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The inference of regulatory and biochemical networks from large-
scale genomics data is a basic problem in molecular biology. The
goal is to generate testable hypotheses of gene-to-gene influences
and subsequently to design bench experiments to confirm these
network predictions. Coexpression of genes in large-scale gene-
expression data implies coregulation and potential gene–gene in-
teractions, but provide little information about the direction of
influences. Here, we use both time-series data and genetics data
to infer directionality of edges in regulatory networks: time-series
data contain information about the chronological order of regula-
tory events and genetics data allow us to map DNA variations to
variations at theRNA level.Wegeneratemicroarray datameasuring
time-dependent gene-expression levels in 95 genotyped yeast seg-
regants subjected to a drug perturbation. We develop a Bayesian
model averaging regression algorithm that incorporates external
information from diverse data types to infer regulatory networks
from the time-series and genetics data. Our algorithm is capable of
generating feedback loops. We show that our inferred network
recovers existing and novel regulatory relationships. Following net-
work construction, we generate independent microarray data on
selected deletion mutants to prospectively test network predic-
tions. We demonstrate the potential of our network to discover
de novo transcription-factor binding sites. Applying our construc-
tion method to previously published data demonstrates that our
method is competitive with leading network construction algo-
rithms in the literature.

Large-scale sequencing has provided a wealth of data on the
presence, absence, and variation of genes within and between

species. However, functional annotation is unavailable for many
genes and the majority of genes within most species are not placed
within regulatory or biochemical pathways. Classic biochemical
methods for placing genes in pathways cannot keep pace with the
rapidly increasing amount of genomic information. To address
this problem, we and others have been developing methods to
infer networks from large-scale functional genomics data (1–5).
The overall goals of such methods are to generate predictions of
systems behavior and testable hypotheses of gene-to-gene influ-
ences. Predictions of systems behavior can be useful even in the
absence of detailed mechanistic understanding. For example,
the predicted response to the inhibition of a given gene can guide
the selection of drug targets (6). The generation of testable hy-
potheses provides a path to more rapidly gain mechanistic
understanding as it focuses bench experiments on subsets of po-
tential gene-to-gene influences. Moreover, network construction
and experimental work can be used in an iterative process to
converge on underlying mechanisms (7, 8).
At present, the datamost used in network constructionmethods

are from large-scale gene-expression studies. Coexpression of
genes across a wide variety of experimental conditions implies
coregulation (9, 10) and potential gene–gene interactions. How-
ever, coexpression cannot predict the outcomes of perturbations
(e.g., drug treatment or deletion) as the inferred relationships
are undirected. Additional information is needed to assign di-
rectionality to edges so as to infer predictive networks. It has been

shown that integrating expression data with other data types can
lead to the construction of predictive networks (4, 5). Prior
knowledge, such as known transcription factor (TF) gene inter-
actions, can be used in some cases to constrain directed edges in
networks, but in many systems, such knowledge is incomplete.
Hence, additional global data are often needed to construct
predictive networks.
One successful approach has been to use DNA variations that

are correlated with given gene-expression values (expression
QTLs) to infer directionality of edges in networks (4, 5, 11, 12).
An alternate approach is to infer networks from time-series data.
Because transcriptional regulation is a temporal process in which
mRNA is transcribed continuously and new proteins are gener-
ated, time-series data can help identify the intermediate events
between a given perturbation and expression responses. Time-
series data can provide the chronological order of regulatory
events, which also provides information about the direction of
edges in networks. Time-series data can also help infer feedback
loops that are ubiquitous in biology.
In this study, we generated a unique time-series gene-ex-

pression dataset from 95 genotyped yeast segregants that were
subjected to a perturbation with the macrolide rapamycin. Such
a dataset allows one to take advantage of both genetic variations
and time dependencies to infer predictive networks. To analyze
these data, we developed a Bayesian model averaging (BMA)
regression-based algorithm that used a supervised framework to
integrate external knowledge. We formulate network construc-
tion as a variable selection problem and aim to identify regu-
lators for each gene. Unlike standard Bayesian networks, this
method is capable of identifying feedback loops. We showed
that the derived networks were enriched for known regulatory
relationships that were not used as prior knowledge in network
inference.
We also prospectively tested selected network predictions using

data generated in our laboratory. Specifically, the child nodes of
each of three selected TFs were significantly enriched with genes
that responded to the deletion of the corresponding TF. In ad-
dition, we compared our method to a leading network-construc-
tion algorithm using previously published microarray data (13)
and found that our method inferred a network of higher quality by
some criteria.
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Results
Overview of Algorithm. We developed a BMA regression-based
framework for inference about regulatory networks integrating
external data sources. Our approach consists of two stages: (i) We
used a supervised framework to compute prior probabilities of
regulatory relationships using diverse data sources that include
genetics data, genome-wide binding data, additional expression
data, interaction data, and literature curation. (ii) For each gene,
we incorporated these prior probabilities into a Bayesian variable
selection method to select regulators using time-series expression
data. Fig. 1 summarizes our method.

Time-Series Microarray Data for Network Construction. We mea-
sured time-dependent gene-expression levels of 95 genotyped
haploid yeast segregants treated with the macrolide drug rapa-
mycin. These segregants were constructed and genotyped by Brem
et al. (13), and were derived from two genetically diverse parental
yeast strains BY4716 (BY) and RM11-1a (RM). Time-series data
were generated by sampling each yeast culture at 10-min intervals
for up to 50 min after rapamycin addition and profiling the puri-
fied RNA with Affymetrix Yeast 2.0 microarrays. Rapamycin
treatment was chosen because it is relatively easy to implement
and induces widespread changes in global transcription, based on
a screen of the public microarray data repositories (14–16). This
perturbation allowed us to capture a large subset of all regulatory
interactions encoded by the yeast genome. Before applying net-
work construction algorithms to our time-series data, genes that
did not vary much over time were filtered out. The resulting data
contained expression levels for 3,556 genes at six time points for
each of the 95 genotyped yeast segregants and parental strains.

Network Construction as a Variable Selection Problem. To build a
causal network with directed edges, regulators that predict the
expression level of each gene need to be identified from a large
set of potential regulators. To facilitate this process, we formu-
lated network construction as a variable selection problem.
Variable selection identifies a subset of relevant features for
building statistical models, and has been applied in a regression
framework to the construction of regulatory networks (5, 17, 18).
Here, we extended a variable selection method (BMA) to net-
work construction. BMA takes model uncertainty into account
by averaging over the posterior distributions of a quantity of
interest based on multiple models, weighted by their posterior
model probabilities. BMA has been shown to be effective in
many different applications (19–22).
To construct regulatory networks from our time-series data, we

used expression levels for selected genes at the previous time point
to predict the expression levels of genes at the current time point.
Our key approximations are that the regulatory relationships re-
main constant over time and that the expression level of gene g at
time t is a linear function of the expression levels of potential
regulators from the same segregant at time (t − 1). To apply BMA
to data with thousands of potential regulators, we used the iterative
BMA (iBMA) algorithm that we previously developed for classi-
fication and survival analysis. When applied to microarray data,
iBMA selected fewer genes and produced higher prediction accu-
racies than othermethods (23, 24). Here, we extend iBMA to linear
regression by rank ordering putative regulators using the coefficient
of determination (R2) from single-variable models and then itera-
tively applying BMA to the top ranked genes, removing variables
with low posterior probabilities (seeMaterials and Methods). Other
methods for implementing BMA for linear regression with high-
dimensional data have also been proposed more recently (25–29).

Integration of External Data Sources. Zhu et al. (4) showed that
incorporating genotypic, TF binding sites and protein–protein
interaction data improved the quality of Bayesian networks. This
finding prompted us to develop a supervised framework leverag-
ing on external data sources to guide our search for the regulators
in the regression framework. Our supervised framework aims to
learn the relative importance (weights) of different data sources.
Wemodeled the prior probability that a given gene is regulated by
a given TF as a function of variables representing evidence of
transcriptional regulation. We trained our supervised framework
using known regulatory relationships from various yeast databases
(30–32) as positive examples. We generated negative training ex-
amples by randomly sampling TF-gene pairs that were not docu-
mented in any of the yeast databases.
We compiled extensive data sources to create variables repre-

senting evidence of regulation, including genetics data, ChIP-chip
data (33), physical interactions (34, 35), genetic interactions (36),
additional expression data, and literature curation (34) (see Mate-
rials and Methods and Table S1). For example, we defined variables
measuring coexpression of regulator-gene pairs across diverse ex-
perimental conditions, binding strength in ChIP-chip data, exis-
tence of physical or genetic interactions, numbers of common gene
ontology (GO) terms, and known regulatory roles. Wemade use of
two types of genetics data in this supervised step. We used the ge-
notype data of the segregants (13) to determine whether sequence
variations of candidate regulators correlated with expression levels
of nearby genes. We also used the sequence polymorphisms of the
two parental strains to determine nonsynonymous SNPs in the
coding regions and the number of SNPs in the promoter regions.
See SI Materials and Methods and Table S2 for an example of how
genetics data contributed to network construction.

Assessment: Recovery of Known Regulatory Interactions. We evalu-
ated our networks by quantifying how well the constructed
network recovers regulatory relationships inferred from data

Fig. 1. Overview of our algorithm. We used a supervised framework to
compute theprobabilities of transcriptional regulationby integrating external
data sources. Our goal is to infer the parent nodes (regulators) for each gene
g in a regression framework. The probabilities computed in the supervised
step were used to constrain potential regulators for gene g. Subsequently,
a variable selection algorithm (iBMA) was applied to these candidate regu-
lators using the time-series expression data. Specifically, the expression levels
of putative regulators at the previous time point were used to predict the
expression level of the gene of interest at the current time point.
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sources that were not used in the network construction process.
The YEASTRACT database is a curated repository of regulatory
associations between TFs and target genes in Saccharomyces
cerevisiae, based on more than 1,200 literature references (37).
Although a small subset of the interactions documented in
YEASTRACT is derived from the same data sources, it repre-
sents a much larger set of regulatory interactions than those used
in our supervised framework. We adopted the regulatory inter-
actions documented in YEASTRACT as our independent as-
sessment criterion.
We defined “direct evidence” as the number of edges in the

inferred network that were supported by the independent as-
sessment criteria (i.e., the number of recovered regulatory rela-
tionships from YEASTRACT). Sometimes it might not be
possible to recover regulatory relationships in our networks be-
cause of the lack of signal in the data. If two genes have very
similar expression patterns across all of the segregants, for ex-
ample, it would be difficult to decide which regulates a third gene
without additional information. Therefore, we defined “indirect”
and “same path” as evidence capturing network inference that was
proximal to the independent assessment criteria. The indirect
evidence accounted for inferred regulators that were highly cor-
related with the known regulator (see Materials and Methods and
Fig. S1). The “same path evidence” accounted for network in-
ference involving an additional intermediate node than the known
regulatory relationship.
We quantified associations between our network inference and

independent assessment criteria using contingency tables, sum-
marized by the precision and P values from the χ2 test (Fig. S1).
“Precision” is defined as the proportion of inferred edges that are
supported by YEASTRACT. It measures how the inferred network
edges matched the regulatory relationships documented in YEAS-
TRACT. Pearson’s χ2 goodness-of-fit statistic is an adjusted sum of
the squared differences between observed and expected frequen-
cies, and is a classic test of association in categorical data analysis.

Networks Constructed Using our Algorithm. We applied our iBMA
algorithm to the time-dependent expression profiles of yeast seg-
regants treated with rapamycin. The inferred network (networkA)
consists of 3,556 nodes and 65,122 edges. The number of edges for
which there is direct evidence is 662 (i.e., 662 edges in network
A represent regulatory interactions documented in the YEAS-
TRACT database). This number is 2.3 times more than would be
expected if the association betweenYEASTRACT and our results
were random. Fig. S1C shows the corresponding contingency ta-
ble. Our assessment criteria consist of regulatory relationships
with TFs and our algorithm does not constrain regulators to be
known TFs (although the supervised step favors regulators with
a known regulatory role). The total possible number of edges that
span the subset of TFs and genes covered by YEASTRACT is
6,636, and hence: precision = 662/6,638 = 10.0%.
To assess the merits of the supervised step and the importance

of the external data sources, we applied iBMA to the time-series
microarray data without using any external data sources (network
B). Table 1 shows the precisions and P values from the χ2 test for
each type of evidence. We showed that network A generally out-
performed network B in terms of each type of evidence. In par-
ticular, 6,986 or 10.7% (= 6,986/65,122) of the edges in networkA
are supported by at least one type of evidence (i.e., union of edges
supported by direct, same path and indirect evidence), compared
with 4.6% (= 2,913/63,026) in network B.
As an alternative assessment strategy, we downloaded all of

the binding sites documented in JASPAR (38), and computed
enrichment between the gene targets containing the known
binding sites upstream and the inferred child nodes of the cor-
responding TFs in networks A and B. Because these binding sites
were not used in the supervised framework, this represents an-
other independent assessment criterion. There are a total of 129

TFs with documented binding sites in JASPAR. Network A
contained 38 TFs with enriched gene targets and network B
contained only 20 such TFs (Tables S3 and S4). Consistent with
YEASTRACT, the supervised framework and the external data
sources provided important contributions to the accuracy of
inferred networks.

Prospective Validation: Independent Deletion Experiments. We
generated additional independent data to prospectively vali-
date selected network inference about the impact of one gene
on other gene-expression values. We selected TFs with child
nodes with high posterior probabilities that were stable with
respect to bootstrapping of the data. We also selected TFs
with different characteristics (e.g., numbers of citations, known
binding sites, response to rapamycin over time). We selected
three TFs (ARO80, DAT1, and RTG3), each of which has ∼50
edges with high posterior probabilities in network A. RTG3
(YBL103C) has 83 curated references in the Saccharomyces
Genome Database (SGD) (34), and ARO80 (YDR421W) and
DAT1 (YML113W) each have under 20 curated references.
ARO80 and RTG3 have known TF binding sites and increase
over time in response to rapamycin. On the other hand, DAT1
has no known binding site and decreases over time in response to
rapamycin. See Table S5 for a summary of these TFs.
We profiled the expression levels of the wild-type strain

BY4742, which is closely related to BY4716, and each single-
deletion mutant, each with three biological replicates, at 50 min
after rapamycin perturbation using microarrays. We compared
our network predictions to the genes that respond to the deletion
in the presence of rapamycin. Specifically, we compared the child
nodes of the three selected TFs in network A to the differentially
expressed genes comparing each deletion mutant to the WT
(Fig. 2). We observed significant overlap (adjusted P values
<0.05) between our network predictions and the independent
deletion experiments (Table 2).

Table 1. Merits of the external data sources in network
construction

Network A Network B

Precision P value Precision P value

Direct 10.0% 1.7 × 10−111 8.9% 1.8 × 10−23

Same path 6.0% 1.5 × 10−177 5.6% 6.0 × 10−25

Indirect 4.1% 2.5 × 10−4 3.8% 1.1 × 10−9

Network A (65,122 edges) was constructed using iBMA with external data
sources, and network B (63,026 edges) was constructed using the time-series
expression data only (without any external data sources). Precision is defined
as the fraction of edges in the inferred network that are supported by
regulatory interactions documented in YEASTRACT. The P value is derived
from the χ2 test measuring the significance of the association between our
inferred network and YEASTRACT.

Fig. 2. Design of prospective validation experiments. We generated in-
dependent deletion data to confirm selected network predictions. Specifi-
cally, we compared the child nodes of selected transcription factors to the
genes that respond to the deletion of the same transcription factor after
rapamycin perturbation.
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Furthermore, we retrieved the known binding sites for ARO80
and RTG3 from JASPAR (38), determined the gene targets for
which the promoter regions contain the known binding sites,
and compared these gene targets to the child nodes of ARO80
and RTG3 in network A. Interestingly, all four genes (ARO9,
ARO10, NAF1, and ESBP6) that were among the children of
ARO80 in network A and responded to the deletion of ARO80
contained the known binding site of ARO80 in their promoter
regions (Fig. S2). Both ARO9 and ARO10 were shown to be
regulated by Aro80p (39). The regulatory roles of Aro80p on
NAF1 and ESBP6 are not documented in SGD or PubGene
(40), but are supported by independent ChIP-chip data (41) not
used in the construction of our networks.
We repeated our analysis with RTG3, and to our surprise the

overlapping genes between the child nodes of RTG3 in network
A and the genes that responded to the deletion of RTG3 were
not enriched with targets of RTG3’s known binding site from
JASPAR (P value = 0.31). Further investigation showed that the
binding sites of both ARO80 and RTG3 in JASPAR were de-
rived from protein binding microarray data (42). However, SGD
documented an additional binding site for RTG3 (GGTCAC),
determined from traditional bio-chemical methods (43). We
showed that the overlapping genes between the child nodes of
RTG3 in network A and the genes that responded to the de-
letion of RTG3 were significantly enriched for the binding site
GGTCAC (P value = 0.01) (Fig. S3). See Table S6 for additional
binding site analyses for ARO80 and RTG3.
Encouraged by the concordance between our network in-

ference and previously determined binding sites, we identified
binding sites for DAT1 that have no known binding sites in JAS-
PAR, using computational methods. We applied MEME (Multi-
ple Em for Motif Elicitation) (44) to the 500-bp upstream regions
of the 20 overlapping genes between the child nodes of DAT1 and
the genes that responded to the deletion of DAT1 in the presence
of rapamycin, and obtained a highly significant motif (e-value =
4.5 × 10−30) shown in Fig. 3. Furthermore, DAT1 is known to bind
to poly-A sequences (45) and the poly-A sequence is the second
ranked overrepresented motif from our MEME analysis.

Comparison with Leading Methods in the Literature. We compared
the performance of our network-construction algorithm to a lead-
ing network construction method called Lirnet (5). Because Lirnet
is designed for steady-state microarray data without any time
points, we modified iBMA to be applied to a published microarray
data by Brem et al. (13) (SI Materials and Methods). The Brem
data (13) measured the steady-state expression levels of 112 yeast
segregants, 95 of which were profiled in our time series microarray
data. Because Lirnet constrained the inference of regulators to
known TFs, we constructed network C using the same constraint.
We constructed network L by applying Lirnet to the same pre-
processed microarray data, the same subset of 3,152 genes, and the
same external data sources used in network C. We then evaluated
networks C and L using the same independent assessment criteria.
Our iBMA algorithm (network C) consistently outperformed

Lirnet in terms of every type of evidence (Table S7). Most strik-
ingly, our algorithm recovered almost twice the fraction of edges
supported by the independent assessment criteria (precision of
direct evidence = 12.0% in network C compared with 6.8% in
network L).

Discussion
We generated a microarray dataset measuring the time-de-
pendent expression levels of 95 genotyped yeast segregants
subject to an extensive perturbation. This dataset is a valuable
resource for the network-construction community, as it contains
both genotype data and time dependencies on a genome-wide
scale. The genotype data can be used to map DNA variation to
RNA variation, and the time-series data shed light on the chro-
nological order of regulatory events. Hence, both can be used
to infer the directionality of edges in regulatory networks.
We showed the usefulness of these time-series data by de-

veloping a BMA regression-based framework for the inference of
regulatory networks integrating external data sources. We evalu-
ated our inferred networks in two ways: (i) recovery of known
regulatory relationships and (ii) prospective validation to confirm
selected network predictions. We showed that our networks re-
covered many of the regulatory relationships documented in
a yeast database that was not used in the construction of the
networks. We showed that the supervised step (and hence, the
external data resources) improved the quality of inferred net-
works. Because known regulatory relationships documented in
databases typically span diverse experimental conditions and may
not represent interactions under rapamycin perturbation, we
generated additional independent data to test selected network
predictions. In particular, we generated deletion data for three
selected TFs (ARO80, DAT1, and RTG3) after the rapamycin
perturbation. We showed that our network predictions were
consistent with the independent deletion data in all three cases,
and that the child nodes of ARO80 and RTG3 in our inferred
network were enriched with targets of known binding sites. In
addition, we found an overrepresented TF-binding site motif
among the child nodes of DAT1, for which no known binding site
exists in JASPAR. Applying our algorithm to a published micro-
array data (13), we found that our method performed better than
a leading network construction algorithm in the literature.

Materials and Methods
Time-Series Microarray Data. We profiled the time-dependent expression
levels of a set of 95 genomically characterized haploid yeast segregants con-
structed by Brem et al. (13), which were derived from two genetically diverse
parental yeast strains, BY4716 and RM11-1a. Both parental strains have been
sequenced. The genotype data of these yeast segregants of over ∼3,000
markers are publicly available (13). A 70-mL Yeast Proteome Database (YPD)
culture of each parental strain and segregant was grown to log-phase in
shaken flasks at 30 °C. An aliquot of cells from each culture was taken as time
point 0 and saved for RNA analysis. Then rapamycin was added to the culture

Table 2. Comparison of network inference to the independent
validation experiments

TF
No. child
nodes

No. genes
responded to deletion

No. child
nodes responded

to deletion P value

ARO80 51 10 4 9.3 × 10−6

DAT1 57 784 20 0.04
RTG3 47 2,288 39 0.03

We compared the child nodes of selected transcription factors in network
A to the genes that responded to the deletion of the same transcription
factors in the presence of rapamycin.

Fig. 3. Overrepresented motif of DAT1 (E-value = 4.5 × 10−30) among the
overlapping genes between the child nodes of DAT1 in network A and the
genes that respond to the deletion of DAT1 in the presence of rapamycin.
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at a concentration of 100 nM to induce perturbations in gene expression. Each
culture was sampled at 10-min intervals after the addition for up to 50 min.
Total RNA was prepared from these cell samples using RNeasy kits from Qia-
gen and then profiled using Yeast Genome 2.0 Arrays from Affymetrix.

The CEL files were summarized using the Robust Multiple-Array average
method (46) after removing intensity data for probes whose sequence
overlapped one or more sequence polymorphisms present in the RM11-1a
SNP data (47) or in the RM11-1a deletion data (48). We filtered our time-
series data to remove genes that do not vary much over time or across
segregants, resulting in a filtered dataset consisting of 3,556 genes over six
time points across 95 genotyped yeast segregants and two parental strains.

Bayesian Model Averaging. BMA takes model uncertainty into account by
averaging over the posterior distributions of a quantity of interest based on
multiple models, weighted by their posterior model probabilities (49, 50). Let
Δ be the quantity of interest. In BMA, the posterior distribution of Δ given

the data D is PrðΔjDÞ ¼ PK

k¼1
PrðΔjD;MkÞ∗PrðMk jDÞ, where M1,. . .,MK are the

models considered. In our context, a model is defined by a set of regulators.
The reduced set of “good” models Mk for the weighted average calculations
is efficiently identified using the leaps-and-bounds algorithm (51), which
rapidly returns the best nbestmodels of each size up tow genes (19) (w = 30,
nbest = 10 in our experiments). A set of parsimonious and data-supported
models is then selected using the Occam’s window method (52). This method
consists of discarding models that are much less likely than the best model
supported by the data (the default is 20-times less likely in terms of poste-
rior model probability). Therefore, the set of “good” models used in the
weighted average calculations is chosen by first applying the leaps-and-
bounds algorithm, and then the Occam’s window method. We used the
Bayesian Information Criterion to approximate the posterior probability of
a model Mk (49).

Iterative BMA for Network Construction. We formulated network con-
struction as a variable selection problem: we modeled the expression level
of gene g at time t as a linear regression of the expression levels of
potential regulators at time (t − 1) from the same segregant. Let X(g, t, s)
be the expression level of gene g under time t in segregant s, where
t = 0, 10, 20, 30, 40, 50 min and s = 1, 2, . . ., 95. Mathematically,
Xðg; t; sÞ ¼ β0 þ

P

h is a putative regulator
βh∗Xðh; t − 1; sÞ þ ε, where the βh’s are

regression coefficients. We applied the iBMA for network construction to
select significant regulators from potentially thousands of variables and to
compute regression coefficients.

In the iBMA algorithm for network construction, we ranked the variables
(putative regulators for thecurrentgeneof interest) indescendingorderof the
coefficient of determination (R2) fromfitting single-variablemodels.We then
applied the original BMA algorithm to thew top-ranked genes (w = 30 in our
experiments). Variables to which BMA assigned low posterior probabilities
(<5% in our experiments) were removed. Supposem variables were removed.
The next m variables from the rank ordered R2 were added to maintain
a window ofw variables and the original BMAwas again applied. These steps
of gene swaps and iterative applications of BMAwere continued until we had
considered all top v variables in our univariate ranked gene list (v = 100 in
our experiments).

Supervised Framework for the Integration of Public Data Sources.Weextracted
∼550 regulatory relationships derived from non-high-throughput sources from
SCPD (30), YPD (31), and TRANSFAC (32), and used these regulatory relation-

ships as positive training examples. We generated negative training examples
by randomly sampling TF-gene pairs that were not documented in any yeast
databases. These positive (Y = 1) and negative (Y = 0) training examples served
as response variables in our supervised learning step. We computed variables
representing evidence of regulation from various yeast data resources (Table
S1). Let R and G be the regulator and gene of interest. As an example, we
computed variables representing the correlation coefficients between regula-
tor R and gene G in each of three large-scale yeast gene-expression datasets:
the environmental stress data (53), consisting of 225 experiments; the com-
pendiumdata (54), consisting of 300 experiments; and the StanfordMicroarray
Database data, consisting of 671 experiments (14). As another example, an-
other variablewas equal to log(P value) fromChIP-chip data (33)measuring the
strength of binding between R and the upstream region of gene G. We also
used the functionally relevant polymorphisms collated by Lee et al. (5).

We used logistic regression to model the probability of a regulatory re-
lationship as a function of a linear combination of these independent vari-
ables: that is, Pr(Y = 1) = f(Σ αi xi), where f is the inverse logit function, the xi’s
are independent variables and the αis are regression coefficients. BMA for
logistic regression was applied to determine the weights αi’s and the pos-
terior probabilities of the independent variables. The estimated weights
were used to compute the probabilities of regulatory relationships for all
regulator-gene pairs. We used these predicted probabilities to constrain
potential regulators before iBMA was applied.

Hard-Coding Known Regulatory Relationships. We hard-coded the ∼550 reg-
ulatory relationships from the supervised framework in the construction of
network A. We used residuals, the differences between the responses, and
the fitted values to account for the effects of the known regulators. Suppose
T1 and T2 are known regulators for gene g, and his are putative regulators
for gene g. We computed the residuals of g on T1 and T2, resid(g) = residuals
[X(g,t,s) ∼ X(T1,t − 1,s) + X(T2,t − 1,s)], and the residuals of hj on T1 and T2,
resid(hi) = residuals (X(hj,t − 1,s) ∼ X(T1,t − 1,s) + X(T2,t − 1,s)). We then
applied iBMA using the residuals of g as the response and the residuals of
each of the putative regulator hi as the independent variables.

Assessment: Recovery of Existing Knowledge. The YEASTRACT database (37)
was used to assess the inferred networks. To avoid bias, we removed the ∼550
hard-coded regulatory relationships that were also used in the supervised
training step from the assessment criteria from YEASTRACT. This process
resulted in a total of 17,173 regulatory pairs, spanning 127 TFs.

Suppose our network inferred an edge R→G. Direct evidence refers to the
edges for which R → G was also a regulatory relationship in the assessment
criteria. Indirect evidence accounted for highly correlated genes and regu-
lators. We called (R,G) indirect evidence if T − >G was a documented re-
lationship from the assessment criteria, and T,R were highly correlated. In
same path evidence (R → R′ → G), R′ was an intermediate node between R
and G. We used a two-way contingency table to quantify the association
between the inference drawn from our networks and the independent as-
sessment criteria. See Fig. S1 for details.
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