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Bayesian population reconstruction of female
populations for less developed and more developed

countries

Mark C. Wheldon1 , Adrian E. Raftery2, Samuel J. Clark2 and
Patrick Gerland3

1Auckland University of Technology, 2University of Washington, 3United Nations Population Division

We show that Bayesian population reconstruction, a recent method for estimating past populations by age,

works for data of widely varying quality. Bayesian reconstruction simultaneously estimates age-specific

population counts, fertility rates, mortality rates, and net international migration flows from fragmentary

data, while formally accounting for measurement error. As inputs, Bayesian reconstruction uses initial bias-

reduced estimates of standard demographic variables. We reconstruct the female populations of three

countries: Laos, a country with little vital registration data where population estimation depends largely on

surveys; Sri Lanka, a country with some vital registration data; and New Zealand, a country with a highly

developed statistical system and good quality vital registration data. In addition, we extend the method to

countries without censuses at regular intervals. We also use it to assess the consistency of results between

model life tables and available census data, and hence to compare different model life table systems.

Supplementary material for this article is available at: http://dx.doi.org/10.1080/00324728.2016.1139164
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Introduction

The release of World Population Prospects 2010
(WPP 2010) (United Nations 2011a) coincided with
a surge of interest in population statistics in both
the popular and academic literature (e.g., Alberts
2011; Gillis and Dugger 2011; Nagarajan 2011; Phil-
lips 2011; Reuters 2011; Scherbov et al. 2011). WPP
2010 was released in 2011, the year in which world
population was predicted by the United Nations
(UN) to reach 7 billion on 31 October. Despite the
implied precision in the declaration of ‘7 billion
day’, there is considerable uncertainty about the
size of national populations, past and present. In
this paper we present evidence that Bayesian recon-
struction, developed by Wheldon et al. (2010, 2012,
2013) for estimating past populations and vital rates
by age, works for data of widely varying quality
and could feasibly be used to reconstruct the
female population of any country of the world.

Information about uncertainty can be conveyed by
providing interval estimates, rather than simply point
estimates as is done inmany official statistical releases.
Such intervals should have a probabilistic interpret-
ation: they should contain the true value with some
specified probability, conditional on the assumed stat-
istical model. Wheldon et al.’s (2010, 2012, 2013)
method produces such intervals. It reconstructs past
population structures by embedding formal demo-
graphic relationships in a Bayesian hierarchical
model. The outputs are joint probability distributions
of demographic rates and population counts by age,
from which fully probabilistic interval estimates can
be derived in the form of Bayesian confidence inter-
vals (or ‘credible intervals’). Themethod was designed
for use with the relatively unreliable data often
encountered in less developed countries, but we
show that it works well in reconstructing the popu-
lations of countries that vary in the quality of their
data from poor to extremely good.
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Wheldon et al. (2012, 2013) gave only a single
example with real data, that of Burkina Faso. This
country represents a ‘medium’ case: the available
data are fragmentary, but independent estimates of
adult and child mortality are available. It might be
expected that in worse cases, there would be insuffi-
cient information to yield useful interval estimates,
and that in better cases, there might be little to gain
from a probabilistic model. Using a set of case
studies chosen specifically to reflect the range and
quality of data available across countries, we demon-
strate that neither of these conclusions is true. In all
cases, Bayesian reconstruction indicates where esti-
mates of vital rates are inconsistent with census
results, so that the method can be used to compare
competing model life tables. We also extend the
method to irregularly spaced censuses.
The remainder of the paper is structured as follows.

In the next section we review existing methods of
population reconstruction (for a review of Bayesian
demography in general, see Bijak and Bryant 2016).
Following that, we describe the method. Then we
apply Bayesian reconstruction to the female popu-
lations of three countries: Laos, Sri Lanka, and New
Zealand. The New Zealand case shows that the
model performs sensibly for countries with very
good data and the Laos case shows that it works
with very fragmentary data. We use the case of Sri
Lanka to demonstrate our extension to irregularly
spaced censuses. For this case, Bayesian reconstruc-
tion detected inconsistencies between survey-based
estimates of fertility and intercensal population
changes, and provided a correction. There is relatively
little mortality data for Laos, and we use this case to
illustrate how Bayesian reconstruction can be used
to choose between competing model life tables. We
conclude with a discussion.

Methods of population reconstruction

Many human population reconstructions in the
demography literature fall into one of two categories:
reconstruction of populations of the distant past
using data of the kind commonly found in European
parish registers (e.g., Lee 1971, 1974; Wrigley and
Schofield 1981; Oeppen 1993a, 1993b; Bertino and
Sonnino 2003); and reconstruction of population
dynamics after extreme crises, such as famine or gen-
ocide (e.g., Boyle and Ó Gráda 1986; Daponte et al.
1997; Heuveline 1998; Merli 1998; Goodkind and
West 2001). A standard methodology has been devel-
oped for the former category, case-specific methods
for the latter, but in one form or another the cohort

component method of population projection
(CCMPP) (Lewis 1942; Leslie 1945, 1948) is central
to almost all methods of population reconstruction.
Two significant developments were Lee’s (1971,

1974) method of ‘inverse projection’ and Wrigley
and Schofield’s (1981) method of ‘back projection’.
Inverse projection converts counts of births and
deaths into the respective rates. Reconstruction pro-
ceeds forwards in time. Baseline population counts
and model age patterns of fertility and mortality are
also required. Where at least two independent esti-
mates of population size are available, net migration
can also be estimated (Lee 1985). In contrast, back
projection takes counts at the terminal year and
moves backward in time, reconstructing population
counts and net migration along the way. Several iter-
ations might be required to produce a satisfactory
result. There was considerable debate about the effi-
cacy of back projection, centred partly around iden-
tifiability issues that arise from trying to
retrospectively separate members of the open-ended
age group into separate age categories, and simul-
taneously estimate fertility, mortality, and migration
rates (Lee 1985, 1993). Further developments are
described by Barbi et al. (2004) and Oeppen (1993a,
1993b). Bonneuil and Fursa (2011) treat reconstruc-
tion as a high-dimensional optimization problem.
The original methods of inverse projection and back
projection and subsequent developments of them
are all deterministic and produce point estimates only.
Stochastic inverse projection (SIP) was proposed

by Bertino and Sonnino (2003). It incorporates a
specific kind of stochastic variation into the recon-
struction, taking inputs similar to those required by
inverse projection. Model age patterns of fertility
and mortality are treated as individual-level prob-
abilities of death rather than fixed, population-level
rates. Like its predecessors, SIP was designed to
work with accurate time-series data of total births
and deaths. The uncertainty in the final estimates
comes only from modelling birth and death as sto-
chastic processes at the level of the individual (Lee
1998 called this ‘branching process uncertainty’).
There is no allowance for measurement error in the
data, nor is there any stochastic variation in the
model fertility and mortality age patterns. For most
less developed countries, information about births
and deaths is not highly accurate, and age patterns
of fertility and mortality are known only approxi-
mately. In these cases, the uncertainty is due mainly
to measurement error. In fact, even for well-
measured populations, at the national level, where
counts are large, Lee (2004) and Cohen (2006) note
that uncertainty attributable to stochastic vital rates
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is likely to be small relative to the uncertainty due to
measurement error; see also Pollard (1968).
The aim of Daponte et al. (1997) was to construct a

history of the Iraqi Kurdish population from 1977 to
1990, a period during which it was the target of con-
siderable state-sponsored violence. A Bayesian
approach was taken in which vital rates and popu-
lation counts were modelled as probability distri-
butions. Prior distributions for fertility and
mortality rates were based on survey data and
beliefs about the uncertainty, founded on studies of
the data sources, historical information, and knowl-
edge of demographic processes. Conclusions from
estimated posterior distributions took the form of
fully probabilistic interval estimates. This approach
took account of uncertainty attributable to measure-
ment error, and made use of contextual knowledge to
compensate for fragmentary, unreliable data.
However, there were some restrictions, such as
allowing mortality to vary only through the infant
mortality rate and specifying fixed age patterns of
fertility. Our approach is similar in spirit, but more
flexible because no model age patterns are assumed
to hold throughout the period of reconstruction.
Bryant and Graham (2013) proposed a Bayesian

method for estimating and forecasting subnational
population counts by combining official statistics
with administrative data, such as tax records, elec-
toral rolls, and school rolls. The data required to
produce usable subnational estimates are unlikely
to be available in many less developed countries,
nor is access to historical administrative data. There-
fore, like the UN, we focus on national-level esti-
mates and do not use administrative data.

Method

Our overall goal is to show that Bayesian reconstruc-
tion is widely applicable; therefore, we give a concep-
tual overview of the method here and save the
mathematical details for the supplementary material.
All computation was done using R, the freely avail-
able statistical software package (R Development
Core Team 2015); Bayesian population reconstruction
is implemented in the R package ‘popReconstruct’.

Description of the model

Bayesian reconstruction reconciles two different sets
of population estimates: those based on adjusted
census counts (or similar data); and those derived
by projecting initial estimates of the baseline

population forward using initial estimates of vital
rates. Adjusted census counts are raw counts which
have been processed to reduce common biases such
as under-counting and age heaping. Since projection
is done using the CCMPP, the parameters for which
we require initial point estimates are the CCMPP
inputs. Specifically, population counts for the base-
line year by age group, plus fertility rates, survival
proportions, and the net number of migrants, all by
age group, over the period of reconstruction.
Migration is treated in the same way as fertility, mor-
tality, and baseline population counts.
Initial judgements of the possible range of the var-

iance in measurement error for each parameter are
also required for the purpose of defining prior distri-
butions. These can be based on expert judgement or
data such as surveys to assess the coverage of vital
registration systems. Sufficient data and expert
knowledge to generate these inputs have been avail-
able for most countries from about 1960. The com-
parison is through a Bayesian hierarchical (or
multi-level), statistical model which provides prob-
abilistic posterior distributions of the inputs, as well
as population counts at each projection step in the
period of reconstruction.
Initial point estimates of the input parameters are

derived from data. Baseline population estimates are
derived from adjusted census counts (or similar
sources), and fertility and mortality estimates from
surveys, such as the Demographic and Health
Surveys (DHSs), and from vital registration data.
The model defines a joint prior distribution over
these parameters which is parameterized by the
initial point estimates and standard deviations. Typi-
cally, the initial point estimates will serve as the mar-
ginal medians of this distribution, but this is not a
requirement. The standard deviations represent
measurement uncertainty about the point estimates.
These distributions induce a probability distribution
on the population counts at the end of each projec-
tion step within the period of reconstruction. We
impose the necessary condition that the joint prior
distribution does not lead to negative projected
population counts. In practice this truncates the mar-
ginal prior distribution for net migration by ruling out
extreme negative values.
Uncertainty about the true population counts at

the time of a census is also modelled by probability
distributions. Census counts adjusted for bias are
taken as the medians of these distributions, and the
measurement uncertainty is represented analogously
by standard deviations. There are separate standard
deviation parameters for fertility, mortality,
migration, and population counts. Therefore, the

Bayesian population reconstruction 23
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uncertainty remaining in each of these parameters
after adjustment and bias reduction is explicitly
accounted for in the model. We discuss bias and
uncertainty about measurement error in greater
detail below.
Calculation of initial estimates of fertility and sur-

vival may require the use of population counts at
fixed points in time. It is important, however, that
these initial counts (adjusted or otherwise) should
not be used after the baseline year in either of the fol-
lowing ways. Intercensal survival rates should not be
used to estimate mortality, and ‘residual’ counts, the
difference between census counts and projected
counts based on fertility and mortality alone,
should not be used to estimate migration. These tech-
niques use intercensal changes to estimate vital rates
and migration. Bayesian reconstruction uses these
changes in the process of updating initial estimates
of the vital rates and migration. In consequence, esti-
mating mortality, and migration, in these ways would
be tantamount to using the intercensal changes twice:
once to derive the initial estimates of vital rates, and
again to update them. This could lead to an
underestimate of uncertainty, possibly by a large
extent.
By treating the induced distribution of projected

counts as a prior distribution and basing the likeli-
hood function on the distribution of measurement
errors in the census counts, Bayesian reconstruction
yields a posterior distribution of the inputs via Baye-
sian updating. This posterior distribution can be use-
fully summarized by marginal Bayesian confidence
intervals for each input parameter which express
the associated uncertainty probabilistically. Further-
more, confidence intervals for age-summarized par-
ameters, such as the total fertility rate (TFR) and
life expectancy at birth (e0), can be obtained. Using
simulation, Wheldon et al. (2010, 2012, 2013) found
that Bayesian reconstruction produced well-cali-
brated marginal Bayesian confidence intervals. That
is, p per cent Bayesian confidence intervals for each
parameter of interest were found to contain the
true value p per cent of the time.
Often, projected counts based on a sample from

the joint prior distribution of the input parameters
will not equal the adjusted census counts for the
same year. This discrepancy is sometimes called an
‘error of closure’ (Preston et al. 2001), and could be
reduced by manually making appropriate adjust-
ments to any, or all, of the CCMPP input parameters
and census counts. Many different combinations of
adjustments will have the same effect on the discre-
pancy; for example, adding a migrant of age x has
the same effect on the age-x population count as

removing the death of a person of age x. We do not
make such manual adjustments, but define a pos-
terior distribution over the CCMPP input parameters
that assigns greater probability to those combi-
nations leading to larger reductions in the discre-
pancy. This means that each age/time-specific
component of the input parameters is not affected
equally, but according to the effect it has on the
joint posterior.
Reconstruction can be undertaken where esti-

mates of baseline population are available at the
start of any period, and over which estimates of
vital rates and international migration are available.
However, when the period of reconstruction
extends beyond the year of the most recent
census, the posterior distribution for the period fol-
lowing that year will be heavily based on the prior
distribution of the vital rates over that period.
Essentially, it would be a projection with added
uncertainty estimates, based predominantly on the
prior distribution. Therefore, the information gain
from reconstructing beyond the most recent
census, over and above that of the information con-
tained in the prior, is likely to be minimal. For this
reason the periods of reconstruction in our case
studies all end in the same year as the most
recent census.

Bias

Estimates of vital rates and population counts from
surveys and censuses are susceptible to bias. For
example, estimates of fertility rates based on birth
histories suffer from the omission and misplacement
of births, owing to recall error, and census counts
may be biased owing to under-counts in certain age
groups (Zitter and McArthur 1980; Preston et al.
2001). Bayesian reconstruction does not treat bias
explicitly because demographic data differ markedly
across parameters, time periods, and countries. Many
methods for estimating and reducing these biases
have been proposed. Methods appropriate for
adjusting census data will not, in general, be appli-
cable to vital registration or survey data. Even
within these broad categories, there is great variation
among countries and time periods which makes
development of a general approach impractical.
Therefore, the analyst applying Bayesian reconstruc-
tion will need to select bias reduction methods appro-
priate to the data being used.
Bias reduction for vital rates is often done using so-

called ‘indirect’ methods such as the following:
Brass’s (1964, 1996) P/F ratio methods; adjustment

24 Mark C. Wheldon et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 0
8:

12
 3

0 
Ju

ne
 2

01
6 



of siblings and birth histories (e.g., Obermeyer et al.
2010; Schoumaker 2011, 2013); Alkema et al.’s (2012)
method for TFR and child mortality (Alkema and
New 2014); and others found in standard texts and
manuals (e.g., Shryock et al. 1980; United Nations
1983; Preston et al. 2001; Rowland 2003; Moultrie
2013).
Population counts, typically based on censuses,

play a central role in Bayesian reconstruction. There-
fore, efforts should be made to reduce bias using, for
example, post-enumeration surveys (PESs) (e.g.,
United Nations 2008, 2010). These are not available
for many countries, however, making bias reduction
more difficult. In these cases, the analyst will have
to search for well-known examples of miscounting,
such as under-counting of young adult males, over-
counting of age groups at ages of eligibility for state
pensions, and heaping at ages ending in ‘0’ and ‘5’.
The useful techniques available include analysis of
counts by single years of age, calculating ratios of
counts in adjacent age groups, and comparison with
available data from administrative sources (Moultrie
2013). Intercensal survival ratios can be examined for
plausibility, but the calculated ratios should not be
used to derive initial estimates of survival. Where
incorrect counts are indicated, methods of making
defensible adjustments include taking plausible age
or survival ratios, and age distributions, from
similar populations. Age heaping might be reduced
by applying statistical smoothing techniques
(United Nations 1955; United States Bureau of the
Census 1985; Booth and Gerland 2015).

Measurement error uncertainty

Bias-reduced initial point estimates of the CCMPP
input parameters and adjusted population counts
are still subject to measurement error, that is, vari-
ation which is non-systematic and cannot realistically
be eliminated or otherwise modelled. In Bayesian
reconstruction, measurement error is represented
by the prior standard deviations of the initial esti-
mates. In many cases there is not much data with
which to estimate these parameters, but there is
often relevant expert knowledge. This can be
included by giving the variances themselves prior dis-
tributions and using the expert knowledge to set their
fixed hyper-parameters, thus defining a hierarchical
model. To do this, we require a value for p in state-
ments of the form ‘there is a 90 per cent probability
that the true fertility rates are within plus-or-minus
p per cent of the initial point estimates’, and similarly
for survival proportions, migration proportions, and

population counts. We refer to p as the ‘elicited rela-
tive error’, and explain how we obtained it below.

Case studies

Our principal aim in this paper is to show that Baye-
sian reconstruction works across the range of data
qualities found in practice. To this end, we selected
three countries based on the quality of their mortality
rate data: (i) New Zealand, with complete data on
vital rates, based on vital registration; (ii) Sri
Lanka, with reasonably good vital rate data requiring
only small adjustments; and (iii) Laos, with only
limited under-5 aged mortality estimates available,
and fertility data from a few demographic surveys.
In other words, we analysed New Zealand with
excellent data, Sri Lanka with intermediate data,
and Laos with poor data. Wheldon et al. (2012,
2013) analysed data for Burkina Faso which, in the
availability and quality of data, lies between Laos
and Sri Lanka, having survey data on both adult
and under-5 aged mortality, but no vital registration
data.
Each case is discussed separately below. We briefly

describe the original data sources and the processes
used to derive the initial estimates. We use the
results to obtain a number of age-summarized demo-
graphic parameters such as TFR, net number of
migrants, e0, and under-5 mortality. We show the
95 per cent Bayesian confidence intervals with our
initial estimates, and the posterior distributions of
selected parameters using the notation: ‘(lower,
upper)’. We compare our results for fertility and mor-
tality with those published in WPP 2010 for years
with comparable estimates. WPP 2010 was based on
a different procedure but the same data, so the com-
parison is valid.
We cover the highlights here. More detailed

descriptions of the data sources, initial estimates, and
results are in the supplementary material, which also
contains all results in comma-delimited files.

Laos, 1985–2005

Data and initial estimates. National censuses were
conducted in 1985, 1995, and 2005. These data
allowed us to reconstruct the female population
between 1985 and 2005. We used the census year
counts from the WPP 2010; there were no PESs,
but the census counts were adjusted to compensate
for some under-counting in certain age groups.
Further details are in the supplementary material.
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Initial estimates of age-specific fertility rates were
based on direct and indirect estimates from the avail-
able surveys. Age-specific initial estimates were
obtained by smoothing available TFR estimates
over time and multiplying by similarly smoothed esti-
mates of the age pattern of fertility. Owing to the
small number of data points for TFR and the age
pattern, smoothing was performed by taking
medians across the data source for each age/time
period combination.
The only available mortality data were for infants

and under-5s. Therefore, our initial estimates came
from Coale et al.’s (1983) West (CD West) model
life tables with values of 1q0 and 5q0 close to those
estimated from the available data.
We asked United Nations Population Division

(UNPD) analysts to supply elicited relative errors
for population counts, fertility, and mortality. These
were 10 per cent on the population count scale, the
fertility rate scale, and the survival proportion scale,
respectively.
There was not much information on migration. To

model it, we set initial point estimates to zero for all
ages and time periods, but used an elicited relative
error of 20 per cent for the net number of migrants.
This means that the a priori central 90 per cent prob-
ability interval for net international migration ranges
from −20 to +20 per cent of the population for each
age group.

Results. Figure 1 shows our prior and posterior distri-
butions for TFR and e0, together with WPP 2010 esti-
mates. The Bayesian reconstruction estimate of TFR
differs from the initial estimates in the 5-year periods
beginning 1985, 1990, and 2000. While both imply
consistent decreases in fertility, the initial estimates
appear to be too high in all but the third 5-year
period. Our posterior intervals suggest a level of fer-
tility more similar to WPP 2010, except that our esti-
mates suggest that the acceleration in the decline
began one 5-year period later.

Figure 1(a) shows that the posterior intervals are not
constrained to lie inside the prior intervals. More-
over, the posterior intervals can be wider than the
prior intervals, and this was found to be the case
for the age-specific fertility rates for Laos.
The prior distributions of TFR and e0 are asym-

metric because the age-specific parameters from
which they were calculated, namely, the age-specific
fertility rates and survival proportions, were mod-
elled on different scales. Age-specific fertility rates
were modelled on the log scale and age-specific sur-
vival proportions were modelled on the log-odds

(logit) scale. Further details are in the supplementary
material.

Sri Lanka, 1951–2001

Data and initial estimates. Censuses were conducted
in Sri Lanka in 1953, 1963, 1971, 1981, and 2001, andwe
were therefore able to reconstruct the female popu-
lation between 1953 and 2001. We took population
counts from WPP 2010, which were adjusted to
account for under-enumeration. Initial estimates of
age-specific fertility rates were derived in a manner
similar to that used for Laos, although at the level of
TFR we used loess (Cleveland 1979; Cleveland et al.
1992) to smooth multiple data points across time.
Initial estimates of age-specific survival proportions
were based on abridged national life tables, calculated
from death registrations and available surveys. Elicited
relative errors for all of these parameters were
obtained in the same way as for Laos, and set at 10
per cent on the same scales as described above.

We used the same default initial estimate of inter-
national migration as that used for Laos. Luther
et al. (1987) have provided age-specific estimates
for the periods 1971–75 and 1976–80 using census
data as well as information about vital rates. Their
results are not suitable as a basis for initial estimates
because they were partly derived from intercensal
changes in population counts; we used them for com-
parison instead. These results are in the supplemen-
tary material.

Interpolation to handle irregular census intervals.
Wheldon et al. (2010, 2012, 2013) assumed that cen-
suses were taken at regular intervals but there is an
irregular interval between the 1963 and 1971 cen-
suses. Therefore, we propose interpolating the
CCMPP outputs on the growth rate scale such that
they coincide with the census years. We explain
with an example.

Consider the number in the population aged [x, x + 5]
for which we have a 1963 census-based estimate, and
another for 1971. Initial estimates for vital rates are
available for 1963, 1968, 1973, and 5-yearly sub-
sequently. The CCMPP can be used with these data
to derive projected counts for this age group in 1968
and 1973. To compare the CCMPP output with the
1971 census counts, we assumed that the growth rate
for this age group, rx,1968, was constant between 1968
and 1973, and estimated it from the projected
counts. The estimate was then used to interpolate
the CCMPP output to 1971. Using a ‘hat’ (^) to
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Figure 1 Prior and posterior medians and 95 per cent Bayesian confidence intervals for selected parameters in
the reconstructed female population of Laos, 1985–2005. Prior medians correspond to initial estimates. (a) Total
fertility rate. (b) Life expectancy at birth of females
Source: Coale et al. (1983); 1986–88 Multi-Round Survey; 1993 Laos Social Indicator Survey; 1994 Fertility and
Birth Spacing Survey; 1995 and 2005 censuses; the 2000 and 2005 Lao Reproductive Health Surveys; United
Nations (2011a); Bureau of East Asian and Pacific Affairs (2011); 2006 MICS3 Survey.
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denote ‘estimate’, this is compactly expressed as

r̂x,1968 = 1
5
loge

nx,1973
nx,1968

( )

n̂x,1971 = (nx,1968)e3r̂x,1968 .

We used a similar method to extrapolate the popu-
lation counts from the 1953 census back to 1951 using
the 1953–63 growth rate. Interpolating in this manner
is adequate for periods of less than 5 years.

Results. Posterior distributions for the mortality and
migration parameters are summarized in the sup-
plementary material. Our posterior estimates of mor-
tality and migration agree closely with those in WPP
2010 and Luther et al. (1987).

Applying Bayesian reconstruction suggests, however,
that the sources upon which the initial estimates of
fertility rates were based are inconsistent with inter-
censal changes in the number of births (Figure 2).
The posterior estimates of TFR from Bayesian
reconstruction differ noticeably from the initial esti-
mates in the periods 1951–56 and 1956–61 (posterior
intervals (5.09, 5.69) and (5.21, 5.93); initial estimates
5.01 and 5.03 children per woman, respectively). Our
method has automatically provided a correction

which, in this case, yields results similar to the WPP
2010 estimates.

New Zealand, 1961–2006

Data and initial estimates. Census counts were used
from national censuses conducted every 5 years
between 1961 and 2006. Initial estimates of fertility
rates were calculated from published age-specific fer-
tility rates (Statistics New Zealand 2011a) and
numbers of births (Statistics New Zealand 2012) by
age group of mother by year. Initial estimates for sur-
vival proportions were calculated from New Zealand
life tables (Statistics New Zealand 2011b).

Information on the measurement errors of these par-
ameters was available in the form of PESs and esti-
mates of the coverage achieved by the birth and
death registration systems (Statistics New Zealand
1998, 2010a). Using this information, elicited relative
errors were set by the authors at 2.5, 1, and 1 per cent
for population counts, fertility, and mortality,
respectively.
Information on international migration is more

reliable than in most other countries because New
Zealand is a small island nation with a well-resourced
official statistics system. The basis of our initial esti-
mates of international migration were counts of perma-
nent and long-term (PLT) migrants taken from arrival
and departure cards (Statistics New Zealand 2010b).
The largest source of error in these estimates of inter-
national migration is the discrepancy between the
stated intentions and actual behaviour of travellers.
To reflect this, we set the elicited relative error of the
migration input parameter to 5 per cent.

Results. The posterior distributions for TFR, e0, and
under-5 mortality are summarized in the supplemen-
tary material. Our posterior estimates of mortality
and fertility follow the initial estimates closely. This
is not unexpected because the initial estimates were
based on data of high quality and coverage. The
least reliable data, a priori, were those for migration.
Our posterior intervals suggest corrections in some
time periods (Figure 3). The initial estimates for
periods between 1961 and 1974 appear to be too
high, while those for periods between 1976 and
1989 are too low.

Choosing between alternative initial
estimates of mortality

In the application of the method to Laos we derived
initial estimates of over-5 mortality from the CD

Figure 2 Prior and posterior medians and 95 per
cent Bayesian confidence intervals and WPP 2010
estimates of TFR in the reconstructed female popu-
lation of Sri Lanka, 1950–2000. Prior medians corre-
spond to initial estimates
Source: 1953–2001 censuses; 1972–2006 vital regis-
tration; 1975 Sri Lanka WFS; 1987, 1993, 2000,
2006–07 Sri Lanka DHSs; United Nations (2011a).

28 Mark C. Wheldon et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 0
8:

12
 3

0 
Ju

ne
 2

01
6 



West model life table. This choice was made by
UNPD analysts, who drew on previous studies
(Hartman 1996a, 1996b; United Nations 2011b).
However, other approaches were possible. We there-
fore compared the results above with those given by
an alternative set of initial estimates of survival based
on a different model life table, and we use the com-
parison to explain why the CD West model should
be preferred. To do this, we look at the age-specific
mortality rates rather than e0.
The posterior distribution of e0 in Figure 1(b) was

computed from the posterior distribution of the age-
specific survival proportions, 5Sx[t, t + 5], which are an
output of Bayesian reconstruction. These were con-
verted into age-specific annual mortality rates using
the separation factors implicit in the CD West life
table. Medians and limits of 95 per cent Bayesian
confidence intervals for the marginal posterior distri-
butions of these parameters for the period 1985–89
are shown in Figure 4 on a logarithmic scale. Pos-
terior uncertainty about these quantities is very low
in this and all subsequent reconstructed periods

(see the supplementary material); the mean half-
widths of the 95 per cent Bayesian confidence inter-
vals of mortality rate over age, within year, are all
less than 0.002 (raw scale). Mean half-widths of con-
fidence intervals were derived by taking half the
difference between the upper and lower limits of
the intervals for each age group and time
period, and then averaging over age groups and
time periods.
An alternative set of initial estimates for the

5Sx[t, t + 5] was generated from the same data on
under-5 mortality, but adult mortality was estimated
using the Brass two-parameter relational logit
model with the United Nations South Asian
(UNSA) model life table, e0 = 57.5 years (United
Nations 1982). Figure 5 gives the initial estimates
and marginal posteriors of the log mortality rates
using these alternative survival estimates, but
keeping the initial estimates of all other parameters
the same. The posterior intervals of mortality rate
are much wider under this set of initial estimates;
the mean half-widths over age, within year, are
between 0.015 and 0.025 (raw scale), a large
increase.

Figure 3 Prior and posterior medians and 95 per
cent Bayesian confidence intervals of the total net
number of female migrants (average annual) in the
reconstructed female population of New Zealand,
1961–2006. Prior medians correspond to initial esti-
mates
Source: 1961–2006 censuses; 1961–2005 vital regis-
tration and international arrivals and departures;
1996, 2001, 2006 PESs; Statistics New Zealand
(1998, 2010b).

Figure 4 Prior and posterior medians and 95 per
cent Bayesian confidence intervals of the age-specific
log mortality rates in the reconstructed female popu-
lation of Laos, 1985–90. Prior medians correspond to
initial estimates, which were calculated using the CD
West model life table. Prior and posterior medians
coincide almost exactly. Note that the posterior
Bayesian confidence intervals are the darker, inner
bands in this plot
Source: As for Figure 1(a).
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Figure 5 Prior and posterior medians and 95 per cent Bayesian confidence intervals of age-specific log mor-
tality rates in the reconstructed female population of Laos, 1985–2005. Prior medians correspond to initial esti-
mates. Initial estimates and posterior distributions were calculated using the Brass two-parameter relational logit
model with the United Nations South Asian (UNSA) model life table. Note that the posterior Bayesian confi-
dence intervals are the lighter, wider bands in this plot
Source: As for Figure 1(a); United Nations (1982).
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The wider intervals show that using the alternative
initial estimates greatly increases posterior uncer-
tainty. In addition, for many of the older age
groups, the posterior medians are actually closer to
the CD West initial point estimates than those used
to fit the model. While not a formal statistical test,
this does suggest that the initial estimates based
on the CD West life tables are more consistent with
the intercensal changes in population counts, given
the initial estimates for the other parameters, and
that they are preferable to the UNSA-derived
initial estimates.
Looking at e0 in Figure 6 leads to the same con-

clusion. Again, uncertainty is much greater under
the alternative set of initial estimates (cf. Figure 1
(b)). The posterior distribution has shifted away
from the initial estimates used to fit the model
toward those derived from the CD West model life
table. In fact, all the CD West initial point estimates
are contained within the 95 per cent posterior inter-
val based on the alternative estimates, while this is
not the case for the initial estimates used to fit the
model.

We emphasize that our preferred set of initial esti-
mates are those generated using the CD West stan-
dard. Our purpose here is not to advocate the
UNSA standard, or the Brass two-parameter logit
model, but to present an alternative, plausible, set
of initial estimates which we can use to generate an
alternative set of posterior estimates for use in a com-
parative analysis.

Discussion

We have shown that Bayesian reconstruction
(Wheldon et al. 2010, 2012, 2013) works well when
applied to data sets that vary in quality from different
countries. For Laos, the only mortality data are for
the under-5s and come from surveys. New Zealand
has complete period life tables based on vital regis-
tration. Burkina Faso (analysed in Wheldon et al.
2012, 2013) and Sri Lanka lie between these
extremes. Furthermore, the magnitude of the esti-
mated uncertainty reflected the quality of the avail-
able data. For instance, posterior intervals for New
Zealand are much narrower than those for Laos,
reflecting the greater accuracy and coverage of the
New Zealand data.
From the single example presented by Wheldon

et al. (2012, 2013), it was not clear that Bayesian
reconstruction would produce useful estimates in
cases of very fragmentary data, such as the data
for Laos. Our results show that, even in a case
where data on only infant and under-5 mortality
are available, the posterior uncertainty is small
enough to make the results useful. New Zealand, in
contrast, has very good data, but even here there is
uncertainty that Bayesian reconstruction is able to
estimate. That the method performed well in such a
diverse range of cases suggests that it could feasibly
be used to reconstruct the female population of any
country. Bayesian reconstruction is likely to be of
greatest value for those countries which lack compre-
hensive, reliable vital registration data, and where
the uncertainty is therefore greater. Roughly one
half of all the countries and areas included in the
WPP fall into this category (United Nations 2011a).
Where data are even more fragmentary than for
Laos, the uncertainty could be greater than that
shown in our examples. Ultimately, of course, the
quality of the outputs will be dependent on the
quality of the inputs, including the bias reduction
process, and elicited relative errors.
Bayesian reconstruction embeds the standard

CCMPP in a hierarchical statistical model which
takes initial estimates of vital rates and population

Figure 6 Initial and posterior estimates of e0 for
Laos females, 1985–2005, using the Brass two-par-
ameter logit model and the United Nations South
Asian (UNSA) model life table. This figure summar-
izes the results shown in Figure 5. Note that the pos-
terior Bayesian confidence intervals are the darker
bands in this plot
Source: As for Figure 5.
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counts as inputs, together with expert opinion about
their relative error (informed by data if available),
and yields fully probabilistic interval estimates for
all of the inputs. International migration is handled
in the same way as the other inputs. The approach
is Bayesian because the initial estimates serve as
the medians of informative priors for CCMPP input
parameters, hence also population counts, which
are then updated using observed population counts
over the period of reconstruction. These observed
population counts, typically derived from available
census data, play a central role in the reconstruction,
but they are not assumed to be error-free. Rather,
uncertainty caused by measurement error is reflected
in the variance parameters in the same way as for the
vital rates.
The age patterns in the initial estimates will

be plausible a priori by construction, or possibly
flat in the case of net migration, but there are no
further impositions on age patterns during the mod-
elling process. The posterior estimates will depart
from the initial estimates only if there is strong evi-
dence in the data. We did not observe any such
departure in our case studies, but we prefer not to
exclude this possibility completely. In general, pos-
terior distributions for age-specific parameters can
be inspected for plausibility. We give these distri-
butions for the case studies in the supplementary
material.
The posterior distributions will be somewhat sensi-

tive to the elicited relative errors because the initial esti-
mates themselves do not contain much information
about measurement error. However, in cases like that
of New Zealand, the elicited relative errors are likely
to be heavily based on data from register-coverage
studies and post-census surveys. In countries without
such studies, expert opinion and knowledge about the
situation in neighbouring countries with similar con-
ditions provide an important source of information. Eli-
cited relative errors specified for each component can
vary depending on the reliability of the information
available. In both cases, it is appropriate that these
sources of information have some bearing on the result-
ing estimates.
In our case studies, the periods of reconstruction

were delimited by the earliest and most recent cen-
suses. Reconstruction can be undertaken beyond
the year of the most recent census if initial estimates
of vital rates and international migration are avail-
able, but the posterior distribution for this latter
period will not be updated and will depend heavily
on the prior distributions. In practice, therefore, a
minimum of two sets of population counts are
required for a useful reconstruction.

We have presented 95 per cent Bayesian confi-
dence intervals for the marginal distributions of
TFR, total net number of migrants, e0, and under-5
mortality; 95 per cent intervals cover the range of
the most likely values. Results for TFR and age-
specific fertility for Laos show that the posterior
intervals are not constrained to lie inside prior inter-
vals, nor are they necessarily narrower than prior
intervals. Our posterior estimates of TFR for Laos
and Sri Lanka suggest that, in some years, the
initial estimates, based mainly on surveys, are incon-
sistent with intercensal changes in number of births,
and Bayesian reconstruction is able to provide an
appropriate correction.
In our studies of Laos and Sri Lanka, the a priori

central 90 per cent probability interval for net inter-
national migration ranged from −20 to +20 per cent
of the population for each age group. This is a wide
range and reduces the influence of the migration
prior on the posterior relative to the priors of the
other vital rate parameters and of the population
counts. Posterior Bayesian confidence intervals are
much narrower, however, and posterior medians
display a noticeable age pattern, despite an age
pattern being absent from the prior. Further discussion,
including that on age-specific posterior distributions for
migration, appears in the supplementary material.
The method as described in Wheldon et al. (2010,

2012, 2013) was limited by the fact that it required
census data at regular intervals. Here, we relaxed
this requirement by showing that linearly interpolat-
ing census counts on the growth rate scale produces
good results.
We have also shown how Bayesian reconstruction

might be used to help choose between two sets of
initial mortality estimates. We compared the pos-
terior distributions of age-specific mortality rates
for Laos derived from initial estimates based on the
CD West model life table and the Brass two-par-
ameter relational logit with the UNSA model life
table. In the latter case, the interval widths were
much greater. This implies that the CD West-based
initial estimates agree more closely with the data on
fertility, mortality, and population counts, and that
they should be preferred.
Model life tables are a useful source of initial esti-

mates of mortality in cases where data are fragmen-
tary, but they do not need to be used in isolation.
Where the analyst has additional information about
mortality patterns, independent of intercensal popu-
lation changes, this can be used in the reconstruction
by incorporating it into the initial estimates. For
example, knowledge about how wars and epidemics
affect mortality age patterns could be used in cases
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where such events are known to have occurred. In
countries experiencing substantial HIV/AIDS mor-
tality, mortality rates from all causes of death based
on vital registration or retrospective information
from surveys can be used.
Bias and variance in measurement error are

handled separately under Bayesian reconstruction.
Existing demographic techniques, such as indirect
estimation via P/F ratios and model life tables, and
adjustments using PESs, based on raw data collected
from surveys, vital registration, and censuses, are
used to reduce bias in initial point estimates and
population counts. The nature of bias varies greatly
across parameters, time period, and country, so we
do not propose a general method to replace the
many existing techniques. Instead, the analyst is
able to select the most appropriate technique for
the data at hand. In the case of population counts,
this may be difficult to achieve if PESs are not avail-
able, and the analyst will have to search for well-
known examples of miscounting, such as under-
counting of young adult males, over-counting at
ages of eligibility for state pensions, and heaping of
ages ending in ‘0’ and ‘5’.
Measurement error variance is accounted for

through the variance parameters (equivalently, stan-
dard deviations) of the initial point estimates. Expert
opinion is used a priori to set reasonable ranges for
measurement error uncertainty. Separate ranges for
fertility, mortality, migration, and population counts
are used to account for a priori uncertainty in
initial estimates and population counts that remains
after adjustment and bias reduction. These are then
updated using all the available initial estimates and
census counts.
Cross-sectional population counts over the period

of reconstruction may be needed to construct initial
estimates of vital rates and migration, but intercensal
changes should not be used for this purpose. Forward
or reverse-survival methods, methods of estimating
migration using ‘residuals’ after projecting using fer-
tility and mortality alone, and other techniques that
use intercensal changes to estimate vital rates and
migration, are not compatible with Bayesian recon-
struction. Using any of these could lead to an under-
estimate of uncertainty. If no reliable migration data
are available, the default initial point estimates
should be centred at zero for all ages and time
periods, with a large elicited relative error. If no
reliable mortality data are available, a model life
table must be chosen from a family of standards or
derived using data for another country. In both
cases, the resulting increase in uncertainty can be
fed into the model via the elicited relative error.

Since a key aim of Bayesian reconstruction is to
quantify the uncertainty in population reconstruc-
tions, the usefulness of the method, per se, will not
be compromised because it will still be possible to
estimate posterior uncertainty, and this, itself, is
important information.
The remaining bias in cross-sectional population

counts used to construct initial estimates of vital
rates and migration may affect the initial estimates
themselves. For example, if death and population
counts are used to produce initial estimates of survi-
val, and population is under-counted but deaths are
not, the resulting survival proportions will be too
low. However, Bayesian reconstruction is under-
taken simultaneously across all age groups and time
periods, and population under-count tends to be
limited to specific age ranges. In this case, the
cohort will eventually age into an age group where
bias is not significant. At this point, there will be an
error of closure owing to a discrepancy between the
observed, un-biased population count and the
counts based on the projection of the under-
counted earlier population. Bayesian reconstruction
will respond by exploring all possible combinations
of changes in fertility, survival, and migration across
the age range and period of the reconstruction,
assigning higher posterior probability to those com-
binations which lead to larger reductions in the dis-
crepancy. Changes in the survival proportions for
the period of population under-count will be included
in this exploration and adjustments will be made
according to the impact on the joint posterior.
Bayesian reconstruction was developed and

demonstrated for female-only populations. In
Wheldon et al. (2015) we extended the method to
two-sex populations. A further potential refinement
is to use single-year age groups and time periods.
A great deal of attention has already been directed

at the estimation of uncertainty in demographic fore-
casts, as opposed to estimates about the past which
we focus upon here. The study of stochastic models
for forecasting dates back at least to Pollard (1966)
and Sykes (1969). Further developments were
reviewed by Booth (2006) with more recent additions
in Hyndman and Booth (2008), Alkema et al. (2011),
and Scherbov et al. (2011). One component of error
in forecasts of population size is the error in estimates
of population size and the vital rates in the baseline
year. While the ergodic theorems of demography
(Lotka and Sharpe 1911; Lopez 1961) imply that
these become irrelevant if one forecasts far enough
into the future, short-term forecasts can be signifi-
cantly affected (e.g., Keilman 1998; National
Research Council 2000). It is possible, then, that
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Bayesian reconstructions could contribute to
improved forecasting methods by providing impor-
tant information about the uncertainty in estimates
of baseline populations.
The fact that official statistical estimates are not

perfect is undisputed. The UNPD acknowledges
this fact both explicitly (United Nations 2011a) and
implicitly in that the WPP are revised biannually as
new sources of data become available and methods
are improved. Therefore, augmenting point esti-
mates with quantitative estimates of their uncertainty
is an important contribution. For many countries, the
available data are fragmentary and subject to bias
and measurement error, and so the expert opinions
of demographers are valuable. A Bayesian approach
is especially appropriate (Bijak and Bryant 2016)
since this knowledge can be used in conjunction
with the available data in a statistically coherent
manner.
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