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ASYMPTOTIC INFERENCE FOR A CHANGE-POINT
POISSON PROCESS

By V. E. AKMAN! AND A. E. RAFTERY
Trinity College, Dublin

Easily implemented asymptotic off-line procedures for the change-point
Poisson process with A(t), the intensity at time ¢, equal to A, if ¢ < 7 and to
A, if ¢t > 1, are developed. They may also be applied to a problem of
estimation of the location of a discontinuity in density discussed by Chernoff
and Rubin (1956). A test for change is noted, a test of the hypothesis that
T =1, is proposed, and point and interval estimates of 7, A;, and A, are
provided. The small-sample performance of the proposed procedures is studied
using simulation, and an example is given.

1. Introduction. Off-line inference about a Poisson process with a change-
point is considered. Inference is to be based on an observation period [0, T']
during which n events have been observed at times ¢,,...,¢,.. The rate of
occurrence at time ¢, denoted by A(%), is equal to A; if 0 < ¢ < 7, and to A, if
7 < t < T. The change-point ¢ is unknown, as are A, and A,.

Our approach here is non-Bayesian, based largely on asymptotic approxima-
tions. In order to obtain asymptotic results, it is necessary to embed the problem
in a sequence of problems, and there are several ways in which this can be done.
Here we assume that 7 —» o0 and T — oo in such a way that /T =46, a
constant.

Under this assumption, it was pointed out by Rubin (1961) that the present
problem is equivalent to that of inference for a random sample from a density
which is equal to B on [0, a], to vy on [a,1], and to zero elsewhere, where «, S,
and y are unknown. The latter problem was considered by Chernoff and Rubin
(1956), who reduced the problem of finding the asymptotic distribution of the
maximum likelihood estimators to the distribution of a corresponding function of
a stochastic process. According to Rubin (1961), Breakwell and Chernoff, in some
unpublished memoranda, obtained the asymptotic distribution of those estima-
tors.

Deshayes (1984) stated a similar result for the change-point Poisson process,
but noted that it does not yield operational inference procedures for the
change-point. He did obtain inference procedures under the additional assump-
tion that A,/A; — 1, but this approach does not seem designed to provide good
approximations if A, andA, are, in fact, widely separated.
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Our main purpose here is to propose simple, easily implemented, inference
procedures for the change-point which do not require that A,/A, — 1; this is
done in Section 3. These may also, of course, be applied to the discontinuous
density estimation problem of Chernoff and Rubin (1956), described earlier.
Before that, in Section 2, we introduce estimators for 6, A,, and A, which are
related to the inference procedures proposed. We show that they are consistent
and that the estimators of A\, and A, satisfy a central limit theorem with
random norming. In Section 4 we investigate the small-sample performance of
the proposed procedures by means of a Monte-Carlo study, and in Section 5 they
are applied to a real data set.

Other approaches to the present problem include those of Leonard (1978), who
proposed estimating the parameters by minimising the integrated squared differ-
ence between the estimated rate and a different, nonparametric, estimate of the
rate function; Kendall and Kendall (1980) who discussed a test for change; and
Raftery and Akman (1986) who developed a Bayesian approach. Of course, if the
change is known to have occurred at an event time, the problem reduces to that
of a change-point in a sequence of independent exponential random variables,
and methods designed for that case, such as may be derived directly from the
results of Hinkley (1970), can be used. This assumption underlies the work of
Commenges and Seal (1985).

Different, but related, problems have been worked on by Kalbfleisch and
Struthers (1982) who considered a Poisson process analogue of intervention
analysis, Kutoyants (1984) who studied the statistical analysis of a Poisson
process with a periodic discontinuous rate function, Matthews and Farewell
(1982) and Nguyen, Rogers, and Walker (1984) who analysed hazard rates with
change-points, and Schulze (1984) who gave results for growth curves with
change-points.

2. Estimation. The estimation and inference procedures we consider are all
based on the process

Y(s;c,d) = {s'(1 - s,)}l/z{ II(s) S—/ II(c) B H(dl)_—sfll(s) }’

c<s<d,

where 0 <c<d<1, s’=(s—c¢)/(d—c), lI(s)=N(sT), and N(t) is the
number of events that occurred in the time interval (0, t]. Y(s; ¢, d) is the
normalised difference between the mean intensities on (c7, sT] and (sT, dT].
Also, if {¢,,..., t,} is viewed as the set of order statistics from a random sample,
then Y(s; 0, 1) is essentially the process which underlies the goodness-of-fit tests
of Anderson and Darling (1952) in the case of testing for uniformity.

We assume that there are known constants @ and & such that 0 <a < 8 <
b < 1. We suppose that 6, \|, and A, are unknown, but that it is known that
Ay > X,. The analysis is similar if it is known that A, < \,. We consider the
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estimators

6= inf{s: Y(s;0,1) = sup Y(u; 0,1)},
a<u<b

a

A=9/8 A =(N(T)-2)/(T~#%),
where 7 = 0T and » = N(%).

THEOREM 1. The following asymptotic statements, which refer to limits
taken as T = o and 7 — oo in such a way that v/T = 0 remains constant,
hold:

(1) The estimators 6, 5\1, and 5\2 are consistent.

(i)
(2.1) (Aﬁ — 1?)/1?1/2 =4 N(O,l),
(2.2) (AT = #) — (N(T) = )} /(N(T) — $)"* -4 N(0,1).

REMARK. The consistency referred to is weak consistency; clearly strong
consistency cannot be meaningfully defined in the present context. Confidence
intervals for A, and A, may be obtained from (2.1) and (2.2), while confidence
intervals for § may be obtained by inverting a significance test given in the next
section.

PrOOF. (i) We first show that § is consistent. Let Z(¢) = T~ '/2¥(¢/T;0,1)
and g(t) = E[Z(t)]. Then it is readily shown that g(t) is increasing in [aT, 7]
and decreasing on [7, bT'], and also that for ¢ > 0 sufficiently small

g(t) —g(r+eT) = c,T?,
where ¢, is a constant which depends only on ¢, a, b, A,, and A,. Thus
P[16 - 6|> ¢] < P[1g(#) — g(r)| > ,T"?]

< P[sumzu) B OE 5clT‘/2],
teC

where C = [aT, bT'], using the triangle inequality,
<P

2

sup|X,| + b|Xp| > ¢, T
teC

where X, = N(t) — E[N(t)] and c, = (ab)/%c,, again using the triangle in-
equality,

2
(2.3) < cE sup|Xl|] T2+ ¢, E[X2]T7?,

teC

where c; = 2¢;2 and c, = b%c;, by Chebyshev’s inequality and the fact that
(x +y)? < 2(x? + y?). {X,} is a square integrable martingale and so {|X,|} is a
square integrable submartingale by Jensen’s inequality. Thus by Kolmogorov’s
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inequality for submartingales (Liptser and Shiryayev (1977), Theorem 3.2) the
first term on the right of (2.3) is O(T™!), as is clearly true for the second term.
Thus 4 is consistent.

We now show the consistency of 5\1. For ¢ > 0and 0 <8 < b — a, we have

P[IA, =\ |>¢] <P[|R, =\ |>¢, 16— 0] <8] + P[16 — 6] > 8]

< P[sup|N(t)/t —A > s] + P[16 - 0> 5],
teF

where F' = {t. |t — 7| < 8T},
< P[sup|X(t)/t| > c5] + P[16 - 6> 8],

teF

where ¢, = ¢ — (A, — A,)/(0 — a),
< E[X(r - 8T)% /c2(r + 8T)* + P[1 — 6] > 8],

by Kolmogorov’s inequality for submartingales. The first term is clearly O(T '),
and we have shown the second term to be o(1), so that 5\1 is consistent. The
proof of the consistency of A, is similar. ’

(i) Let m;=¢ —t,_,, where {,=0 and ¢,,,=7. Let S, = L7, —
E(n;)). Clearly, for j <», 1, ~;4 e(\,), where » = N(7). We have
MS, NS, ( 4 )1/2 AM(S - S,)

i)l/2 V1/2 51/2

(2.4)

14
It is shown in Akman (1985, Chapter 5) that (S; — S,)/#'/% -, 0. Also, (v/7) -
1 by the consistency of A, and §, and the renewal theorem. Also, by the renewal
theorem, »/T — A0, so that A\,S,/»'/2 -, N(0,1), by Theorem 17.1 of
Billingsley (1968). Thus, by (2.4), A\,S;/#/2 -, N(0,1), and (2.1) follows. The
proof of (2.2) is similar. This completes the proof of Theorem 1. O

3. Inference about the change-point. Inference about the change-point
will be based on the quantity

D(c,d; a,b) = sup|Y(s; ¢,d)/(I1(d) — T(c))"?,
seC’
where C’=[c+ a(d —c),c+ b(d — ¢)]. To test the null hypothesis that
no change occurred we use the test statistic A = D(0,1; a, b). It follows from
the results of Anderson and Darling (1952) that, under the null hypothesis,
P[A > ¢|II(1) = R] converges to P[sup, . ,. JU(¢)| > c]as R — oo, where {u)}
is the standard Ornstein-Uhlenbeck process and a = 3log{b(1 — a)/a(1 — b)}.
Kendall and Kendall (1980) also used this test statistic in the present context,
but they found critical values of the test by simulation, also noting an approxi-

mation due to Mandl. Here we use the following, simpler approximation due to
Dirkse (1975),

P[A > c] ~ (2/7)?exp(—¢?/2)(ac — ac™! + ¢ 1),

when c is large.
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We now derive a test of H,: 6 =6, against H;: 0 + 6,. Now, A,(6,) =
D(0, 8,; a,, b,) is the statistic used for testing for a change-point in the interval
[0, 6,T], while Ay(8,) = D(b,,1; a,, b,) is the corresponding statistic for the
interval [6,T, T']. Clearly, therefore, under H,, A,(6,) and A,(6,) are indepen-
dent random variables with the same asymptotic distribution as that of A under
the no-change hypothesis. Our test statistic is G(8,) = max{A(6,), Ay(8,)}, for
which approximate critical values may be found from the relation

P[G(8,) >c] ~1- I1 {1 — (2/7)%exp(—¢?/2)(a;c — a;e™ ' + c‘l)},

where
a; = 3log{b,(1 - a;)/a,(1 - b,)}, i=1,2.

Clearly, one-tailed tests result from taking as test statistic A,(6,) when H,:
0 < 0,, and Ay(6,) when H,: 6 > 4,.

The test based on G(6,) may be inverted, as discussed, for example, by Bickel
and Doksum ((1977), Section 5.3), to yield a confidence set for §. Although this
need not be an interval, it often is (see, e.g., Section 5). If it is not, the frequent
occurrence of spikes in G(6) as a function of # suggests adopting the slightly
conservative solution of using as confidence interval the smallest interval which
contains the confidence set.

4. Small-sample results. In order to evaluate the small-sample perfor-
mance of the procedures proposed in Sections 2 and 3, a Monte-Carlo experiment
was performed. To check the size of the test for change based on A, 1,000
realisations of a homogeneous Poisson process with A(¢) = 1 were generated for
each of T = 50,100,200. The proportions of rejections at the 95% level with
a =001 and b= 099 were 0.044, 0.052, and 0.035, respectively, which con-
stitutes fairly good agreement with the theoretical size.

In order to evaluate the power of the test for change, and the point and
interval estimators of 7, 1,000 realisations of each of four different change-point
Poisson processes were generated, with the results shown in Table 1. The
variance and bias of 7 decreased rapidly with the expected number of events.

TABLE 1
Results from 1,000 realisations of four different change-point Poisson processes with A, /\, = 3.
All results are at the 95% level with a = 0.01 and b = 0.99.

0 04375 0.25 0.5 0.5
E[N(T)] 50 50 100 200
Empirical E(6) 0.390 0.237 0.471 0.486
Empirical s.d. (§) 0.122 0.117 0.069 0.037
Proportion of times § was in
the confidence set 0.929 0.934 0.940 0.944

Power of the test for change 0.743 0.817 0.973 1.000




1588 V. E. AKMAN AND A. E. RAFTERY

The test for change was powerful against the alternatives considered, even when
the expected number of events was quite small.

5. An illustrative example. We now apply the procedures proposed in
Sections 2 and 3 to the data set consisting of intervals between coal-mining
disasters during the period 1851-1962 given by Jarrett (1979), who corrected and
extended the data set given by Maguire, Pearson, and Wynn (1952). Previous
authors, including Barnard (1953), Cox and Lewis (1966), Jarrett (1979), and
Berman (1981), have fitted smoothly decreasing log-linear rates of occurrence to
the data. However, both the plot of the cumulative number of disasters against
time in Jarrett (1979, Figure 1), and the histogram with the smallest risk
function estimate given by Rudemo (1982, Figure 12A) suggest that a change-
point model may also be appropriate.

The estimators of Section 2 give 7 = March 10, 1890, fxl = 3.21, and )A\Q = 0.92
disasters per year, with 95% confidence intervals [2.64,3.77] and [0.70, 1.14] for
A, and A,, respectively. The test for change yields A = 8.78 with a = 0.01, b =
0.99, so that the null hypothesis of no change is strongly rejected. Figure 1 shows
the graph of G(80); the resulting 95% confidence set for 7, which is, in fact, an
interval, is [October 6, 1886, December 17, 1898].

It may be of interest to compare these results with those of the Bayesian
analysis developed by Raftery and Akman (1986). This yielded very high

2 1 1 1 1 1
1850 1870 1890 1910 1930 1950 1970
Year

FiG. 1. Plot of G(8,). The horizontal line indicates the critical value for the test of 6 = 0, at the
95% level; the vertical lines delimit the 95% confidence interval for .



CHANGE-POINT POISSON PROCESS INFERENCE 1589

posterior odds for a change, with the posterior mode for 7 at March 10, 1890, and
the 95% Bayesian estimation interval for r [May 15, 1887, August 3, 1895]. The
two analyses give similar results, although the Bayesian estimation interval for 7
is somewhat shorter than the confidence interval derived here.
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R. L. Smith, M. Stuart, the Editor (M. Perlman), an Associate Editor, and an
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