / Statistical Methodology 7 (2010) 351–365 355

approximation to the posterior via the same delta method approximation used in the frequentist
case, i.e. p(θ |x1, . . . , xN)∼̇φ(Φ(

ξ−x̄N
sN
), τ (x̄N , sN , ξ)). One can justify this approximation under the

assumption that any reasonably non-informative prior distribution will have negligible effect on the
normality of the likelihood asymptotically [2].
In order to evaluate the imputation methods, we now assume that k of the N observations are

missing, leaving N − k = n observed data points. Because the data are missing completely at random
(MCAR), the obvious correct inference for the problem is based on the estimator and variance estimate
using only the observed data points, i.e. θ̂n is approximately normal with meanΦ(

ξ−x̄n
sn
) and variance

τ(x̄n, sn, ξ) where x̄n and s2n are the sample mean and variance of the reduced dataset. However,
treating this as amissing data problem allows us to ‘‘impute’’ themissing data and use the ‘‘completed
data’’ x1, . . . , xN to make inference about the parameter of interest for a situation where we know
what the correct inference is.
We generate M copies of the missing data points x(m)n+1, . . . , x

(m)
N according to their true posterior

distribution p(·|x1, . . . , xn), or M copies of x
∗(m)
n+1 , . . . , x

∗(m)
N according to their posterior distribution

conditional on the maximum likelihood estimates, p(·|x1, . . . , xn, µ̂, σ̂ ). We then calculate x̄mN and
smN (m = 1, . . . ,M) (or x̄

∗m
N and s∗mN ) for each completed dataset. In each case, the complete data

estimate of the posterior functional of interest is Φ( ξ−x̄
m
N

smN
) (or Φ( ξ−x̄

∗m
N

s∗mN
)). We consider the following

approximations for p(θ |x1, . . . , xn):

• Rubin’s t: a t distribution with mean 1
M

∑M
m=1Φ(

ξ−x̄mN
smN
) and variance and degrees of freedom

estimated according to Rubin [19] and Barnard and Rubin [1].
• Monte Carlo: a mixture of normal distributions, 1M

∑M
m=1 φ(Φ(

ξ−x̄mN
smN
), τ (x̄mN , s

m
N , ξ))

• PMDA-1: a mixture of normal distributions, 1M
∑M
m=1 φ(Φ(

ξ−x̄∗mN
s∗mN

), τ (x̄∗mN , s
∗m
N , ξ))

• PMDA-2: an importance weighted mixture of normal distributions,
M∑
m=1

w(x∗mn+1, . . . , x
∗m
N )φ

(
Φ

(
ξ − x̄∗mN
s∗mN

)
, τ (x̄∗mN , s

∗m
N , ξ)

)
.

There are at least two advantages toworkingwith our simple example above. First, we can simulate
from the true posterior distribution of the missing data (no MCMC approximation is necessary). It is
in fact the posterior predictive distribution based on the n completely observed data points. Second,
we can generate datasets for which we know that the distributional assumptions hold. Therefore any
differences between the methods must be due to their actual properties as estimators and simple
Monte Carlo variability due to the generation of datasets and the Monte Carlo sampling required of
the methods, rather than to an incorrect data model or difficulties with generating samples from the
posterior distribution.
We simulated 10,000 datasets with 150 observations and 20% missingness. We let ξ = − 1.96.

In order to reduce Monte Carlo variability as much as possible, missing observations were generated
using the same uniform random variables across the four methods and the inverse-CDF transform
method. Also, an imputed data set with a smaller number of copies was always taken from a subset
of the corresponding imputed set with a largerm.
We can evaluate our method from two perspectives. First, we can treat the imputation procedures

as Bayesian approximations to frequentist confidence sets. In that case, we are interested in the
frequentist coverage properties of our estimator and interval, i.e. whether the constructed intervals
contain the true value of θ over repeated datasets with the correct relative frequency. Of course,
coverage is not the only concern.We also evaluate the average length of the interval and its variability.
In general, we want to reach the correct coverage probability with the shortest interval possible.
The second perspective from which we can evaluate our proposed imputation methods is as

an approximation to the true Bayesian posterior interval. We will focus on the Bayesian posterior
coverage of our intervals, i.e. the amount of the true posterior distribution covered by our interval
resulting from the imputationprocedures. Again,wemust take into account the length of our intervals,



356 R.J. Steele et al. / Statistical Methodology 7 (2010) 351–365

in that we want to have the shortest interval possible that completely covers the true Bayesian
posterior interval.
From a frequentist perspective, we focus on the performance of one application of our procedure

to a number of simulated datasets. We generated 10,000 datasets from a normal distribution with
mean zero and variance 1. For each dataset, we applied each of the imputation methods listed above
and calculated the length and coverage of the resulting 95% confidence intervals. Fig. 1 shows the
estimated coverage probabilities for each of the four methods considered.
The coverage probabilities for all 95% confidence intervals lie between 91% and 94%. ForM = 3 and

M = 5 copies, Rubin’s t-method has the best coverage of 92.5%, which is 1% or 1.5% higher than other
cases. However, the cost of that coverage is a longer interval. The top-right plot in Fig. 1 shows the
relative length of the credible/confidence intervals for the various methods. With 20% missing data,
Rubin’smethod yields intervals that are over 10% longer than the standardMonte Carlo intervalswhen
m = 3.
Frequentist coverage of the true value is not the only consideration, at least from a Bayesian

viewpoint. We also consider the coverage of the true underlying posterior density of the tail
probability of interest. If we view all four imputation methods as attempts to approximate the true
underlying posterior density of the population tail probability, then we can examine the amount of
posterior probability allocated to the true Bayesian 95% credible interval.
The bottom-left plot in Fig. 1 shows the posterior coverages, which range from 92%–95%, for

the four imputation methods. The posterior coverage of Rubin’s method levels off more quickly,
which is not surprising as themixture-based estimationmethods are more directly trying to estimate
the features of the underlying posterior distribution, allowing for greater posterior coverage by the
approximations via a mixture of normals. The variability of the posterior coverage of Rubin’s method
is greater, as illustrated by the bottom-right plot of Fig. 1, despite the fact that its average coverage is
slightly larger. When considered closely, this is likely the case because, for small numbers of copies,
the three imputation statistics of interest, (Q̄ , Ū , B̄), will not be particularly robust to ‘‘extreme’’ copies
of the missing data. The posterior density estimate is only one t distribution based on those three
imputation statistics, so any large fluctuation in the summaries could cause a large fluctuation in the
t approximation. The mixture approach has the advantage that such ‘‘extreme’’ copies will receive
weight of only 1/M in the density approximation.
As pointed out by a reviewer, to refine the inference procedure, one could first construct a

confidence interval for the logit transformed θ and then inversely transform the endpoints. The
advantage of such an approach is that the asymptotic normality emerges faster in the transformed
scenario than in the untransformed one. We did this and obtained equivalent outcomes to that of
conducting direct inferences with θ̂ . With the improved asymptotic normality in the transformed
scenario, the coverage probabilities for all procedures improved by about 2%–3%. For M = 3, 5, and
10 copies, the improved coverage probabilities for Monte Carlo and the two mixture approaches now
vary between 93%–94% while the coverage probabilities for Rubin’s t now reach 96%. The patterns
in the relative lengths of intervals are similar to those given in Fig. 1: the two mixture approaches
continue to give the shortest intervals, while the relative average lengths of Rubin’s method to those
of the standard Monte Carlo intervals increase slightly from 15%, 6% and 3% forM = 3%, 5%, and 10%
to 17%, 8% and 6%, respectively.

4. Example: Missing data in health-related quality of life research

4.1. The model

In this section, we present a more complicated missing data example. Factor analysis models have
been widely used by researchers in the social and health sciences for complex relationships between
observed measurements via latent constructs. In the usual factor analysis setting, one observes a p-
dimensional vector of responses, yi = (yi1, . . . , yip) for each of n observations (i = 1., . . . n).
The factor analysis model is

yi = µ+Λωi + εi
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Fig. 1. Simulation results for estimation of the lower tail probability, Φ(ξ = −1.96), of a normal distribution for simulated
normal datasets with 20% missing where results are the average over 10,000 random datasets. The top-left figure contains
the estimated frequentist coverage probabilities of the associated 95% intervals. The top-right figure contains average interval
lengths relative to the 95% confidence interval length for the mixture method with draws from the true posterior distribution
(MC). The lower-left figure contains estimated posterior coverage probabilities for 95% confidence intervals for the lower 2.5th
percentile,Φ(ξ = −1.96). The lower-right figure contains the standard deviation for observed interval lengths relative to the
95% confidence interval length for the mixture method with draws from the true posterior distribution (MC).

where µ is a (p × 1) mean vector, Λ is a (p × q) matrix of factor loadings, ωi is a (q × 1) vector of
latent construct measures, and εi is a vector of multivariate normal errors. The vector ωi is typically
assumed to bemultivariate normal with variance–covariancematrix R; for simplicity, wewill assume
that R = Iq×q. The model errors, εi, represent variability unexplained by the latent factor structure
and are assumed to be multivariate normal with diagonal variance–covariance matrix D, where
diag(D) = (σ 21 , . . . , σ

2
p ). One can assess the relative ‘‘uniqueness’’ of the variables through the σ

2
j

parameters, i.e. the larger the value of σ 2j parameter, the less that variable is explained by the factor
model.
Several practical issues arise when utilizing factor analysis for either exploratory or confirmatory

analyses, particularly when using Bayesian methods. First, the factor loadings,Λ, typically have to be
constrained in some way in order for the loadings to be identifiable. We follow Lopes and West [13]
and use the approach of Geweke and Zhou [8] to guarantee identifiability of the factor loadings by
restricting Λkk > 0 and Λjk = 0 for j < k. Our restrictions in this context are slightly artificial, but
we use them in order to ensure that the copies from a fully Bayesian analysis are compatible with the
complete data factor analysis procedure.
Even with this restriction it is difficult to make inference for the factor loadings,Λjk. For example,

although one can use asymptotic estimates via numerical differentiation to obtain standard error
estimates for the model parameters, the calculation can be difficult and numerically unstable.
Resampling approaches such as the jackknife and bootstrap are often used in place of difficult
numerical methods. We also use the bootstrap approach here to obtain the estimated standard errors
for the factor loadings. Although the loadings are asymptotically normal in theory, the convergence
of its distribution to normality can be quite slow.
In the presence of missing data, there is no freely available software that can be used for factor

analysis. Certain commercial software packages (e.g. M-PLUS and LEM) allow for factor analyses with



358 R.J. Steele et al. / Statistical Methodology 7 (2010) 351–365

missing data, but these packages can be expensive and require the user to learn a new software
package. Here we assume that the user has access to readily available software that carries out
complete data factor analyses, but does not implement a special purpose proper EM algorithm for
the incomplete data.

4.2. The data

Systemic sclerosis (SSc) is a debilitating inflammatory tissue disease that affects over 110,000
people in the United States and Canada. The population it afflicts is similar to the populations affected
by other rheumatic diseases, mostly women and patients over the age of 55, although it can appear
in severe forms in males and younger patients. The most common manifestations of the disease are
finger ulcers and thickening and hardening of skin tissue in the extremities. In the more severe forms,
the disease can begin to inflame organ tissues. The disease can cause significant damage to organs in
the gastrointestinal tract or to the lungs.
The data we consider here were obtained from the Canadian Scleroderma Research Group (CSRG)

patient registry. One of the primary research objectives of the CSRG is to quantify the impact of the
disease on patients’ quality of life and general overall health. There are currently 17 rheumatologists
in 11 hospitals across 9 provinces collecting data for the CSRG patient registry. The registry began
collecting data in 2003 and currently over 800 patients have been added to the registry, many with
three or four physician visits over a five year interval.
Missing data present a problem for researchers using the CSRG registry, many of whom have

limited access to statistical expertise. The CSRG registry presents a textbook example of the situation
described by [19]wheremany researcherswho are not specialists in statisticalmethodologywillwant
to conduct a wide variety of analyses with the same dataset.
The SF-36 Quality of Life questionnaire is one of the most popular instruments for measuring

patient quality of life [24]. Factor analysis has been used extensively in the analysis of quality of life
data and of the SF-36 itself [26,11,9,29]. The SF-36 manual [25] proposes a two-factor structure for
the 36 items on the questionnaire. We will examine only the data from the higher order structure of
8 component subscales. These eight subscales represent eight hypothesized domains of functioning:
physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social
functioning (SF), role limitations due to emotional problems, and mental health (Mental Health). The
36 items from the questionnaire are used to compute a score for each of the subscales and then the
subscales are normalized so that the mean population score is 50 with a standard deviation of 10.
The CSRG registry contains little missing data for the SF-36. We have restricted the data set

to limited and diffuse SSc patients with disease duration of 15 years or less who have complete
information for the SF-36; there are 573 such subjects. We selected 230 subjects at random from
the 573 and have made their subscale score for Mental Health and Role limitations due to emotional
problem scoresmissing; the fraction of observationswithmissingness is approximately 40%.We focus
our analyses on one of the factor loadings for the second factor in a factor analysis model that assumes
two latent factors following the same structure as suggested by the original SF-36 authors. The top
half of Fig. 2 shows the resampled incomplete data maximum likelihood estimates of the Mental
Health factor loading for the second factor. We see that the incomplete data sampling distribution
is left skewed, and so the asymptotic normal approximation might not be valid due to the missing
observations.

4.3. Simulation details

We examine four possible ways of generating copies of the missing data, namely:
• proper imputation via draws from the posterior distribution generated via Gibbs sampling (FB),
• proper imputation via single multivariate normal distribution and data augmentation (MVN),
• improper imputation from the maximum likelihood estimates via the EM algorithm for the factor
analysis model with missing data (EM), and
• improper imputation from the maximum likelihood estimate of the population covariance matrix
(EM-MVN).
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Fig. 2. Histogram of 5000 bootstrapped maximum likelihood estimates for the Mental Health loading on the second latent
factor for the SF-36 dataset with missingness. The maximum likelihood estimates were obtained via the EM algorithm. The
bottom figure shows the same histogram from the top figure with density estimates using Rubin’s t (solid curve) and mixture
(dashed curve) summaries. The diamonds represent 10 complete data estimates from 10 selected copies with error bars for±1
complete data standard error.

The FB imputations were generated via a Gibbs sampling algorithm. We obtained 49,000 copies
of the complete data, from a sample of 50,000 with the first 1000 discarded for burn-in. From these
49,000 copies, we randomly sampled 250 copies to use for simulation purposes. TheMVN imputations
were drawn via a Gibbs sampler using the norm package in the R statistical language. The EM
imputations were drawn from the full conditional distribution of the missing data given the observed
data and the maximum likelihood estimates for the factor analysis model. The EM-MVN imputations
were drawn from the full conditional distribution for the missing data given the observed data and
the maximum likelihood estimates for the unrestricted multivariate normal model.
For each copy generated by each method, we used an EM algorithm to obtain complete data

maximum likelihood estimates and EM with 100 bootstrap replications to estimate the complete
data standard error. This resulted in 250 complete data estimates and within-copy standard errors
for each imputation generation method. We then performed 100 replications of sampling 3, 5, 10 and
25 copies from the 250. The practices described in Section 3 for the purpose ofminimizing pureMonte
Carlo variability are carried out here. The same copies were used in every summary method for each
imputationmethod. For the mixture summarymethod, we used the median of the estimatedmixture
density as the point estimate. One cannot calculate the exact importance weights for the PMDA-2
method for this example, because the complete data posterior distribution for the factor analysis
model p(θ |y, z) cannot be calculated in closed form. We instead used the Schwarz approximation
to the complete data integrated likelihood in the numerator of the importance weights.
Little and Rubin [12] pointed out that the bootstrap may be inaccurate when the model is

unidentifiable, which can be the case for factor analysis models. However, this does not seem to be an
issue here. because the restrictions on the factor loadings ensure that they are identifiable. In all our
bootstrap replications, there were no instances where the method failed to find a solution.

4.4. Results

Fig. 3 summarizes the results of 100 replications of imputing 3, 5, 10, and 25 copies using the
two proper imputation methods (FB and MVN) and the two versions of summarizing the outcomes
with imputations (Rubin’s t and mixture of normals). The top figure shows the average over the 100
replications of the point estimates and 95% confidence limits for each method of summarizing for 3,
5, 10, and 25 copies.
The interval lengths and the 95% confidence limits do vary significantly across the various

situations. The lower two subfigures show more clearly the difference between the t- and mixture
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Fig. 3. Quality of Life example: 100 replications of multiple imputation for two methods of summarizing (Rubin’s t [1, 2] and
mixture of normals [3,4]) using copies of missing data generated from two different models (from the target factor analysis
posterior distribution [1,3] and general multivariate normal [2,4]). The top subfigure shows the average of the estimates for
the Mental Health loading for the second latent factor (square or circle) and the associated 95% confidence limits (error bars)
for the various methods of summarizing and generating form = 3, 5, 10, and 25 copies. The horizontal dashed lines show the
maximum likelihood estimate and 95% confidence limits obtained from the non-parametric bootstrap. The lower-left subfigure
shows the average interval width and the lower-right subfigure shows the standard deviation of the interval widths. In the
lower-left subfigure, the horizontal dashed line is the interval width from the bootstrap sample.

summary methods. In general, the t-intervals are longer than the mixture summary intervals on
average and the interval lengths are also more variable.
We first focus on the results for the copies drawn from the fully Bayesian factor analysismodel (FB),

which correspond to the results labelled 1 (t-summaries) and 2 (mixture summaries). For 3, 5, 10, and
25 copies respectively, the t-intervals are 25%, 11%, 4%, and 0.4% wider on average than the mixture
summary intervals. The t-intervals are much more variable in width than the mixture summary
intervals, as we also observed in the simulation study. The standard deviations of the t-intervals are
3.1, 1.7 and 1.2 times larger than the standard deviations of themixture summary intervals for 3, 5 and
10 copies respectively. For 25 copies, the t-intervals andmixture summary intervals are roughly equal
in variability and both are similar in length to the bootstrap interval from the EM implementation for
the incomplete data set.
The pattern is similar for copies drawn from the posterior for the general multivariate normal

model (MVN). The t-intervals are 27%, 11%, 4%, and 1% wider on average than the mixture intervals
for 3, 5, 10, and 25 copies, while the t-interval widths are 2.7, 1.6, 1.2 and 1.0 times more variable.
We also see that the intervals for theMVN copies are narrower than the intervals for copies generated
from the fully Bayesian model.
In summary, multiple imputations from the full posterior distribution are theoretically more

accurate, and correspond more closely to the bootstrap than multivariate normal imputations
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Fig. 4. Posterior density estimates for the Mental Health loading for the second factor using the Rubin’s t and the PMDA-1
mixture summary approaches when imputing via 250 copies drawn from the Bayesian posterior distribution for the factor
analysis model. The gray solid line is the non-parametric density estimate from 5000 bootstrap samples, the black dashed line
is the summary using Rubin’s t-distribution, and the black solid line is the summary using a mixture of normals.

with larger numbers of copies. With fully Bayesian imputations, the mixture-based intervals are
substantially narrower than the t-based intervals for small numbers of copies, converging when the
number of copies reaches 25. The mixture-based intervals are also less variable than the t-based
intervals for small numbers of copies, again convergingwhen the number of copies reaches 25. Overall,
fully Bayesian imputations with a mixture summary worked best in this example, particularly with
10 or fewer copies.
Fig. 4 shows density estimates using the t- and mixture summary methods for all 250 complete

data analyses generated from the posterior distribution for the factor analysis model. We compare
these to the density estimate from the 5000 non-parametric bootstrap resampled estimates using the
EM algorithm for the incomplete data. With 250 copies, we can see that the mixture summaries are
performing better than the t-summary because of the ability tomodel the slight skew in the sampling
distribution of the factor loadings. The subfigures on the right side of the figure show that the t-
summary underestimates the lower tail of the sampling distribution and overestimates the upper tail.
In particular, in comparison to the mixture summary, the t-summary underestimates the area under
the curve of the left tails to the 2.5th and 5th percentiles by 27% and 14%, while it overestimates the
equivalent right tails by 19% and 34% respectively. Thismay be due to the restriction of the t-summary
to a symmetric sampling (or posterior) distribution.
We observe a slight bias in the estimation of the 95% confidence limits, although it is clear that

the mixture summary density is less biased than the t-summary density. The bias is likely due to two
reasons. First, the complete data posteriors for the factor loading, although less skewed, still exhibit
some skewness. This would prevent themixture of normals with a small number of copies from being
able to capture the skewed tail behavior. Second, the posterior distribution for the copies drawn from
the fully Bayesian posterior distribution would depend on the priors used and different priors had
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Fig. 5. 100 replications of multiple imputation for three methods of summarizing (Rubin’s t [1, 2], PMDA-1 [3,4], and PMDA-
2 [5,6]) using copies of missing data generated from two different models (from a full conditional distribution based on the
incomplete data factor analysis MLE [1,3,5] and theMLE from the general multivariate normal model [2,4,6]). The top subfigure
shows the average of the estimates for theMentalHealth loading for the second latent factor (square or circle) and the associated
95% confidence limits (error bars) for the various methods of summarizing and generating form = 3, 5, 10, and 25 copies. The
dashed lines across the width of the plot locate the maximum likelihood estimate and 95% confidence limits obtained from the
non-parametric bootstrap. The lower-left subfigure shows the average interval length and the lower-right subfigure shows the
standard deviation of the interval length. In the lower-left subfigure, the horizontal dashed line is the interval length from the
bootstrap sample.

some effect on the shape and location of the posterior distribution (and thus on the copies of the
missing data generated).
Fig. 5 shows the results for the two improper copy generationmethods (EMand EM-MVN) for three

different summary methods (t-summary, mixture summary [PMDA-1], and importance weighted
mixture summary [PMDA-2]). For the data generated using the EM approach, the t- and PMDA-1
summary approaches behave similarly to the proper imputation methods. The t-intervals are 11%,
6%, 2%, and 0.2% wider on average than the corresponding PMDA-1 intervals, for 3, 5, 10 and 25
copies respectively. The standard deviations of the t-interval widths are 2.0, 1.5, 1.1 and 1.0 times
the standard deviations of the PMDA-1 interval widths. So once again the t-intervals are less stable
than the equally weighted mixture summary intervals. Both summary methods yield intervals that
are much narrower on average than either of the proper imputation methods.
We have also included results for an importance weighted mixture summary. The purpose of

the importance weights is to correct for the fact that we are sampling not from the true posterior
distribution of the missing data, but instead from an approximation that uses the incomplete data
maximum likelihood estimate.When the imputations were improperly generated, only PMDA-2 gave
acceptable outcomes. Even for PMDA-2, a moderate to large (m = 10 or 25) number of imputation
copies is needed to achieve roughly correct coverage. The average interval widths and stability of the
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Fig. 6. 100 replications of 95% upper confidence limits for the three methods of summarizing (Rubin’s t [Rub], PMDA-1
[Mix1], and PMDA-2 [Mix2]) using copies of missing data generated from four different models (from the target factor analysis
posterior distribution [FB], full conditional distribution conditional on MLE [EM], general multivariate normal [MVN], and full
multivariate normal conditional distribution conditional onMVNMLE [EM-MVN]). The solid line represents the estimate of the
upper confidence limit from 5000 bootstrap samples.

method are comparable to those from FB imputations and a mixture summary. A disadvantage of this
approach is that more copies are needed.
For the final method of copy generation, EM-MVN, we see similar behavior to what was observed

for the EM generated copies, in that the intervals have below nominal coverage on average, regardless
of the summary method used.
The boxplots in Fig. 6 show the upper confidence limits for all 100 replications for every copy

generation and summarymethod combination. The t- and equally weightedmixture summaries both
show decreasing variability in their upper confidence limit as the number of copies increases, but
the mixture summary shows less variability and less bias in estimating that upper confidence limit.
The upper confidence limit for the t-intervals is quite variable for 3, 5, and 10 copies, in some cases
providing misleading confidence bounds. We see that the importance weighted mixture summaries
perform better than the others for the EM and EM-MVN generated copies, but at the cost of higher
variability.

5. Discussion

This paper proposes a new direction for using multiple imputations for the analysis of datasets
with missing data. We have shown through simulation in two examples that the usual t-distribution
summarywith a small number of copies,may be unstable and yield confidence intervals that aremuch
wider than necessary as suggested in previous multiple imputation literature. We have proposed an
alternative way of summarizing the inference frommultiple imputations using a mixture of normals.
In our simulations and example, this gave narrower intervals andmore stable inference. Our methods
require no extra input from the imputer, unlike some other methods that have been proposed.
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One could conclude that it is possible to improve on widely accepted methods for summarizing
the inference frommultiple imputation, such as Rubin’s t . Because of the extra variability introduced
in the sampling of the missing observations from their true posterior distribution and the restriction
to using t-distributions for inference, multiple imputation with small to moderate numbers of copies
can provide inefficient or even incorrect inferences. Robins and Wang [16] looked at this problem in
detail. Schafer and Schenker [22] cited this difficulty as a potential reason for using conditional mean
imputation. Carabin et al. [3] gave an example of the failure of multiple imputation to yield useful
confidence intervals in the context of censored regression models.
Arguments similar to ours were made by Fay [5] and Rao and Shao [15] in their discussions of [20].

Rubin’s t estimators, in an effort to provide enough coverage,must inflate the variance of the complete
data functionals to the pointwhere the estimates of the observed data functional become very variable
themselves. The estimated variability is often correct, but if the estimated variability is too high then
the estimate could be of little use. It is important to note that the results investigated here apply only
to small to moderate numbers of copies.
Our approach could be viewed as a compromise between Rubin’s methods and the single

imputation methods of Fay [5] and Rao and Shao [15]. These single imputation methods use
sophisticated methods to account for the uncertainty in parameter estimates while relying on the
stability of a single, unbiased mean imputation to avoid the problems that multiple imputation has
when drawing from the true posterior distribution. If one uses importance sampling methods like
those discussed here, approximately accurate estimates of variability can be obtained.
We have approximated the complete data posterior distribution by a normal distribution, yielding

an approximation of the full posterior by amixture of normals, and found it toworkwell in simulations
and an example. It is possible that an even better approximationwould be provided by a t distribution,
leading to an approximation of the posterior distribution by a mixture of t distributions. This would
also be more complicated, and an assessment of the resulting tradeoff between complexity and
performancewould be aworthy topic for further research. It should also be noted that doing inference
on a scale where the normal approximation to the posterior is better is generally a good idea.
In our experiments we found that good results are obtained by most methods with large numbers

of imputations. Thus the improvement from our methods over existing ones are likely to be greatest
when the number of copies is small. This is most often the case when the copies are provided by the
imputer rather than produced by the user. Increasing the number of copies produced is a good idea in
any event when it is computationally feasible.
The basic idea of approximating the posterior distribution in missing data cases by a mixture of

normals applies quite generally, but we have demonstrated it here only for scalar estimands. The
posterior distribution of a multivariate estimand can be approximated by our method by simply
simulating values of the parameters from the estimatedmixture of multivariate normal distributions.
Detailed assessment of the application of the method to multivariate estimands and testing problems
is a topic for future research.
A free R software package called MImix that implements our methods is available at http://cran.r-

project.org.
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