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ABSTRACT

Bayesian model averaging (BMA) has recently been proposed as a way of correcting underdispersion in
ensemble forecasts. BMA is a standard statistical procedure for combining predictive distributions from
different sources. The output of BMA is a probability density function (pdf), which is a weighted average
of pdfs centered on the bias-corrected forecasts. The BMA weights reflect the relative contributions of the
component models to the predictive skill over a training sample. The variance of the BMA pdf is made up
of two components, the between-model variance, and the within-model error variance, both estimated from
the training sample. This paper describes the results of experiments with BMA to calibrate surface tem-
perature forecasts from the 16-member Canadian ensemble system. Using one year of ensemble forecasts,
BMA was applied for different training periods ranging from 25 to 80 days. The method was trained on the
most recent forecast period, then applied to the next day’s forecasts as an independent sample. This process
was repeated through the year, and forecast quality was evaluated using rank histograms, the continuous
rank probability score, and the continuous rank probability skill score. An examination of the BMA weights
provided a useful comparative evaluation of the component models, both for the ensemble itself and for the
ensemble augmented with the unperturbed control forecast and the higher-resolution deterministic forecast.
Training periods around 40 days provided a good calibration of the ensemble dispersion. Both full regres-
sion and simple bias-correction methods worked well to correct the bias, except that the full regression
failed to completely remove seasonal trend biases in spring and fall. Simple correction of the bias was
sufficient to produce positive forecast skill out to 10 days with respect to climatology, which was improved
by the BMA. The addition of the control forecast and the full-resolution model forecast to the ensemble
produced modest improvement in the forecasts for ranges out to about 7 days. Finally, BMA produced
significantly narrower 90% prediction intervals compared to a simple Gaussian bias correction, while
achieving similar overall accuracy.

1. Introduction

For several decades, statistical methods have been
used to postprocess the output of numerical prediction

models into forecasts of sensible weather elements such
as temperature and precipitation. The main goal of sta-
tistical postprocessing has been to interpret the model
output variables to produce forecasts that are more ac-
curate than could be produced directly from the model.
The statistical postprocessing improves the accuracy by
removing biases, and/or by increasing the correlation
between forecast and observation. A prime example is
model output statistics (MOS; Glahn and Lowry 1972),
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which for over 30 yr has been used in many centers to
improve the output of deterministic operational fore-
casts. MOS typically uses linear statistical predictive
techniques such as regression to relate a historical set of
model forecast variables (“predictors”) to surface ob-
servations. If the predictor set includes the model esti-
mate of the predictand variable, then MOS explicitly
accounts for the bias in the model forecast, or calibrates
it to the training sample.

More recently, as changes in operational models be-
came more frequent, it became desirable to develop
adaptive statistical methods to postprocess model out-
put. Adaptive procedures use shorter (smaller) samples
of recent realizations of the forecast system to estimate
and update the parameters of the statistical model.
While small sample sizes are sometimes a problem,
adaptive procedures respond quickly to changing sta-
tistical properties of the training sample, and bring the
benefits of improvements to numerical weather predic-
tion (NWP) models into the post processed products
more quickly. Two examples are an updateable form of
MOS (Wilson and Vallée 2002) and the Kalman filter
(Simonsen 1991). The latter technique has been tested
not only for the correction of model forecasts of surface
variables, but also as a way of combining forecasts from
different sources (Vallée et al. 1996).

All of the above techniques have been applied to the
output of “deterministic” models, which produce one
forecast of the surface variables of interest at each lo-
cation. Since the early 1990s, ensemble systems have
been developed and increasingly used for weather pre-
diction at many centers. Ensemble systems take many
forms, but they all provide multiple predictions of each
forecast variable at each valid time, and the forecasts
are generated using one or more deterministic models,
in one or more versions, starting from different analy-
ses. Examples include so-called poor man’s systems in-
volving a combination of existing models and analyses
from different centers (Ziehmann 2000), systems based
on different models and perturbed initial conditions
(Pellerin et al. 2003), and single-model systems using
perturbed initial conditions (Molteni et al. 1996; Toth
and Kalnay 1997). The set of alternative forecast values
obtained is usually interpreted as a sample from a prob-
ability density function (pdf), which is intended to rep-
resent the uncertainty in the forecast for each valid time
and location.

Evaluations of ensemble pdfs that have been carried
out often reveal that they are not calibrated. They may
be biased in the sense that the pdf is not centered on the
observation, and/or they are often found to be under-
dispersive, in the sense that the observations exhibit
greater variance than the ensemble, on average (Toth

et al. 2001; Pellerin et al. 2003; Buizza 1997; Hamill and
Colucci 1997). Furthermore, gridded forecasts from en-
sembles are valid over large areas rather than at points.
Statistical calibration of ensemble forecasts with re-
spect to point observations can thus add some down-
scaling information to the forecasts.

Calibration of ensembles is also important if they are
to be combined with other forecasts or other en-
sembles. This is because biases of individual ensembles
will lead to artificially large ensemble spread when the
ensembles are combined, and systematic errors of each
ensemble will decrease the accuracy of the combined
ensemble. In the recently planned North American En-
semble Forecast System (NAEFS; Toth et al. 2005), the
importance of ensemble calibration has been recog-
nized as part of the joint ensemble project. Both the
Meteorological Service of Canada and the U.S. Na-
tional Centers for Environmental Prediction are pursu-
ing and comparatively evaluating ensemble calibration
methods.

One rather promising method for calibrating en-
semble forecasts is Bayesian model averaging (BMA).
Widely applied to the combination of statistical models
in the social and health sciences, BMA has recently
been applied to the combination of NWP model fore-
casts in an ensemble context by Raftery et al. (2005).
BMA is adaptive in the sense that recent realizations of
the forecast system are used as a training sample to
carry out the calibration. BMA is also a method of
combining forecasts from different sources into a con-
sensus pdf, an ensemble analog to consensus forecast-
ing methods applied to deterministic forecasts from dif-
ferent sources (Vallée et al. 1996; Vislocky and Fritsch
1995; Krishnamurti et al. 1999). BMA naturally applies
to ensemble systems made up of sets of discrete models
such as the Canadian ensemble system.

Raftery et al. (2005) applied BMA to the University
of Washington short-range ensemble, which is a five-
member multianalysis, single-model ensemble (Grimit
and Mass 2002). BMA was applied to surface tempera-
ture and mean sea level pressure forecasts, and the co-
efficients were fitted using forecasts and observations
over a spatial region. They found that BMA was able to
correct the underdispersion in both the temperature
and pressure forecasts.

In our study we apply BMA to the Canadian en-
semble system (Pellerin et al. 2003). This is a 16-
member ensemble using perturbed initial conditions
and eight different versions of each of two different
NWP models. As in Raftery et al. (2005), we apply the
BMA to surface temperature forecasts, but we test the
method on single-station data, rather than over a spa-
tial area. In this way, we attempt to calibrate the en-
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semble forecasts with respect to local effects that may
not be resolved by the forecast models. The BMA pro-
cedure is described in section 2; section 3 gives a brief
summary of the Canadian ensemble system; the avail-
able data and experimental setup are discussed in sec-
tion 4; section 5 describes the results; and we conclude
with a discussion in section 6.

2. Bayesian model averaging

BMA is a way of combining statistical models and at
the same time calibrating them using a training dataset.
BMA is not a bias-correction procedure; models that
are to be combined using BMA should be individually
corrected for any bias errors before the BMA is ap-
plied. The BMA pdf is a weighted sum of the bias-
corrected pdfs of the component models, where all the
pdfs are estimated from the forecast error distribution
over the training dataset.

Following the notation in Raftery et al. (2005), the
combined forecast pdf of a variable y is

p�y |yT� � �
k�1

K

p�y |Mk , yT�p�Mk |yT�, �1�

where p(y |Mk, yT) is the forecast pdf based on model
Mk alone, estimated from the training data; K is the
number of models being combined, 16 or 18 in the
present study; and p(Mk |yT) is the posterior probability
of model Mk being correct given the training data. This
term is computed with the aid of Bayes’s theorem:

p�Mk |yT� �
p�yT |Mk�p�Mk�

�
l�1

K

p�yT |Ml�p�Ml�

. �2�

The BMA procedure itself is applied to bias-
corrected forecasts only. In this study, we consider two
types of bias correction. The first is a simple adjustment
of forecasts from each model for the average error over
the training set:

fk � ak � yk , �3�

where fk is the bias-corrected forecast for model k, yk is
the forecast value of the variable from model k, and ak

is the mean error for model k over the training dataset.
This is referred to in the results section as “b1.” The
other bias-correction procedure considered is a simple
linear regression fit of the training data using the cor-
responding model-predicted variable as the single pre-
dictor:

fk � ak � bkyk . �4�

This is referred to in the results section as “FR.”

Considering now the application of BMA to bias-
corrected forecasts from the K models, Eq. (1) can be
rewritten as

p�y | f1 . . . . . . fK , yT� � �
k�1

K

�kpk�y | fk , yT�, �5�

where �k � p(Mk |yT) is the BMA weight for model k,
computed from the training dataset, and reflects the
relative performance of model k on the training period.
The weights �k add up to 1. The conditional probabili-
ties pk[y |( fk, yT)] may be interpreted as the conditional
pdf of y given fk, given that model k has been chosen
(or is the “best” model or member), based on the train-
ing data yT. These conditional pdfs are assumed to be
normally distributed,

y |� fk , yT� � N�ak � bkyk , �2�, �6�

where the coefficients ak and bk are estimated from the
bias-correction procedures described above. This
means that the BMA predictive distribution becomes a
weighted sum of normal distributions, with equal vari-
ances, each one centered on the bias-corrected forecast
from an ensemble member. A deterministic forecast
can also be obtained from the BMA distribution, using
the conditional expectation of y given the forecasts:

E�y |� f1, . . . , fK , yT�	 � �
k�1

K

�k�ak � bkfk�. �7�

This forecast would be expected to be more skilful
than either the ensemble mean or any one member,
since it has been determined from an ensemble distri-
bution that has had its first and second moments debi-
ased, using recent verification data for all the ensemble
members. It is essentially an “intelligent” consensus
forecast, weighted by the recent performance results
for the component models.

The BMA weights and the variance 
2 are estimated
using maximum likelihood (Fisher 1922). The likeli-
hood function is the probability of the training data
given the parameters to be estimated, viewed as a func-
tion of the parameters, that is, the term p(yT |Mk) in Eq.
(2). The K weights and variance are chosen so as to
maximize this function (i.e., the parameter values for
which the observed data were most likely to have been
observed). The algorithm used to calculate the BMA
weights and variance is called the expectation maximi-
zation (EM) algorithm (Dempster et al. 1977). The
method is iterative, and normally converges to a local
maximum of the likelihood. For a summary of the
method as applied to BMA, the reader is referred to
Raftery et al. (2005), and more complete details of the
EM algorithm are given in McLachlan and Krishnan
(1997). The value of 
2 is related to the total pooled
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error variance over all the models in the training
dataset. (A free software package to estimate the BMA
parameters called ensemble BMA, written in the freely
available statistical language R, is available online at
http://cran.us.r-project.org/src/contrib/Descriptions/
ensembleBMA.html.)

It is possible to relax the assumption that the condi-
tional distributions for the component models all have
constant variance. We carried out tests where the vari-
ance was allowed to vary, and was estimated separately
for each component model. This meant that, in addition
to the 16 or 18 of each of ak, bk, and �k, 16 or 18
different values of 
2

k needed to be estimated, instead
of a single 
2 value. This significantly increases the
number of independent BMA parameters that must be
supported by the training sample.

3. The Canadian Ensemble System

Operational ensemble forecasts have been issued
from the Canadian Meteorological Centre (CMC) since
1996. The ensemble strategy used at CMC has been
described in Houtekamer et al. (1996) and Lefaivre et
al. (1997). The version of the system that generated the
data used in this study is described in Pellerin et al.
(2003). The original ensemble consisted of eight mem-
bers, which were eight variants of a global spectral
model (SEF) that was used for operational determinis-
tic forecasts in the late 1980s and early 1990s (Ritchie
1991). In 1999, eight additional members were added,
consisting of eight variants of the Global Environmen-
tal Multiscale (GEM) model, a high-resolution version
of which provides operational deterministic forecasts.
The use of 16 different model versions is intended to
account for uncertainties in the forecast due to limita-
tions in model formulations. The 16 model versions are
initialized with perturbed analyses; the perturbations
are random and are produced through the data assimi-
lation cycle in the model. In this way, errors due to the
uncertainty in the initial conditions are accounted for.
The SEF models have a horizontal resolution of T149
(equivalent to a grid length of about 140 km) and the
GEM models have a resolution of 1.2°, about 130 km.
The vertical resolution is 23 or 41 levels for the SEF
members and 28 levels for the GEM members. The
models differ from each other in several other ways,
mostly related to the physical parameterization (details
are contained in Pellerin et al. 2003).

One of the advantages of the BMA method is that it
does not really matter what models are included. As
long as sufficiently large training samples are available
that are simultaneous in space and time for all models,
the BMA can be applied to calibrate the ensemble of

forecasts. The BMA weighting procedure will also en-
sure that the models containing the most accurate pre-
dictive information and unique predictive information
in light of the full ensemble of models will be assigned
high weights in the combined pdf. To test the behavior
of the BMA when models from different sources were
included in the ensemble, we conducted some experi-
ments with an 18-member ensemble consisting of the
original 16 members plus the control forecast and the
operational full-resolution global model. The control
forecast model is a version of the SEF model where
some of the physical parameters that are varied for the
eight SEF members are replaced by their averages. The
control run uses an unperturbed analysis.

The full-resolution model is the version of the GEM
global model that was operational at the time of the
BMA experiments. This model has a uniform horizon-
tal grid at 100-km resolution (0.9°) and 28 levels in the
vertical, which means that the resolution is only slightly
higher than the versions of GEM used in the ensemble.
The GEM global is described fully by Coté et al. (1998).

4. Data and experiment

Data used in the experiment came from 1 yr (28 Sep-
tember 2003–27 September 2004) of surface tempera-
ture forecasts from the 16-member ensemble, supple-
mented with forecasts from the unperturbed control
model and the full-resolution global model. All fore-
casts were interpolated to 21 Canadian stations for
which a set of reliable observations was available. All
observations are of 2-m temperature, taken at manned
observing sites. The stations used in the study are dis-
tributed across Canada, and are representative of a va-
riety of climatological regimes (Fig. 1). Forecasts were
available at 24-hourly intervals out to 10 days, initial-
ized at 0000 UTC each day of the 1-yr period. The full
sample comprises 366 separate BMA analyses for each
of 21 stations, which are used to produce a maximum of
7686 forecasts, based on the 7686 updated BMA analy-
ses. In practice, the total sample on which the results
are based is a little smaller than that due to missing
forecasts or verifying observations.

The experiments were conducted in a recursive
mode: the BMA was retrained each day through the
1-yr period, using a training sample period of the N
previous days, where N � 25, 30, 35, 40, 50, 60, or 80.
The training was carried out separately for each station
and each 24-h forecast projection. Then the BMA co-
efficients were applied to the next day’s forecast, as an
independent case. In this way, one year of independent
test data was accumulated to verify the performance of
the technique. This kind of recursive tuning is similar in
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some ways to the Canadian application of updateable
model output statistics (UMOS; Wilson and Vallée
2003), except that BMA is retuned on a daily rather
than weekly basis, and the training sample is of fixed
size in each application. As with UMOS, there is also
no direct dependence of any particular run on the pre-
vious runs; BMA coefficients were recalculated sepa-
rately each time. With the addition of one day of new
forecast data and the deletion of the oldest case from
the training sample, there is a large overlap in the train-
ing dataset from one day to the next, especially for the
longer training periods. One would expect, therefore,
that the coefficients should not change rapidly from day
to day.

Four different comparative experiments were carried
out to try to optimize the parameters of BMA:

1) The length of the training period, N.
2) Constant variance over the ensemble members

based on the total pooled error variance versus vari-
able variance, estimated from the error distribution
for each member. These experiments are referred to
as “BMA” and “BMAvar,” respectively.

3) Using a full regression to remove the bias versus
additive bias removal only. The full regression in-
volved application of Eq. (4) to each member of the
ensemble over the training period, resulting in a set
of ensemble forecasts for which the average error of
all members is 0. The simple bias removal was ac-
complished by subtracting the mean error over the
training sample from all the ensemble member fore-
casts [Eq. (3)]. These experiments are referred to as
FR and bl, respectively.

4) The effect of adding the control forecast and the
full-resolution forecast to the BMA (16 versus 18
members).

In addition to the original unprocessed set of en-
semble forecasts, the various permutations lead to a
total of 12 sets of processed ensemble forecasts, 6 for
each of the 16- and 18-member ensembles: FR, bl,
BMA after FR, BMA after b1, BMAvar after FR, and
BMAvar after b1. All runs were tested for training pe-
riods ranging from 30 to 80 days. The shortest training
period, 25 days, was dropped from consideration as
soon as it became clear that it was too short.

FIG. 1. Map showing the 21 stations used in the analysis.
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The various experiments are assessed using three
verification measures, the rank histogram (Anderson
1996; Hamill 2001), the continuous rank probability
score (CRPS; Hersbach 2000), and the continuous rank
probability skill score (CRPSS), a skill score with re-
spect to climatology based on the CRPS. The first is
used to check whether the ensemble spread is repre-
sentative of the spread in the observations, and thus can
give a good indication whether the second moment of
the ensemble distribution has been calibrated by BMA.
The CRPS measures the distance between the forecast
continuous distribution function (cdf) and the observa-
tion expressed as a cdf, and measures the accuracy of
the ensemble distribution. The CRPS is equal to the
mean absolute error for deterministic forecasts. The
skill score measures the percentage improvement of the
ensemble distribution compared to a forecast of the
long-term climatological distribution for the station and
day of the year. These three measures are described
more fully in the appendix.

5. Results

a. BMA weights

Figure 2 shows the time series of weights for one
station (Montreal) for 24-, 120-, and 216-h projections,
using a training period of 40 days. All 16 ensemble
models are shown. This figure illustrates how the coef-
ficient selection changes from day to day. There are
several aspects to note here. First, the day-to-day
changes in the coefficients can be quite large, especially
for the shortest-range forecasts. This is perhaps surpris-
ing, given that the training sample changes by only 1
case in 40 from one day to the next. Second, different
models are favored at different projections at the same
time. This was true even for adjacent 24-h projections.
Third, there is a tendency for the individual models to
go in and out of “favor” for periods of as much as a
month or more. Fourth, coefficients sometimes but
rarely are close to 1, which means essentially that only
one model was considered useful by BMA in that case.
And finally, especially at the early projections, some
models are rarely selected at all, for example SEF1 and
8 at 24 h and SEF7 at 120 h. We found that the length
of the training period had relatively little effect on the
coefficients. One can also note that sometimes model
weights change pairwise. For example, at 216 h, SEF6
takes over from SEF5 for a couple of weeks in the
winter. And, at 24 h, GEM 13 hands over to GEM 12
over a period of only a few days in the summer.

Although some models were practically never chosen
through the whole year for some stations and projec-
tions, it turns out that all models were approximately

equally important when the coefficients are averaged
over all stations for the full year. The top row of Fig. 3
shows this for a training period of 40 days, for BMA
carried out after FR bias removal, for 24-, 120-, and
216-h projections. At the short and perhaps medium
forecast range, there is a slight tendency for the coeffi-
cients to favor the GEM model components of the en-
semble on average, models 9–16. At the longest range,
216 h, average coefficient values are distributed nearly
equally across all ensemble members.

Although there is not much variation in the yearly
average coefficient values among the ensemble mem-
bers, stratification by season reveals greater differ-
ences. Figure 3 illustrates this also, showing winter (De-
cember–February) and summer (June–August) average
coefficients in the second and third rows. The eight
GEM model members are strongly favored in summer
at the shortest ranges, but not so much in winter. At the
medium range, there is not a strong preference shown
for either model, but individual members are preferred
in different seasons. For example, SEF member 8 car-
ries the highest average weight in winter, but GEM
member 16 dominates in summer. At the longer ranges,
there is not a clear seasonal signal. This is not surpris-
ing, since none of the individual forecast models are
believed to have significant predictive skill at the
longer-range projections, although there may still be
useful forecast information in the distribution obtained
from the ensemble. As the predictive accuracy de-
creases, one would expect the coefficients and model
selection in each case to approach a random selection
from a uniform distribution, and the histogram should
therefore tend toward a flat distribution. Noticeable
departures from uniformity, for example members 2
and 4 at 216 h in the summer, would warrant further
investigation. Although based on averages over rela-
tively large samples (21 stations for 90-day periods,
sample sizes in the range of 1800 cases), these results
may not be significant; further testing on additional sea-
sons would be of value to see whether there is a ten-
dency for the preferred models to change according to
seasonal average flow regimes for example.

These results are potentially useful diagnostics for
model performance. It would be interesting to investi-
gate whether there is any relationship between the
characteristics of the models favored with relatively
high coefficients and specific types of synoptic flow re-
gimes. It might also be informative to relate variations
in the seasonal average coefficients of individual mod-
els to the strengths and weaknesses of their formula-
tions vis-à-vis seasonal differences in average atmo-
spheric structure. It should be noted, however, that the
weights are not directly related to the performance of
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FIG. 2. Time series plots of BMA weights for the 1-yr development period for Montreal, based on
40-day training period: (top) 24, (middle) 120, and (bottom) 216 h with (left) SEF members and (right)
GEM members. The range for each series is 0–1, and each plot consists of 366 points covering the year
from 28 Sep 2003 to 27 Sep 2004.
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the individual models; each model is evaluated in light
of the predictive information from all models. Thus, if
two models perform similarly during the training pe-
riod, but neither adds much predictive skill with respect
to the other, BMA will tend to select the better one and
practically ignore the other. This occurs, for example,
when two forecasts are very highly correlated during
the training period. The magnitude of the coefficients
relates both to the accuracy of the model and its abil-
ity to bring unique predictive information to the en-
semble.

Figure 4 shows an example of how the BMA works
on a single forecast. In this case, a full regression has

been used prior to the BMA, and the error variance
was pooled over all models and applied to each in the
averaged pdf. The BMA pdf is shown by the heavy line.
This is an example where the forecast predicted cooler
temperatures than long-term climatology (dash–dot
line), and the regression has increased the tempera-
tures. The component model pdfs, shown by the lighter
Gaussian curves, tend to spread the distribution some-
what: one of the models near the cold tail of the distri-
bution carries the highest weight, while two others with
lower weights, predict near the climatological mean. Of
the 16 models offered to BMA, only 3 of them carry any
significant weight in this case. This is consistent with the

FIG. 3. BMA weights averaged over the 21 stations for (left) 24-, (middle) 120-, and (right) 216-h forecasts averaged over (top) the
full year, (middle) December–February, and (bottom) June–August.
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coefficient trends shown above, and was typical of all
the results for all stations.

The tendency of the BMA to assign significant
weights to only a few of the models might seem sur-
prising. In this way it objectively mimics the “model of
the day” approach used by forecasters, where the
model judged to give the best solution on a particular
day is chosen, perhaps modified, and all other solutions
are rejected. It is possible that nonzero coefficients
would be spread out over more members with larger
sample sizes, especially if the samples were kept sea-
sonally homogeneous. A comparison of the coefficient
statistics for 40- and 80-day training samples gave no
evidence of this however, and the much larger sample
sizes used in Raftery et al. (2005) also produced negli-
gibly small coefficients for some models. A more likely
explanation of this outcome is that there is considerable
colinearity in the training samples, which means that
relatively few of the models are needed to explain most
of the explainable variance in the observations.

To further investigate this issue, histograms of the
coefficient values were examined. Of the approxi-
mately 120 000 weights for the 16-member, 21-station

1-yr dataset, as many as 75% took on small values, and
up to 500 or so took on relatively large values near one.
There was a tendency for the number of very small
coefficients and the number of very large coefficient
values to decrease with longer projections, indicating
spreading of the weights over more of the models at
these projections. This is consistent with expectation
since, at longer projections the accuracy of all the mod-
els is low, and the best model for a particular training
period moves closer to a random selection from all the
models. Even at 10 days though, a significant majority
of the weights took on small values, reflecting colinear-
ity in the forecasts as discussed above. The tendency
toward significant numbers of very large weights is of
more concern especially at longer projections, for it
indicates that there could be overfitting in the results.
Accordingly, we tested this too, by rerunning the BMA
analysis on the full dataset with a considerably relaxed
convergence criterion for the EM algorithm, differ-
ences between successive iterations of 10�2 instead of
10�4. This did indeed significantly reduce the number
of high-valued weights and spread the weights more
evenly over more models. Also, these results slightly

FIG. 4. Example of a single forecast, with a lead time of 96 h, for Edmonton. The original ensemble is shown as
crosses; the bias-corrected ensemble is shown as circles, dashed curves are the pdfs for the individual ensemble
members, the heavy curve is the BMA pdf, and the dash–dot curve is the sample climatological distribution for the
valid time. The heavy vertical line represents the observation and the vertical dotted lines indicate the 80%
probability interval from the BMA pdf.
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improved performance on the independent dataset,
which is also consistent with overfitting in the original
results. However, the effects were not significant, im-
proving the CRPS only by about 0.05° on average, and
a significant majority of the weights remained near
zero. Furthermore, the relaxed criterion produced
some undesirable effects, such as decreasing the
spreading of the weights at longer projections, which is
counterintuitive. We therefore report the original re-
sults in the following sections, and note that further
exploration is needed to optimize the convergence cri-
terion in the BMA for smaller samples.

b. Rank histogram and CRPS results

The rank histogram is a way of assessing the ability of
the BMA to correct the tendency of the ensemble dis-
tribution toward underdispersion. Rank histograms
were computed over all the independent forecasts, for
the original ensemble, the bias-corrected ensemble
(both FR and b1), BMA, and BMAvar. BMA and

BMAvar equations were run on both versions of the
bias-corrected forecasts.

Figure 5 shows a grid of rank histograms, with the
rows representing the stages of the calibration, from the
original ensembles at the top to BMAvar on the bot-
tom. The columns are for the different projections, each
2 days from 1 to 9 days left to right. These results were
obtained with a training period of 40 days and bias
removal using FR. The original ensembles show the
underdispersion that is characteristic of ensemble fore-
casts, especially for surface weather variables. This un-
derdispersion decreases with increasing projection
time, which reflects the tendency for the ensemble
spread to approach the spread of the climatological dis-
tribution at longer projections. The original ensembles
also show a cold bias on average; the observation more
often occurs in the highest (warmest) bin than in the
lowest (coldest) bin of the ensemble distribution. The
second row shows that the FR reduces the bias, espe-
cially at the early projections, but also increases the

FIG. 5. Rank histograms for temperature forecasts for 1 yr of independent data, 21 Canadian stations. (top to bottom) Original
ensemble forecasts, regression-corrected forecasts, BMA forecasts, and BMA forecasts with variable variance. Columns are for 1-, 3-,
5-, 7-, and 9-day forecasts. The height of the bars in each histogram indicates the number of cases for which the observation fell in each
of the 17 bins.
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underdispersion, especially at the longer projections.
This is characteristic of regression; as the quality of the
fit decreases for longer projections, the regression pre-
dicts more toward the mean of the predictand, reducing
the predicted variance in the forecasts.

The third row in Fig. 5 shows the results for the BMA
with constant variance over all models. The forecasts
are essentially unbiased and the dispersion has been
increased noticeably by BMA, as indicated by the near
flatness of the rank histograms. The correction effected
by BMA is nearly uniform across all projections; the
BMA has corrected the underdispersion even when fed
the reduced-dispersion longer-range FR-based fore-
casts. There remains some underdispersion, however,
which might be attributable to differences between de-
pendent and independent sample characteristics. The
fourth row of rank histograms, for BMAvar forecasts,
indicates performance rather similar to the BMA re-
sults, although perhaps not quite as good. To examine
this further, we quantified the departure from flatness
of the rank histogram following the method of Candille
and Talagrand (2005):

RMSD �� 1
N � 1 �

k�1

N�1 �sk �
M

N � 1�2

,

where RMSD is the root-mean-square difference from
flatness, expressed as number of cases, M is the total
sample size on which the rank histogram is computed,
N is the number of ensemble members, and sk is the
number of occurrences in the kth interval of the histo-
gram. Candille and Talagrand (2005) point out that,
due to the finite sample size, the expected value of the
sum is [MN/(N � 1)]. This means the expected value of
the RMSD is �[MN/(N � 1)2], which for the sample
sizes considered here is about 20. The RMSD for the
raw ensemble ranged from almost 700 at 24 h to just
under 400 at 240 h. The lowest value we could obtain in
our analyses was a little less than 100 cases confirming
that there remains some systematic underdispersion in
all the results, although we have removed most of the
underdispersion in the raw ensemble. In other words, if
the rank histogram were flat, sampling variation would
allow a RMSD of about 20 cases over the full histo-
gram. The best we managed in our analysis was an
RMSD between 80 and 100, which indicates more
variation in the heights of the bars than expected over
the rank histogram. The RMSD was computed for the
original ensembles, bias correction by FR and bl, and
the subsequent BMA and BMAvar analyses.

Figure 6 shows these results, for original, regression,
BMA, and BMAvar, using both full-regression and re-
gression constant-based bias correction only. The figure

confirms that BMAvar is not quite as well calibrated as
the BMA. This may be due to the additional param-
eters that must be estimated for the BMAvar, 16 vari-
ances instead of one. Training samples of 40 days might
not be long enough to provide stable estimates of these
additional parameters. BMAvar performance is slightly
worse than that of BMA also for the b1 equations.
Using only an additive bias removal does improve the
BMA results overall in comparison to the FR. This is
likely due to seasonality problems in the fitting of the
full regression, an issue explored more fully below.

The figure also shows that the departure from flat-
ness of the rank histogram is greater after the FR than
it is for the original ensemble after day 2 of the forecast.
This is due to the tendency of the full regression to
decrease the ensemble spread for the longer projec-
tions. The b1 results show a fairly small, but consistent
improvement in the rank histogram over all projections
compared to the original ensemble. This improvement
can be attributed mainly to the tendency of the bias
correction to “equalize” the frequency of occurrence of
the observation in the two extreme bins of the histo-
gram.

Figure 7 shows a comparison of the RMS departure
from flatness of rank histograms for b1 equations, for
40- and 60-day training periods. The curves for the 40-

FIG. 6. RMS deviation from a flat rank histogram as a function
of forecast projection for original ensemble (black), bias-
corrected (blue); BMA (red) and BMAvar (green) ensemble fore-
casts (1-yr sample) for all 21 stations. BMA following FR is shown
as a solid line and the BMA following the b1 bias correction is
shown as the dashed lines.
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day training period are the same as in Fig. 6, to facilitate
comparison. As would be expected, the bias correction
itself is not quite as effective for 60-day training periods
as for 40 days, especially after day 3. The extra 20 cases
included in the 60-day training periods occur earlier in
time compared to the independent case on which the
forecasts are tested. Thus, the training sample as a
whole is likely to be less representative of the indepen-
dent data than for shorter training periods. This effect
is most pronounced for the longer forecast projections.
While this problem might be avoided by using cross
validation for the development and testing, this is not
possible in operations, where the latest updated equa-
tions must be used to prepare the next forecast.

Despite a slightly poorer bias correction, the longer
training period does result in a small improvement in
calibration of the BMA-corrected forecasts. The longer
training period presumably provides a more stable es-
timate of the weights using larger samples, which trans-
lates to slightly less noise in the rank histogram distri-
bution. For BMAvar, where more coefficients must be
estimated, the difference with the larger sample is
slightly more pronounced, but there is still more varia-
tion from flatness in the BMAvar than in the BMA
results. In numerical terms, BMAvar with a 60-day
training sample is about as well calibrated as BMA with
a 40-day training sample. In summary, these last two
figures suggest that longer training periods with simple
bias removal (bl) and BMA with constant variance pro-

vide the most reliable correction of the underdispersion
in the ensemble temperature forecasts.

We now turn to the CRPS results for further explo-
ration of the different options for BMA analysis. The
CRPS summarizes the accuracy of the ensemble distri-
bution, by determining the integrated distance of the
cdf from the observation represented as a cdf. The
CRPS has the same dimension as the variable in ques-
tion, temperature, and is understandable as the equiva-
lent of mean absolute error for a single deterministic
forecast.

Figure 8 corresponds to Fig. 6, except it shows the
CRPS results for a 40-day training period rather than
the RMS departure of the rank histogram from flatness.
First of all, the FR bias removal improves on the origi-
nal ensemble forecast only for the first 3 days of the
forecast. By reducing the dispersion in the ensemble as
forecast projection time increases, the FR, which is es-
sentially model output statistics with one predictor,
produces forecast distributions that are too sharp (too
overconfident) in the face of decreasing accuracy of the
individual members. This leads to an increased fre-
quency of situations where the bulk of the probability
density is far from the observation location.

Second, the b1 bias correction leads to a reduction
(improvement) in the CRPS of about 0.2°, with slightly
larger values at the short forecast ranges. The BMA
improves the CRPS by another 0.2°. It is interesting
that the BMA result for the FR is nearly indistinguish-
able from the result for the b1 bias correction. Essen-

FIG. 7. Same as in Fig. 6, but for b1 bias-correction results only,
40- (solid) and 60-day training periods (dashed).

FIG. 8. Same as in Fig. 6, but for the CRPS.
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tially, the BMA has “made up” for the effects of the
decrease in dispersion at the longer forecast ranges,
which suggests that, at least for a 40-day training pe-
riod, either FR or b1 could be used to correct bias, as
long as a BMA analysis follows. And finally, the BMA-
var results are similar to the BMA results.

Figure 9 shows the yearly summary results for a
longer training period of 80 days. The levels of error
indicated differ very little from the corresponding re-
sults for 40 days, though there is a slight tendency for
these results to be worse overall. The only noticeable
difference is now that, for medium and long ranges,
there is a tendency for the b1 bias removal to perform
better than the FR version. This tendency was traced to
the failure of the FR to fully remove the bias with re-
spect to the independent data, as shown below.

To explore the question of the best training period
using the available data, Fig. 10 shows the CRPS for
BMA for independent data as a function of the length
of the training period, for both FR and b1. In general,
a minimum in the CRPS (best performance) occurs
around 35–50 days, depending on the projection. How-
ever, all the curves are rather flat, suggesting that the
dependence of the performance on the length of the
training period is rather weak within the range tested
here. There is ample evidence, however that 25 days is
too short. For the shortest forecast ranges, there is little
difference between FR and b1. At medium and longer
ranges, the minimum CRPS occurs for shorter training
periods in the FR than for the b1 version. This mini-
mum in the FR results may be artificial in some sense:
the relatively rapid rise in the CRPS for longer training
periods and longer forecast projections for the FR is
caused by its failure to remove the bias in the spring
and autumn. Rank histograms for 216 h (Fig. 11) show
a cold bias in the spring and warm bias in the fall, while
the corresponding results for b1 are relatively bias free.
In the figure, the cold bias is indicated by a large num-
ber of occurrences of the observation in the 17th bin,
which means all the ensemble members are forecasting
lower temperatures than observed. Conversely, a warm
bias is indicated when the observed temperature most
frequently occurs in the lowest bin of the histogram.
When the extreme bins of the histogram are approxi-
mately equally populated, this indicates an unbiased
ensemble. When presented with biased forecasts fol-
lowing the regression step, the BMA improves the
spread in the forecasts, as before, but they remain bi-
ased (Fig. 12). The FR may fail to remove the bias in
spring and fall because the slope coefficient attempts to
fit the seasonal trend in the data. The independent case,
which for a 8-, 9-, or 10-day forecast will verify at least
8 days after the end of the training period, may be seen

as an outlier with respect to the training sample. This
effect would be greatest for longer training periods and
longer forecast projections, which is consistent with the
results. Another factor may be the tendency for overlap
of spring and autumn training periods with the previous
seasons, which would lead to underfitting of the sea-
sonal trend. Again, this would be most pronounced for
longer training periods and longer forecast projections.
Since the biases in the spring and fall results are in the
opposite sense, cold in the spring and warm in the fall,
they tend to partially cancel each other when the rank
histogram is accumulated over the whole year. This is
an example of a limitation of the rank histogram, which
was pointed out by Hamill (2001).

In summary, these results indicate that a training pe-
riod of about 40 days is a good choice for general use.
BMA does a good job of correcting the underdispersion
for either a full-regression bias removal or an additive
bias correction with training periods of this length.
Shorter training periods are too short for reliable esti-
mates of the weights, while for longer training periods,
best results are obtainable only if the simpler b1 bias
correction is used, because of difficulties fitting sea-
sonal variations in the training sample. Allowing the
variance to vary among the component models does not
improve the results.

c. 16- versus 18-member ensembles

One advantage of BMA is that it is a simple matter to
include any available models in the analysis, and the

FIG. 9. Same as in Fig. 8, but for an 80-day training period.
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BMA procedure will combine and calibrate forecast
distributions based on all available models. In adding
the unperturbed control and the full-resolution global
model to the analysis, we expected that the additional
predictive information would improve the forecast out-

put. In general this was true, but the improvements
were relatively modest.

Figure 13 shows the summary CRPS results for the
full year independent dataset for the 18-member en-
semble, for both the FR and b1 bias corrections, plotted

FIG. 10. CRPS for 1 yr of independent BMA forecasts (all stations) as a function of training
sample size. The FR bias removal is shown by solid lines and the b1 bias removal is shown by
dashed lines.
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as a function of both the training sample length and the
projection. The differences shown with respect to the
16-member ensemble are positive everywhere except
for the shortest training period and longest forecast
ranges. The impact of the additional members reaches
a maximum of nearly 0.1° for 96-h forecasts, then drops
off for the longer-range projections. To put that in per-
spective, the BMA typically improves the CRPS by
about 0.2° with respect to the bias removal only, (see
Fig. 8) which means the maximum achieved improve-
ment is about 50% of the basic BMA improvement. For
forecasts of 8 days or more it is safe to say that there is
no meaningful advantage to the additional ensemble
members for any training period; neither the full-
resolution model nor the control forecast adds any pre-
dictive information. The patterns for the two forms of
bias removal are very similar.

Additional diagnostic information on the relative
predictive ability of the different models is provided by
looking at the average weights for the 18-member en-
semble BMA. Figure 14 shows another grid of histo-
grams with the columns representing the short-, me-
dium-, and longer-range projections. The top row is for
the full year, and the other four rows are for the four

3-month seasons. In all cases, the control forecast is the
first (leftmost) and the full-resolution global model is
the 18th (rightmost) member. This grid of charts makes
several points. First, at the shortest forecast range, the
full-resolution model is by far the most important mem-
ber of the ensemble. This is not surprising, indicating
the advantage of the higher resolution at short range,
even though the model resolution is only slightly finer
(100 km) than the 130 km of the GEM members of the
ensemble. The relative importance of the global model
can be seen in all seasons except summer, where all the
GEM members are relatively important. Second, the
relative importance of the global model decreases with
increasing projection; by 216 h, it is “just one of the
members.” This is consistent with the CRPS results in
Fig. 13. Third, the control model carries, along with the
GEM model, relative importance at the medium range.
This is interesting, suggesting that the perturbations
may have a tendency to degrade the forecast relative to
an unperturbed model of the same resolution. The rela-
tive importance of the control model is usually less than
the full-resolution model, and it too becomes “one of
the pack” by 216 h.

Overall, these results do give the impression that

FIG. 12. Same as in Fig. 11, but for 216-h forecasts. Samples are for 3 months for all 21
stations.

FIG. 11. Rank histograms for (left) spring and (right) autumn ensemble forecasts following
FR (solid) and b1 (hatched) bias removal for the 216-h forecast projection. The samples are
for 3-month periods at all 21 stations.
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both the control model and the full-resolution model
bring predictive information that is unique compared to
the ensemble members. This is potentially significant,
for it suggests that there may be an advantage to run-
ning BMA on ensembles composed of models from dif-
ferent sources.

d. CRPSS results

All of the results discussed so far relate to the com-
parison of the accuracy of the independent sample fore-
casts for different configurations of the calibration. The
CRPSS shows the skill of the forecasts against an un-
skilled standard forecast, that is, the station-specific
daily climatological temperature distribution. The cli-

matology is derived from 30 or more years of observa-
tions for each station and each day of the year. The skill
score expresses the difference between the CRPS
achieved by climatology and the CRPS achieved by the
forecast, normalized by the seasonal average climato-
logical score. Details of the score computation are
given in the appendix.

Figure 15 summarizes the skill characteristics of the
original, regression and BMA-calibrated forecasts, over
the 1-yr independent sample. Original and BMA-
calibrated results are also shown for the 18-member
ensembles.

The skill curves for the original, bias-corrected, and
BMA forecasts for 16-member ensembles are essen-
tially mirror images of the corresponding curves in Fig.
6. This is expected, for the underlying climatology is the
same for all these curves; it is only the CRPS values that
change. The original forecasts show positive skill to
about day 8 while the FR bias correction moves the 0
skill point back to about 156 h. The simple additive bias
removal is sufficient to extend the positive skill to the
end of the forecast period and the BMA improves on
the skill of the bias-corrected forecasts.

Regarding the results for the 16- versus 18-member
ensembles, there is essentially no difference in the skill
of the original ensemble forecasts. However, the BMA-
calibrated forecasts show slightly higher skill for the
18-member ensembles than for the 16-member en-
sembles, out to day 7. This is consistent with Fig. 14,
where the full-resolution model is favored with higher
weights for the short- and medium-range forecasts.

e. Comparison of BMA with a simple Gaussian pdf

Finally, we try to answer the question of whether it is
worth going to the trouble of assigning different
weights to the different members of the ensemble. Per-
haps a simple pdf estimated using the errors in the
training sample would perform as well as the BMA. To
test this, a Gaussian pdf was created for each forecast,
using the bias-corrected ensemble mean as the mean
and the root-mean-squared error of the ensemble mean
based on the training period as the standard deviation.
The Gaussian pdfs were then evaluated on the inde-
pendent data using the CRPS in exactly the same way
as the BMA forecasts were evaluated.

The results of this evaluation are presented in Figs.
16 and 17. Figure 16 shows the overall CRPS results for
the 16- and 18-member ensembles, and the correspond-
ing Gaussian pdfs, all based on the independent data.
There is little difference in performance between the
BMA and the Gaussian overall; the Gaussian proves to
be a good competitor. Without the ability to assign
higher weights to the better performing ensemble mem-

FIG. 13. CRPS difference between 16- and 18-member en-
semble forecasts after BMA calibration, as a function of training
period and forecast projection. Positive values indicate better
(lower) CRPS values for 18 members.
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bers, the Gaussian results are nearly identical for 16 and
18 members. On the other hand, the BMA is able to
take advantage of the better performance of the full-
resolution model in the first 5 days to give it a slight
performance edge over the Gaussian and the 16-

member ensemble BMA. This suggests that, in multi-
model situations where there are large differences be-
tween the models, the ability to weight the individual
members becomes more important.

Figure 16 also shows the mean absolute error (MAE)

FIG. 14. Average BMA weights for 18-member ensembles for all 21 stations, for (top) the full year and (second to bottom) 3-month
seasons. (left to right) Columns are for 24, 120, and 216 h.
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of the ensemble mean, which is much higher than the
CRPS for either the BMA or the Gaussian. Since the
MAE is consistent with the CRPS in the sense that the
CRPS reduces to the MAE for a deterministic forecast,
this effectively shows the error levels that would be
obtained if the spread of the ensemble were to be re-
duced to zero.

The true advantage of the BMA over the Gaussian in
the present results is revealed in Fig. 17, which shows
the average 90% prediction interval for Gaussian and
BMA pdfs, for both 16- and 18-member ensembles.
There is little difference between the 16- and 18-
member ensemble results, but the BMA has signifi-
cantly reduced the 90% prediction interval compared
to the Gaussian, by 20%–25% over the whole 10-day
prediction range. This is significant if the forecast pdfs
are to be used for credible interval temperature fore-
casting, for example. A 25% more precise interval is
important when it can be achieved without loss of ac-
curacy (Fig. 16) and with ensembles that are not mark-
edly underdispersed (see Fig. 5).

6. Discussion

This paper describes results of experiments with
Bayesian model averaging as a tool for the calibration
of ensemble forecasts from the operational Canadian

ensemble forecast system. The experiment was set up in
such a way that it could be run in real-time operations;
the BMA was trained on recent realizations of the fore-
cast, then applied to the next forecast. The BMA was
applied to bias-corrected forecasts only, and two meth-
ods were tested for bias removal prior to the BMA
analysis. Several different training sample sizes were
tested, ranging from 25 to 80 days. The benefits of al-
lowing the variance of the component models to vary,
and the effect of adding the control forecast and the
full-resolution model forecast to the ensemble were
also evaluated. And finally, the fundamental question
of whether the BMA improves upon a very simple
Gaussian pdf with equal weights was examined.

The main results of the study can be summarized by
the following statements:

1) The BMA faithfully removed most, but not all of the
underdispersion exhibited by the original ensemble.
It proved to be capable of this even for the longest-
range forecasts, where the underdispersion had
been increased by the regression-based bias removal
procedure. The remaining underdispersion seems to
be systematic but small and may be related to dif-
ferences between the training sample and the inde-
pendent data on which the BMA was evaluated.

2) On the basis of the 1 yr of data available, the results
suggest that training periods of 40 days give the best

FIG. 16. CRPS for 1 yr of independent BMA and Gaussian pdf
forecasts (40-day training period) for 16- (dashed) and 18-member
ensembles (solid). Also shown is the MAE for the corresponding
ensemble mean forecasts.

FIG. 15. CRPSS with respect to climatology for 16- and 18-
member ensembles based on 1 yr of independent data. Original
ensemble results are in black, bias-corrected in blue, BMA for 16
members in red, and BMA for 18 members in green.
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results, though we found that forecast accuracy on
the independent data did not vary strongly with the
training period. However, 25 days seemed to be
clearly too short a period on which to fit the BMA
weights, and there was some evidence that longer
training periods with only an additive bias removal
gave a more stable BMA analysis.

3) Bias removal using simple linear regression seemed
to work about as well as bias removal by correcting
only for the mean error up until about 7 days, and
for training periods up to about 50 days. For longer
training periods and longer projections, perfor-
mance for regression-based bias removal was poorer
than for additive bias removal apparently because
the bias was not successfully removed by the regres-
sion for the spring and fall seasons.

4) Allowing the variance to vary among the component
models in the BMA did not improve the perfor-
mance; in fact, there was a tendency to slightly de-
grade the performance on the independent data.
This probably means that the training samples were
not large enough to obtain reliable estimates of the
additional coefficients.

5) Addition of the control forecast and the full-
resolution model to the ensemble improved the re-
sults modestly, up until about 7 days. Beyond that,
the additional models do not have enough skill to
contribute to the accuracy of the calibrated forecasts.

6) Examination of the BMA weights is extremely use-
ful in a diagnostic sense, to identify models that con-
tribute less to the ensemble than other models, and
to identify synoptic situations that are handled par-
ticularly well or poorly by the individual model for-
mulations. The fact that the full-resolution model
carried higher weight on average for shorter-range
forecasts indicates that the extra resolution is ben-
eficial, while the relatively high importance of the
control model suggests that, at least for some sea-
sons and projections, the perturbations increase the
error levels of the individual models.

7) The BMA achieved approximately equal accuracy
in terms of the CRPS overall, but produced signifi-
cantly sharper pdfs when compared to a simple
Gaussian pdf with standard deviation equal to the
RMSE of the ensemble mean based on the same
training period. The 90% prediction interval was re-
duced by more than 20% over the 10-day forecast
range in the independent sample. These results also
suggest that the ability to weight the component
models of an ensemble is more important when
there are significant systematic differences in the
structure of the ensemble members.

These results have dealt with surface temperature
only, for which the assumption of a normal error dis-
tribution for each model is reasonable. For other vari-
ables such as precipitation and wind, the gamma distri-
bution might be more appropriate, but there are prob-
lems to work out such as how to handle calm winds and
0 precipitation events in the combined distribution.
This is the next major step of our work in applying
BMA to Canadian ensemble prediction.

One might also speculate whether a system that as-
signs different weights to the events of the training
sample would enhance the performance. On the as-
sumption that more recent realizations of the forecast
are better indicators of the current performance than
earlier realizations, perhaps a weighting scheme could
be added to the BMA weight calculation. Such a
scheme might also improve the fitting of the seasonal
trends.

Another enhancement one might consider is the use
of a full screening multipredictor MOS fit to remove
the bias. In that case, seasonal variations in the training
sample could be accounted for by the addition of spe-
cific predictors, and/or a weighting scheme could be
used.

Both the bias removal and the BMA steps might also
benefit from the use of longer training periods of data
from the ensemble models, such as would be available
from reforecasting projects (e.g., Hamill et al. 2004). If

FIG. 17. 90% prediction interval for 1 yr of independent BMA
and Gaussian ensemble forecasts (40-day training period) for 16
(dashed) and 18-member ensembles (solid).
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sufficient data were available, one could stratify the
training sample by season, using the corresponding pe-
riod from more than 1 yr. Considering the evidence
presented here that seasonal variations within the train-
ing dataset led to poorer performance on independent
data, the use of multiyear, seasonally stratified training
datasets might produce higher-quality predictions than
were possible in this study. The disadvantage of such an
approach is that any significant change to the ensemble
model would mean that the reforecasting would have to
be redone to produce a new statistically representative
training sample. Or, perhaps an updating system could
be devised that would ensure a smooth transition from
calibration with respect to an old system to calibration
with respect to a new system.

When BMA is applied to small samples, as in this
study, care must be taken to set the parameters of the
EM algorithm to avoid overfitting, while at the same
time integrating the algorithm far enough to achieve
meaningful results. Further work is needed on this is-
sue.

In this study, we applied BMA in a way that is con-
sistent with previous applications, that is, to combine
models that are distinct in order to generate a consen-
sus pdf that is calibrated. The question arises how BMA
might be applied to other operational ensemble fore-
casts that do not consist of separate distinct models.
BMA could also be used for a single-model ensemble
system where only the initial conditions are perturbed.
In that case, error distributions over a training sample
would be expected to be as random draws from the
same distribution, since it is the same model that is run
each day. In that case, the weights �k in (5) and (7)
would be constrained to be equal, so that � � 1/k for
each k. The EM algorithm can easily be modified for
this case.

BMA should be a valuable method for the calibra-
tion of any multimodel ensemble system, whether it
consists of individual discrete models, as in a “poor-
man’s” system, or of combinations of ensembles from
different centers. The latter is becoming more impor-
tant with the initiatives of the North American En-
semble Forecast System (NAEFS) and the global en-
semble initiative of The Observing System Research
and Predictability Experiment (THORPEX) Interac-
tive Grand Global Ensemble (TIGGE; Richardson et
al. 2005). In such a system, which will be made up of
single-model ensembles along with multimodel en-
sembles, BMA could be applied to simultaneously com-
bine and calibrate them. If the members of a compo-
nent ensemble are not distinct, the weights �k for the
members of that ensemble would be constrained to be
equal. Some very preliminary work has been done to

apply BMA to combined Meteorological Service of
Canada and the National Centers for Environmental
Prediction ensembles, using a total of 26 members all
initialized at the same time. Results of this work are
promising so far.

Finally, it is the flexibility of BMA that makes it most
attractive for use in multimodel ensemble systems: one
can add any model for which data is available during
the training period and produce a calibrated combina-
tion of models. This means it can be used to diagnose
the added information that the ensemble brings to the
deterministic forecast, which is of importance to all cen-
ters that run both an ensemble system and one or more
deterministic models.
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APPENDIX

Verification Measures

a. Rank histogram

The rank histogram (Anderson 1996) is formed by
first ranking the values from each ensemble forecast
from lowest to highest. These ordered values then are
used as thresholds to define N � 1 ranges or bins of the
predictand, where N is the ensemble size. The two ex-
treme bins are open ended. The histogram is formed by
tallying the number of occurrences of the observation
in each bin over the verification sample.

Under the assumption that the observation is equally
likely to fall in each bin, a “perfect” rank histogram is
one which is flat, indicating that, on average, the en-
semble spread covers the variability in the predictand.
The U-shaped histograms indicate that ensemble
spread is too small on average (the observation too
often lies outside the ensemble), and asymmetric histo-
grams indicate biases in the forecasts.

Rank histograms are meaningful only for relatively
large verification sample sizes.

b. Continuous rank probability score

Following the notation of Hersbach (2000), consider
an ensemble forecast pdf 
(x) and a verifying observed
value xa. The CRPS is defined by
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CRPS�P, xa� � �
��

�

�P�x� � Pa�x�	2 dx, �A1�

where P and Pa are cumulative distributions (cdf),

P�x� � �
��

x

��y� dy, and �A2�

Pa�x� � H�x � xa�. �A3�

Here H(x) � { 0,x�0
1,x�0 is the Heaviside function. The

CRPS is thus the difference between the predicted cdf
and the observation expressed as a cdf. It is negatively
oriented (smaller is better) and the perfect score of 0 is
achieved only for a perfect deterministic forecast. The
CRPS has dimensions of the variable x. The CRPS re-
duces to the mean absolute error for a deterministic
forecast, and therefore can be considered as a mean
absolute error for a probability distribution.

c. Continuous rank probability skill score

The CRPSS is a skill score in the usual format:

CRPSS �
CRPSc � CRPSf

CRPSc
, �A4�

where CRPSc is the standard score, in this case for a
climatological forecast and CRPSf is the score for the
forecast. To avoid the inclusion of artificial skill, the
climatology reference score was computed using the
long-term climatological distribution applicable to the
day of the year and the station. Scores for each station
i and each of four seasons s were then computed as

CRPSSis �

�
j�1

nis

�CRPScisj � CRPSfisj�

�
j�1

nis

CRPScisj

, �A5�

and the total score is the average of the individual sta-
tion/season scores, weighted by the number of cases for
the station and season:

CRPSSTOT �

�
i,s

nisCRPSSis

N
. �A6�

The score has a range of �� to 1, with positive values
indicating skill with respect to the standard score. Di-
vision by the sum of climatological scores over some
number of cases (1 season in about 90 cases) is neces-
sary to stabilize the score and prevent near-zero divi-
sors when the observed temperature is near the clima-
tological mean.
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1. Introduction

Wilson et al. (2007, hereafter W07) recently de-
scribed the application of the Bayesian model averag-
ing (BMA; Raftery et al. 2005, hereafter R05) calibra-
tion technique to surface temperature forecasts using
the Canadian ensemble prediction system. The BMA
technique as applied in W07 produced an adjusted
probabilistic forecast from an ensemble through a two-
step procedure. The first step was the correction of
biases of individual members through regression analy-
ses. The second step was the fitting of a Gaussian kernel
around each bias-corrected member of the ensemble.
The amount of weight applied to each member’s kernel
and the width of the kernel(s) were set through an ex-
pectation maximization (EM) algorithm (Dempster et
al. 1977). The final probability density function (pdf)
was a sum of the weighted kernels.

W07 reported (their Fig. 2) that at any given instant,
a majority of the ensemble members were typically as-
signed zero weight, while a few select members re-
ceived the majority of the weight. Which members re-
ceived large weights varied from one day to the next.
These results were counterintuitive. Why effectively
discard the information from so many ensemble mem-
bers? Why should one member have positive weight
one day and none the next?

This comment to W07 will show that BMA where the
EM is permitted to adjust the weights individually for
each member is not an appropriate application of the

technique when the sample size is small;1 specifically,
the radically unequal weights of W07 exemplify an
“overfitting” (Wilks 2006a, p. 207) to the training data.
A symptom of overfitting is an improved fitted rela-
tionship to the training data but a worsened relation-
ship with independent data. This may happen when the
statistician attempts to fit a large number of parameters
using a relatively small training sample. In W07, the
EM algorithm was required to set the weights of 16
individual ensemble members and a kernel standard
deviation with between 25 and 80 days of data.

To illustrate the problem of overfitting in W07’s
methodology, a reforecast dataset was used. This was
composed of more than two decades of daily ensemble
forecasts with perturbed initial conditions, all from a
single forecast model. This large dataset permitted a
comparison of BMA properties based on small and
large training samples. This reforecast dataset used a
T62, circa 1998 version of the National Centers for En-
vironmental Prediction (NCEP) Global Forecast Sys-
tem. A 15-member forecast, consisting of a control and
seven bred pairs (Toth and Kalnay 1997) was integrated
to 15 days lead for every day from 1979 to current. For
more details on this reforecast dataset, please see
Hamill et al. (2006). The verification data were from
the NCEP–National Center for Atmospheric Research
reanalysis (Kalnay et al. 1996).

2. Overfitting with the BMA–EM algorithm

EM is an iterative algorithm that adjusts the BMA
model parameters through a two-step procedure of pa-

Corresponding author address: Dr. Thomas M. Hamill, NOAA/
Earth System Research Laboratory, Physical Sciences Division,
R/PSD 1, 325 Broadway, Boulder, CO 80305.
E-mail: tom.hamill@noaa.gov

1 This is not meant to imply that BMA and the EM method are
inappropriate, merely that the methods can be inappropriately
applied.
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rameter estimation and maximization. R05 [Eqs. (5)–
(6) and accompanying text] provides more detail. The
algorithm iterates to convergence, stopping when the
change in log-likelihood function from one iteration to
the next is less than a cutoff �. The magnitude of � may
be chosen by the user, but it can be assumed � K 1.0.

To illustrate the tendency for the BMA EM to overfit
when trained with small sample sizes, consider 4-day
850-hPa temperature ensemble forecasts for a grid
point near Montreal, Quebec, Canada. Forecasts were
produced and validated for 23 yr � 365 days � 40 days
� 8355 cases. Because we would like to assume in this
example a priori that the member weights should be
equal, the 15-member ensemble was thinned, eliminat-
ing the slightly more accurate control member. The re-
maining 14 bred members can be assumed to have iden-
tically distributed (but not independent; see Wang and
Bishop 2003) errors and hence should have been as-
signed equal weights. The BMA algorithm was then
trained using the remaining 14 identically distributed
bred members and only the prior 40-days forecasts and
analyses, posited in W07 to be an acceptably long train-
ing period. We shall refer to this as the “40-day train-
ing” dataset. In addition, the BMA algorithm was also
trained with a very long training dataset in a cross-
validated manner using 22 yr � 91 days of data, with the
91 days centered on the Julian day of the forecast. This
will be referred to as the “22-yr training dataset.”

The BMA algorithm was coded generally following
the algorithm used in the R05 and W07 articles. Two
adjustments were used, however. First, no refinement
of the fitted standard deviation was performed in order
to maximize the continuous ranked probability score
(Hersbach 2000), as suggested in R05. Performing the
refinement increased the computational expense but
had minimal impact on forecast skill. Second, W07’s
proposed regression correction was here applied only
to the ensemble mean, while the original deviation of
each member about the mean was preserved. More
concretely, given an ensemble member xf

i , an ensemble
mean xf, and a regression-corrected ensemble mean
forecast (a � bxf ), the member forecast was replaced
with a forecast that was the sum of the initial pertur-
bation from the ensemble mean and the corrected fore-
cast:

xi
f ← �xi

f � xf � � �a � bxf �, �1�

where ← denotes the replacement operation. This
modified regression correction was used because when
every member was regressed separately, as forecast
lead increased and skill decreased, all the members
were increasingly regressed toward the training sample

mean of the observed. Consequently, the ensemble
spread of adjusted members shrank (Fig. 1; see also
Wilks 2006b) and colinearity of errors among members
was accentuated (Fig. 2). These were clearly undesir-
able properties; the spread should asymptotically ap-
proach the climatological spread of the ensemble fore-
cast, and ideally, member forecasts should have inde-
pendent errors. Had the regression correction of each
member been applied, there may have been some con-
fusion as to whether the subsequent highly nonuniform
weights produced by the BMA were a generic property
of a short training dataset or whether they were artifi-
cially induced from the increased colinearity induced by
the regression analyses.

We now consider the properties of the EM algorithm
for this application. The initial guess for all member
weights was 1/14. Keeping track of the ratio of maxi-
mum to minimum BMA member weights after EM
convergence for each of the 8355 cases, these ratios
were sorted, and the median ratio was plotted as the
EM convergence criterion � was varied. For the 40-day
training period, when � � 0.01, the largest and smallest
weights were much more similar compared to when
� K 0.01 (Fig. 3a). With the 22-yr training data, the
weights stayed much more equal as � was decreased
(Fig. 3b).

Could the unequal weightings with the 40-day train-
ing set and tight � actually be appropriate? As men-
tioned in R05, as the EM iterates, the log likelihood of
the fit to the training data is guaranteed to increase.

FIG. 1. Spread of a regression-corrected ensemble of day 4 fore-
casts of 850-hPa temperature at Montreal (using 40-day training
data) vs the spread of the raw ensemble forecasts.
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However, we can also track the fit to the validation
data. Figures 4a,b show the average training and vali-
dation log likelihoods (per forecast day) for the small
and large training data sizes. Notice that for the small
sample size, the validation data log likelihood de-
creased as the convergence criterion was tightened, a
sign that the unequal weights were not realistic. The
same effect was hardly noticed with the large training

dataset, where the weights remained nearly equal as the
convergence criterion was tightened.2 This demon-
strates that the highly variable weights with the 40-day
training were most likely an artifact of overfitting. Per-
haps this was not surprising, given that the EM algo-
rithm was expected to fit 15 parameters here (14
weights plus a standard deviation) with the 40 samples.
Further, the effective sample size (Wilks 2006a, p. 144)
may actually have been smaller than 40; perhaps the
assumption of independence of forecast errors in space
and time (R05, p. 1159) was badly violated with these
ensemble forecasts. Also, we agree with the W07
proposition that the radical differences in weights may
also be in part a consequence of the colinearity of mem-
bers’ errors in the training data. What is clear here is

2 Figure 4b does display one oddity, namely, that the fit to the
validation data is slightly closer than the fit to the training data.
We expect that this small difference can be attributed to sampling
variability.

FIG. 2. Errors of day 4 850-hPa temperature forecasts for mem-
bers 2 and 4 of the ensemble (a) before a regression correction of
the member errors using the prior 40 days for training and (b)
after the regression correction. Correlation coefficient (r) noted in
the upper-left corner.

FIG. 3. Log10 of the median sample’s maximum member weight
divided by minimum member weight, as a function of the EM
convergence criterion. The median represents the (23 � 365/2)th
rank-ordered ratio among the 23 � 365 sample days. (a) 40-day
training period and (b) 22-yr cross-validated training period.
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that this colinearity was not properly estimated from
small samples, which led to the inappropriate de-
weighting and exclusion of information from some
members.

When the BMA weights were enforced to be equal
and 40-day training was used, the resulting continuous
ranked probability skill score [CRPSS; calculated in
the manner suggested in Hamill and Juras (2006) to
avoid overestimating skill; 0.0 � the skill of climatol-
ogy, 1.0 � perfect forecast] was 0.38. When the indi-
vidual weights were allowed to be estimated by the EM
and the convergence criterion was 0.000 03, the result-
ing CRPSS was smaller, 0.35. When the 22-yr training
data were used, the CRPSS was 0.410, regardless of
whether the weights were enforced to be equal or al-
lowed to vary.

Is there a way of setting the BMA weights to avoid
radically deweighting some members with small
samples? If colinearity of member errors in the training
data were essentially zero, then the weights would re-
semble those set in a weighted least squares process.
Suppose the training data establish that the estimated
root-mean-square errors for the bias-corrected mem-

bers were s1, . . . , sn. The weights that would have pro-
duced the minimum variance estimate of the mean state
[e.g., Daley 1986, p. 36, Eq. (2.2.3)] under assumptions
of normality of errors were

wi �
1

s i
2��

j�1

n 1

s j
2 . �2�

The advantage of this method for setting weights, also,
was that if there truly was a strong colinearity of mem-
ber errors, the BMA pdf should not have been worse as
a consequence of using the more equal weights of Eq.
(2) rather than the unequal weights from a highly iter-
ated EM. This can be demonstrated simply by consid-
ering two member highly colinear forecasts with similar
errors and biases, so xf

i ≅ xf
j . Then the weighted sums

are similar, regardless of the partitioning of the weights.
For example,

1.0 � xi
f � 0.0 � xj

f ≅ 0.0 � xi
f � 1.0 � xj

f

≅ 0.5 � xi
f � 0.5 � xj

f.

3. Conclusions

While the BMA technique is theoretically appealing
for ensemble forecast calibration, the BMA and the
EM technique cannot be expected to set realistic
weights for each member when using a short training
dataset. Enforcing more similar weights among BMA
members [Eq. (2)] may work as well or better than
allowing the EM method to estimate variable weights
for each member.

REFERENCES

Daley, R., 1986: Atmospheric Data Analysis. Cambridge Univer-
sity Press, 457 pp.

Dempster, A. P., N. M. Laird, and D. B. Rubin, 1977: Maximum
likelihood from incomplete data via the EM algorithm. J.
Roy. Stat. Soc., 39B, 1–39.

Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real
skill or is it the varying climatology? Quart. J. Roy. Meteor.
Soc., 132, 2905–2923.

——, J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An im-
portant dataset for improving weather predictions. Bull.
Amer. Meteor. Soc., 87, 33–46.

Hersbach, H., 2000: Decomposition of the continuous ranked
probability score for ensemble prediction systems. Wea. Fore-
casting, 15, 559–570.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-
analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

FIG. 4. Log likelihood (per unit day) of training and validation
data as a function of the convergence criterion. (a) 40-day training
data and (b) 22-yr cross-validated training data.

DECEMBER 2007 N O T E S A N D C O R R E S P O N D E N C E 4229



Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski,
2005: Using Bayesian model averaging to calibrate forecast
ensembles. Mon. Wea. Rev., 133, 1155–1174.

Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and
the breeding method. Mon. Wea. Rev., 125, 3297–3319.

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and
ensemble transform Kalman filter ensemble forecast schemes.
J. Atmos. Sci., 60, 1140–1158.

Wilks, D. S., 2006a: Statistical Methods in the Atmospheric Sci-
ences. 2d ed. Academic Press, 627 pp.

——, 2006b: Comparison of ensemble-MOS methods in the
Lorenz ’96 setting. Meteor. Appl., 13, 243–256.

Wilson, L. J., S. Beauregard, A. E. Raftery, and R. Verret, 2007:
Calibrated surface temperature forecasts from the Canadian
ensemble prediction system using Bayesian model averaging.
Mon. Wea. Rev., 135, 1364–1385.

4230 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



Reply

LAURENCE J. WILSON

Meteorological Research Division, Environment Canada, Dorval, Québec, Canada

STÉPHANE BEAUREGARD

Canadian Meteorological Center, Meteorological Service of Canada, Dorval, Québec, Canada

ADRIAN E. RAFTERY

Department of Statistics, University of Washington, Seattle, Washington

RICHARD VERRET

Canadian Meteorological Center, Meteorological Service of Canada, Dorval, Québec, Canada

(Manuscript received 11 January 2007, in final form 28 February 2007)

1. Introduction

In his comments to our paper, Wilson et al. (2007,
hereafter W07), Hamill (2007, hereafter H07) argues
that our application of Bayesian model averaging
(BMA) to short training samples leads to overfitting
and represents an inappropriate use of the technique.
He further contends that assignment of near-zero
weight to a significant proportion of the ensemble
members amounts to throwing out potentially useful
information from the ensemble. To demonstrate his
points, he has tested BMA in a fashion similar to the
tests reported in W07, using an ensemble of 14 inter-
changeable members, which should a priori be ex-
pected to be weighted equally.

The additional tests we carried out, shown in this
reply, do not indicate that assigning low weights to
some poorer performing members in an ensemble of
noninterchangeable members is an undesirable effect
of integrating the expectation maximization (EM) al-
gorithm to near convergence. Instead, it has the effect
of finely tuning the probability density function (pdf)
prediction intervals compared with the alternatives we
tested at little or no cost to overall accuracy.

Overfitting manifests itself by a good fit of the BMA
pdf to training data and poor predictive performance
on test data; forecast performance is the main criterion
for determining whether there is overfitting. The con-
clusions in our paper were based on the predictive per-
formance of BMA, not its fit to training data. The re-
sults were clear: BMA yielded probabilistic forecasts
that were much better calibrated than the raw ensemble
and performed better by a number of measures, includ-
ing verification histograms and the continuous rank
probability score (CRPS).

H07 does not really suggest an alternative to BMA
but rather variant implementations of the method to
alleviate what he sees as an overfitting problem. These
are

1) using a different, typically more equal, set of
weights, given by his Eq. (2);

2) using a reforecast dataset and much longer training
set; and

3) stopping the EM algorithm early without iterating it
to full convergence.

Before discussing the results of the additional experi-
ments, we offer the following comments on H07. First,
there are significant differences in the 40-day training
samples used in H07 compared with the samples used in
W07. The former are extracted from a low-resolution
upper-air analysis, while the latter are station-specific
surface observations. There is likely to be a higher se-
rial correlation in the upper-air data than in the surface
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values, perhaps much higher. Statistically, this means
more degrees of freedom exist in a 40-day sample of
W07 data than in 40 days of H07 data. H07 refers to this
point; it is our view that the overfitting effect on 40-day
samples would be stronger, perhaps significantly stron-
ger, in the H07 results than in the W07 results, because
of higher spatial and temporal correlation of errors.

Second, it must be remembered that the Canadian
ensemble used in the W07 experiments is made up of
noninterchangeable members, and therefore they can-
not be assumed to be extracted from the same (un-
known) distribution on each occasion. If an ensemble is
constructed of interchangeable members as, for ex-
ample, that used in H07, then there is no reason to
apply BMA as if the members are separate. In that
case, one should use the a priori knowledge and con-
strain the weights to be equal, using the BMA to esti-
mate the standard deviation of the kernels. We tried
this on the Canadian data, and the results are shown
below.

Third, a clarification is needed regarding Fig. 4 in
H07 and its interpretation. The difference in perfor-
mance between independent samples and training
samples depends on the differences in statistical char-
acteristics between the samples. Figure 4 was con-
structed using two different analysis methods. For Fig.
4b, cross validation was used, a method that would tend
to ensure close agreement between dependent and in-
dependent samples because each case of the develop-
ment sample is used in turn as an independent case.
Figure 4a was constructed using the same method as in
W07, which was chosen partly on the basis of opera-
tional feasibility. In that case, the independent case im-
mediately follows the training sample in temporal se-
quence. This would be expected to lead to a systematic
difference in dependent and independent sample char-
acteristics. Therefore, some portion of the difference
shown in Fig. 4a of H07 is surely related to such sys-
tematic differences in samples (bias difference, e.g., as
illustrated in W07 for the spring and autumn seasons)
rather than overfitting. We agree with H07 that changes
in the accuracy on independent data as a function of
changes in the cutoff criterion may indicate overfitting,
but the differences shown on the left-hand side of Fig.
4a for a suitably relaxed criterion are more likely due to
systematic differences in the dependent and indepen-
dent samples. We were able to compare some of the
points of Fig. 4a of H07 using our data and found results
that are consistent with the analysis discussed below:
changes in log likelihoods as a function of cutoff crite-
rion were smaller for both dependent and independent
samples.

Fourth, the H07 suggestion to remove the bias by

correcting the ensemble mean only is an interesting al-
ternative to the two bias correction methods we as-
sessed. In W07, we showed that correcting each mem-
ber with a bivariate regression (denoted “FR” for “full
regression” in W07) led to a decrease in the ensemble
spread with forecast projection and is an undesirable
property of that method, as mentioned by H07. For that
reason, we preferred our other method, which was to
correct only the mean error on the training period (ob-
tained by setting the slope coefficient to 1, called “b1”
in W07), again for each member. This method removes
the bias but also corrects the variation between the
means of the individual members and the mean obser-
vation for the training sample. Thus this method could
also result in reduced ensemble spread for longer pro-
jections, although the reduction was much smaller than
it was using the FR method. H07’s suggestion is a third
alternative, where only the ensemble mean bias is cor-
rected, thus preserving the spread of the ensemble. This
could be a preferred method, especially for ensembles
of interchangeable members, but also might work for
an ensemble of noninterchangeable members. This is
not a feature of the BMA itself but might have an im-
pact on the performance of the BMA. In the results
presented below, we refer to this method as “MR” bias
removal.

Last, the argument of H07 in favor of setting weights
using Eq. (2), and the reference (Daley 1986), assumes
independence of members, which is inconsistent with
the description of the 14-member ensemble of H07,
where it is pointed out that the members are not inde-
pendent.

2. Further experiments using BMA

Inspired by Hamill’s comments, we conducted some
further experiments with BMA using the same dataset
that was used in W07. In all tests, we used a 40-day
training period and evaluated the results on indepen-
dent data over the full year sample of 21 stations for 366
days. Thus, each result represents an average over ap-
proximately 7500 forecasts. For the first test, we com-
pared the FR bias correction method with the MR
method suggested in H07, using the 18-member en-
semble consisting of the 16 members plus the unper-
turbed control forecast and the full-resolution global
model forecast.

Figure 1 shows the results of this test in terms of the
CRPS. There are five curves in the figure: the original
uncorrected ensemble CRPS values, the CRPS for the
FR-corrected ensemble, the CRPS for BMA-calibrated
forecasts based on the FR-debiased ensembles, the
CRPS for MR bias-corrected ensembles, and finally the
CRPS for BMA-calibrated forecasts based on the MR
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bias removal. The result for the FR bias-corrected en-
sembles is similar to the corresponding result for the
16-member ensembles in W07 (Fig. 8): the CRPS in-
creases rapidly with increasing projection, reflecting the
tendency toward a decrease in the ensemble spread at
longer ranges. For the FR forecasts, the CRPS is higher
(worse) than the original ensemble CRPS beyond day
4. The CRPS for the MR-corrected forecasts is about
equal to that for FR bias removal at the shortest ranges
but increases more slowly with projection time and im-
proves on the original ensembles until day 5. An ex-
amination of some of the rank histograms (not shown)
confirmed that the MR method exhibits a smaller ten-
dency toward reducing the ensemble spread for longer
projections, which is consistent with the better perfor-
mance on the longer range forecasts. There was, how-
ever, still some tendency to enhance the underdisper-
sion at the longest forecast ranges compared with the
original ensembles; this behavior would warrant further

investigation. While the MR bias correction performed
better than the FR method, its performance deterio-
rates more rapidly with projection time than the b1
method described in W07, which would seem to be pre-
ferred for bias correction on ensembles of noninter-
changeable members.

Figure 1 also shows that a BMA calibration following
the original FR bias removal performs slightly better
than a BMA calibration following the MR bias re-
moval. This is opposite to what might be expected given
the performance of the bias-corrected forecasts. Al-
though the difference may not be significant, it seems
clear from these results that the BMA can perform well
even if fed a seriously underdispersed ensemble, con-
sistent with the results shown in W07.

For the other three experiments, the bias was cor-
rected using the b1 method described in W07. These
three variants of BMA were as follows:

1) EX1: Running the BMA analysis with all coeffi-
cients constrained to be equal. We used the 18-
member ensemble; thus the weights were all set to
1/18 in this test. The BMA analysis was limited to
determining the standard deviation of the kernels
from the errors in the training sample.

2) EX2: Running the BMA analysis with coefficients
constrained to be equal for four subensembles, the
eight members from the SEF model; the eight mem-
bers from the GEM model; the control forecast; and
the full-resolution model. The latter two are one-
member subensembles. This is an illustration of the
use of BMA for mixed ensembles that contain sub-
ensembles of interchangeable members.

3) EX3: Stopping the EM algorithm early. In the origi-
nal tests in W07, we used a stopping criterion of
0.0001, which is a fairly restrictive value. In this test,
we used 0.01, which corresponds to the left-hand
side of Fig. 4 in H07. If overfitting is a significant
problem, this radical change in stopping criterion
would result in significantly different results.

The EX1 variant of BMA was implemented by modi-
fying the EM algorithm as described in Raftery et al.
(2005, p. 1159, hereafter R05) as follows. The ensemble
weights are equal, and so wk � 1/K. The expectation
(E) step is still given by Eq. (6) of R05 but with the w (j)

k

set equal to 1/K. Of the two equations defining the
maximization (M) step, the first is no longer necessary
and the second is unchanged. The output of the EM
algorithm is then just the maximum likelihood estimate
of �2.

The EX2 variant of BMA was implemented as fol-
lows. Suppose that K ensemble members are parti-
tioned into M subensembles such that the ensemble

FIG. 1. CRPS as a function of projection time for two types of
bias correction and for corresponding BMA-calibrated forecasts
for 18-member ensembles. The curves are original ensemble
(Standard18), FR bias-corrected ensemble (FR regr18), bias cor-
rection of mean only (mean-regr18), BMA for full regression bias
corrected ensembles (BMA FR18), and BMA for ensembles with
correction of only the ensemble mean (BMA MR18). See text for
more details. Independent sample of approximately 7500 cases.
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members in the same block are exchangeable. In the
EX2 variant there are M � 4 subensembles as de-
scribed above. Let B(k) denote the subensemble to
which the kth ensemble member belongs, so that
B(k) � m if the kth ensemble member is in the mth
subensemble. Let Nm be the number of members in the
mth subensemble. Thus NB(k) is the number of mem-
bers in the subensemble to which the kth member be-
longs. Then the E step is unchanged and is still given by
R05, their Eq. (6). The part of the M step that updates
�2 is also unchanged. Only the part of the M step that
updates the weights changes, as follows:

wk
�j� �

1
NB�k�

�
�:B����B�k�

1
n �

s,t
ẑ�st

�j� .

Note that in this equation the weights for ensemble
members in the same subensemble will be the same
throughout the EM algorithm.

We show results of these experiments in comparison
to the corresponding original results reported in W07.

Figure 2 shows the CRPS difference between the
three experiments and the original results for the 18-
member ensembles. For reference, the differences with
respect to the simple Gaussian described in section 5e
of W07 are also shown. The CRPS differences are ex-
pressed as fractions of the original value of the CRPS
and are plotted as (experiment value � original value)
so that positive values indicate the original results score
better. The first result to note is that all differences in
CRPS are rather small, amounting to at most 5% of the
original value, averaged over the approximately 7500
BMA analyses. Constraining all coefficients to be equal
results in CRPS values marginally better than the

simple Gaussian was able to produce but poorer than
the original BMA results for the first 4 days. Treating
all the members as equal takes away the ability of the
BMA to reward higher-quality members with higher
weights, which is especially important in the shorter
ranges of the forecast. The improvement over the
Gaussian results must be because the BMA distribution
is not constrained to have a Gaussian shape, since the
two estimates are otherwise similar.

The best performer according to Fig. 2 is EX2, where
we have used the a priori knowledge of the makeup of
the 18-member ensemble to constrain the weights to be
equal for subensembles containing members that are
expected to be most alike. For this experiment, the
BMA needed to estimate only five coefficients using
the 40-day training period rather than the 19 required
for the original experiment. These results are slightly
superior to the original BMA at all forecast projections,
by amounts ranging from 2% to 4%. Stopping the EM
algorithm early, before full convergence (EX3), also
improved the CRPS on independent data slightly com-
pared with the original results, but by a lesser amount
than shown by EX2.

Figure 3 shows the 90% prediction interval in de-
grees, averaged over all the forecasts of the indepen-
dent sample. As pointed out in W07, the BMA has
reduced the width of this interval by as much as 25%
compared with the simple Gaussian. Results for the

FIG. 2. CRPS results for the three BMA experiments EX1, EX2,
and EX3 compared with results from the original analysis (W07).
Positive indicates superior results for the original system.

FIG. 3. The 90% prediction interval in degrees for further tests
of BMA compared with the original 18-member ensemble results
(W07) and the simple Gaussian (W07) as a function of forecast
projection.

4234 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



three additional experiments are intermediate; the
original BMA still produces the sharpest prediction in-
tervals, followed closely by EX3, then by EX2 and
EX1.

Taken together, Figs. 2 and 3 suggest there is some
overfitting because CRPS results on independent data
are degraded a little compared with stopping the EM
algorithm before full convergence. However, the im-
pact is small and amounts to a choice of a slightly nar-
rower prediction interval at small cost in terms of over-
all accuracy of the pdf. This is akin to the common
trade-off between a smooth forecast, which scores well
using quadratic scoring rules, and a sharper forecast,
which might be more useful. The two figures also sug-
gest that the option of stopping the EM algorithm be-
fore full convergence may be attractive: one can im-
prove the CRPS modestly, while retaining almost all of
the sharpness of the full integration. Also, stopping
early saves computation time. The idea of stopping the
EM algorithm early has been proposed previously by
Vardi et al. (1985, p. 17), who suggested that “a limited
number of iterations (our experience suggests about 50
iterations) gives very good [results].”

But are the radically different weights assigned to the
different members of the ensemble due to running the
EM algorithm to convergence rather than stopping
early? To examine this, we compared weights from the
original experiment in W07 (16-member ensembles this
time) with weights obtained by stopping the EM algo-
rithm at a 0.01 tolerance level. We have chosen to dis-
play the statistics of the weights in a different way from
H07 (his Fig. 3). In H07, the median ratio of highest to
lowest over all the BMA analyses is plotted as a func-
tion of the stopping criterion. Such a ratio gives undue
importance to differences in the smallest weights: the
ratio changes by an order of magnitude if the smallest
weight changes from 0.01 to 0.001, but both are effec-
tively zero when the weights are constrained to add to
one for each analysis. We chose instead to construct
histograms of all the weights, with bin widths equal to
half-powers of 2, centered on 2�4, the expected weight
if all are equal for the 16-member ensemble. There are
approximately 120 000 weights produced for our 7500
BMA analyses; we use an exponential ordinate to
clarify the shape of the distribution. If the weights are
equal, we would expect the histogram to show a single
mode at the central bin.

Figure 4 shows the weight distribution using the two
stopping criteria. Certainly, the relaxed criterion results
in more coefficient values near the central value of 1/16.
There is also a noticeable decrease in the number of
coefficients in the highest and lowest bins. Neverthe-
less, the distribution for the relaxed cutoff indicates that

more than 25% of the weights remain in the lowest bin,
suggesting that on average at least four members are
given essentially zero weight in each analysis. These
results do not support the contention in H07 that the
unequal weights are the result of overfitting. However,
Fig. 4 supports the evidence in Fig. 2 that there may be
a small degree of overfitting in the original results. Of
most concern is the right-hand bin, which identifies
cases where one member was given most of the weight.
Intuitively, this would suggest overconfidence or over-
tuning to a specific member. With the relaxed cutoff,
the number of such cases is reduced from about 500 to
200, out of the total of 7500 analyses. This is perhaps a

FIG. 4. Histograms of coefficients for the 16-member ensemble
BMA, 120-h forecasts, 21 stations, 366 days, 40-day training pe-
riod. EM cutoff criterion of (top) 0.01 and (bottom) 0.0001.
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small but desirable change and supports the use of a
more relaxed cutoff criterion than we used in W07.

3. Discussion

Our use of BMA to calibrate Canadian ensemble
forecasts based on recent performance statistics is a
valid and useful application of the technique, as shown
by these results. H07’s primary contention is that BMA
involves overfitting of the pdf to the training data.
Overfitting manifests itself by a good fit to training data
and poor predictions on independent cases. Our evalu-
ations in the original paper, W07, and in this reply use
independent samples, and these are good, indicating
that overfitting was not an issue for BMA in terms of
the probabilistic forecasts issued: it provided signifi-
cantly improved, nearly perfectly calibrated, and sharp
predictive distributions. We were not able to substan-
tially improve the performance on independent data
either by constraining some or all of the weights to be
equal or by stopping the EM algorithm early. Based on
these results, we do recommend careful attention to the
cutoff criterion used with the EM algorithm, especially
if training samples are small.

Our results also suggest that modest improvements
can be obtained by constraining coefficients of the en-
semble or of the subensembles to be equal if the cor-
responding members are interchangeable. For the Ca-
nadian ensemble, the most competitive results were ob-
tained when the 18-member ensemble was treated as if
it consisted of four separate subensembles. This also
had the effect of reducing any overfitting, since only
five parameters needed to be fit.

Of course, in statistical development, it is always de-
sirable to have a large, homogeneous sample for train-
ing. Long reforecast datasets, such as those used in H07,
represent an ideal that is unfortunately unachievable in
practice, because of frequent changes to operational
ensemble systems. Nevertheless, shorter reforecast
datasets are planned in some centers, including our
own. The addition of even 1 or 2 yr of data for calibra-
tion should improve the performance of BMA and per-
mit its full potential to be realized. With a larger rep-
resentative sample, the BMA can be extended to allow
different values of the variance parameter �2 for dif-
ferent members, for example. The samples in W07 were
too small to make effective use of this feature.

The results shown here also indicate that BMA is a
flexible method, which can effectively calibrate and ex-

tract predictive information not only from ensembles of
noninterchangeable members, such as the W07 appli-
cation, but also from mixed ensembles and from en-
sembles of interchangeable members. The results ob-
tained by considering the Canadian ensemble to be
made up of four distinct members or subensembles are
particularly interesting, because we obtained the best
performance in terms of the CRPS for this configura-
tion. This shows the potential for the use of BMA to
calibrate mixed ensembles, such as those from the
North American Ensemble Forecast System and The
Observing System Research and Predictability Experi-
ment Interactive Grand Global Ensemble.

Finally, regarding the issue of “effectively discard-
[ing] information from so many ensemble members”
(H07) by assigning low weights to one or more mem-
bers, the concern seems to be that a member that has
been rejected on the basis of a relatively short training
sample may well be the member that uniquely forecasts
an extreme event the next time around. The BMA
analysis tends to reject members that perform poorly
during the training period and/or are highly correlated
with better-performing members (see R05, 1161–1162).
In this context, a member rejected by the BMA would
be highly unlikely to suddenly correctly forecast an ex-
treme event and be the only member to do so. The cost
of retaining all the members in the forecast pdf with
approximately equal weights is a probability distribu-
tion with larger prediction intervals, arguably a less use-
ful pdf for forecast application.
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