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SUMMARY

A system has an unknown number of faults. Each fault causes a failure of the system, and is then
located and removed. The failure times are independent exponential random variables with common
mean. A Bayesian analysis of this model is presented, with emphasis on the situation where vague
prior knowledge is represented by limiting, improper, prior forms. This provides a test for reliability
growth, estimates of the number of faults, an evaluation of current system reliability, a prediction of
the time to full debugging, and a model checking procedure. Three examples are given.

Keywords: Bayes factor; Improper prior; Non-homogeneous Poisson process; Simulation-based
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1. Introduction

Consider a system with an unknown number of faults N. Each fault causes a failure
of the system, and is then located and removed. The times at which the N failures
occur are assumed to be independent exponential random variables with common
mean f~'. Early analyses of this model were carried out by Bazovsky (1961, chap. 8)
and Cozzolino (1968). It has been much studied in the software reliability literature,
where it is often attributed to Jelinski and Moranda (1972).

Problems of interest include finding the probability that all the faults have been
removed, estimating the number of remaining faults, evaluating the current reliability
of the system, and predicting the time to full debugging. Another question is whether
the system’s failure rate is decreasing, as the model predicts. Littlewood and Verrall
(1981) and Ascher and Feingold (1984, pp. 110-111) emphasised the need to test this
assumption, and described software reliability data sets in which the failure rate
increased over long periods of time.

My aim here is to develop methods which can provide solutions to such problems,
as well as a framework for making decisions, such as when to stop debugging. My
approach is Bayesian, with an emphasis on the situation where vague prior knowledge
about the model parameters is represented by limiting, improper, prior forms.

Much previous research has focussed on point estimation of N (Blumenthal and
Marcus, 1975; Joe and Reid, 1985; Watson and Blumenthal, 1980). My results suggest
that, for this problem, point estimation is not very useful. Generally speaking, point
estimation may be helpful in situations where, having seen the data, one can reasonably
act as if one knew the unknown parameter exactly. Here, the posterior distribution
of N tends to be highly asymmetric, and often quite diffuse, even when the data set

t Address for correspondence: Department of Statistics GN-22, University of Washington, Seattle, WA 98195, USA.
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DEBUGGING MODEL 13

is fairly large. Thus, one should look at the overall uncertainty contained in the
complete posterior distribution.

Point estimation of N also presents difficult technical problems. For example, the
maximum likelihood estimator (MLE) of N can be infinite with substantial probability.
Indeed, Goudie and Goldie (1981), who studied the case where the observed number
of failures is specified in advance, concluded that all standard non-Bayesian techniques
are liable to fail. My approach does yield estimators of N; these are described and
compared with other estimators in Section 3.

Forman and Singpurwalla (1977) proposed a stopping rule for debugging the
system based on how close the observed likelihood is to a large-sample approximation;
their aim was to ascertain whether the system had been fully debugged. Their data
are reanalysed in Section 6. I hope that this paper provides a more precise answer
to that question, as well as the basis for a more general stopping rule, which explicitly
takes into account the costs associated with the various possible outcomes.

2. Testing for Reliability Growth

I assume that the system has been observed for the period [0, T], during which n
failures have occurred at times t=(t,, ..., t,), where n> 1. I consider the problem
of comparing the model described in Section 1 with the constant rate Poisson
process M : A(s) = u, where A(s) is the rate of occurrence of failures at time s.

I assume that the sample space consists of systems, rather than of replications of
the debugging process for the same system. N is thus a random variable, and I
assume that it has a Poisson distribution. It then follows that the model is
equivalent to a non-homogeneous Poisson process with rate function

M, : A(s) = p exp(—ps), 2.1)

where p>0 and E[N]=p/B (Scholz, 1986). Non-Bayesian statistical analysis of
this process has been considered by Cox and Lewis (1966), Lewis (1972), MacLean
(1974), and Berman (1981).

The comparison of M, with M, is based on the Bayes factor, or ratio of posterior
to prior odds for M, against M,

By, =p(t| Mo)/p(t| M) (22
the ratio of the marginal likelihoods. In (2.2)

p(t| M) = J:o p(t |, Mo)p(u| Mo)dp

Pl M) = f: f: pt1p, B, M)p(p, B1 M ,)dpdp.

If the priors p(u|M,) and p(p, B|M,) are proper, (2.2) can be evaluated, if
necessary using numerical integration.

I now develop an expression for By, in the situation where vague prior knowledge
is represented by limiting, improper, prior forms. I use the standard vague prior for

p(uIMoy)=cou™! (2.3)
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(Jaynes, 1968). The likelihood for M, is

p(t]p, B, M) = p" exp{—BS — pB~ (1 — exp(— BT))},

where S = Z7_, t;. This is an exponential family likelihood, for which a natural family
of conjugate prior densities is

p(p, BIM) oc p** exp{ —k, B —k3pp~'(1 —exp(—BT))}. 24

Akman and Raftery (1986b) have shown that the unique prior of the form (2.4) for

which By, is invariant to scale changes in the time variable and independent of the
stopping time T is

plp, BIM)=c,p™ 2. (25)

However, the Bayes factor calculated using the improper priors (2.3) and (2.5)
involves an arbitrary, undefined, multiplicative constant c,/c;. Akman and Raftery
(1986b) have shown how this may be assigned using the minimal imaginary experiment
idea of Spiegelhalter and Smith (1982). This consists of imagining that an experiment
is performed which yields the smallest possible data set permitting a comparison of
M, and M, and provides maximum possible support for M. It is then argued that
the resulting Bayes factor should be only slightly greater than one. Raftery and Akman
(1986) have applied this approach to the change-point Poisson process; their results
may be compared with the non-Bayesian solution of Akman and Raftery (1986a).
This approach has also been applied to log-linear models for contingency tables by
Raftery (1986).

For the present problem, the appropriate minimal imaginary experiment consists
of two failures occurring at the end of the observation period. Then the procedure
outlined yields ¢, /c; = n?/6 — 1 = 0.6449, and

oo}

Bo; = 0.6449(n — 1)[ J exp(— Ry){y/(1 — exp( —y))}"_ldy:|- , (2.6)

(V]
where R = S/T. Strictly speaking, any value of B, less than one indicates that the data
provide evidence for reliability growth. However, as a rough order of magnitude
interpretation, Jeffreys (1961, Appendix B) has suggested that the evidence should be
regarded as strong only if By, < 107!, and as decisive only if By; < 10~ 2.

3. Estimating the Number of Faults in the System

The framework developed in Section 2 is used. The results in this section and the
next one are conditional on M. If the priors are proper, standard Bayesian inference
is straightforward (Akman, 1985; Jewell, 1985; Langberg and Singpurwalla, 1985;
Meinhold and Singpurwalla, 1983).

It follows from (2.5) that

e o)

p(N, B) =J p(N | p, Bp(p, B)dp oc {N(N — 1)} ~'p~". (.1

0

Also,
p(tIN, )= " exp{—BT(R+ N —m)}N!/(N —n)! G2
Combining (3.1) with (3.2), and integrating over f§ yields the posterior distributior
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of the number of remaining faults M = N —n,

p(M|8) oc (M + R)™" 1=:[12 (M +i). (33)

The probability that the system has been fully debugged is simply P[M = 0|t]. Interval
estimates of N, such as highest posterior density (HPD) regions, or one-sided intervals,
may readily be found from (3.3).

In many applications, estimation of N is an intermediate step in the solution of
other problems. However, if a point estimator of N is required, it may be obtained
from (3 3) by combining it with an appropriate loss function. The posterior mode,
N4, is the estimator which corresponds to a zero-one loss function, so that, if the
appropriate loss function is bounded, N,,,; may well be a good approximation. The
posterior median, N,,; (found by linear 1nterpolat10n) is an estimator which
corresponds to one unbounded loss function, and is also a useful summary of the
posterior distribution.

Other point estimators of N which are always finite include Blumenthal and
Marcus’s (1975) modified maximum likelihood estimator N*, and Joe and Reid’s
(1985) harmonic mean estimator N. Watson and Blumenthal ( 1980) considered three
other estimators, but their performance in a simulation study was very similar to that of
N*, so I do not consider them further here.

The four estimators, N ..z, N,..a» N*, and N, were compared in a small simulation
study whose results are summarised i 1n Table 1. B was fixed at 1.0, and T was set
equal to —log(1 — Q), where N and Q were fixed at the values shown. Q is thus the
probability of a randomly chosen bug causing the system to fail before time T. The
results are conditional on n > 1.

The most striking feature of Table 1 is how badly all four estimators performed;
none did much better than an estimator which is identically equal to n. Also, no one
estimator was uniformly better than any other. For Q = 0.9, corresponding to the
situation where the system is close to being fully debugged, N,,.; performed best,
while for Q =0.25 N performed best. These results suggest that it would be better to
report the full posterior distribution (3 3), or some of its salient characteristics, than
any one point estimator. Example 1, in Section 6, illustrates this point empirically.

4. Estimating System Reliability and Time to Final Debugging

The reliability of the system is the probability that it operates without failure for
a further, specified, period of length x, say. This is equal to P[X > x|t], where

TABLE 1
Root mean squared error of point estimators of N

Root Mean Squared Error of Estimator

0 N E[M] Nrnoa Nnea N* N
0.9 10 1.0 2.1 38 23 43
0.9 100 10.0 113 16.1 11.8 159
0.25 10 7.5 72 6.6 7.1 59
0.25 100 75.0 63.1 46.4 573 458

1200 simulations with n> 1 for each value of (Q, N).
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X =t,,, — T is the time to the next failure. Now, X = o0 if M = 0,and P[ X > x| M, f]
= exp(— MpBx) (M = 1), so that

P[X>x|t]=P[M=0]|t] +M21 Lw exp(— MpBx)p(M, B|t)dp

=P[M=0[]+ Y pM|o){l+MM+R)"'(x/T)} "
M=1
E[X |t] is always infinite, but we can calculate
E[X|t, M>1]=Tn—1)""{1+R(1—P[M=0[c)"" 3 M 'p(M|0)).
M=1

The time to final debugging of the system is Z =ty — T. Z =0 if M =0, while if
M > 1, Z is the maximum of M independent exponential random variables with mean
B~ 1. Thus

P[Z<:z|t]=P[M=0|t]+ i p(M 1) ’ﬁo (— 1) <1,\<'I> {1+ kz/T(M + R)} ™"

and

E[Z|f]=T(nh—1)"1 i p(M|t)(M + R) % (=11 (f)k‘l.
M=1 k=1

5. Model Checking

Diagnostic checking of the model may be based on a comparison of the evolution
over time of the cumulative number of failures with that predicted by the model.
Discrepancies may be assessed by calculating the distribution of the cumulative
number of failures under the model. I know of no exact distributional results which
enable one to do this. Asymptotic approximations are not available because the total
number of failures over all time is amost surely finite, so that the parameters cannot
be consistently estimated. It is analytically possible, but computationally demanding,
to calculate the posterior distribution of the cumulative number of failures.

I use an idea of Ripley (1977), and compare the observed evolution with those of
several data sets simulated from the model. The observed curve, and the envelope
of the simulated curves, are plotted on the same graph. Ripley (1977) used point
estimates of the model parameters in his simulations, arguing that the effect of ignoring
the imprecision of these estimates is small if the number of parameters is small
compared to the number of data points. Here, the uncertainty about the parameters
can be great, even when the number of data points is large. Thus Ripley’s (1977)
approach may, in this context, lead to simulated bands which are too narrow.

The present approach provides a simple way of incorporating uncertainty about
the parameters. To simulate a data set, one first generates values of the parameters
from their posterior distribution, and then proceeds as before. This seems quite a
general prescription, applicable beyond the present context.

It can be simply implemented, as follows. First, generate N =M + n from the
posterior distribution of M in (3.3). Then, generate f from the conditional distribution
(BI M, t)~Gamma(n, T(R + M)) obtained from (3.1) and (3.2). Next, generate N
independent exponential random variables with common mean f~!. Last, order those
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which are less than or equal to T, discarding those which are greater than T. I found
it worthwhile to rescale the data in such a way that the period of observation is [0,
1], rather than [0, T]. The amount of computing time required is small. Examples
are given in Section 6.

This procedure, like that of Ripley (1977), is for informal diagnostic checking, rather
than formal goodness-of-fit testing. If it reveals inadequacies in the model, one should,
in principle, build a more elaborate model, and compare it with the present one using
ideas similar to those which underlay Section 2.

6. Examples

I now reanalyse three data sets consisting of the failure times of software during
the production and testing phases. In each case, the purpose of collecting the data
was to decide whether the software should be released for use. The precise criterion
to be used is not fully defined. One might demand that, with high probability, the
number of remaining bugs be small, or that the software function without failure for
a certain period. Or one might adopt a full, decision-theoretic, approach, attaching
a loss to each possible future outcome. The methods developed here provide ways of
checking whether such criteria have been met. The results for the three examples are
summarised in Table 2.

Example 1

The failure times of a piece of software developed as part of a large data system
are shown in Table 3. They have been analysed by Jelinski and Moranda (1972) and

TABLE 2
Results for examples 1, 2 and 3

Example n R log,oBoy Mps  M,., P[M=0|¢] 95% HPDR M M* M 0.5 LI
1 31 8.4 -30 0 9 27 0-7 0 1 1 0-3
2 7 4.1 N 2 9.8 05 0—174 © 4 10 2—
2 136 380 —16.0 6 6.5 .01 1-16 6 6 7 311
3 8 4.0 6 1 74 07 0—137 6 3 8 0—o0
3 24 8.4 -2 2 44 07 0-36 2 3 4 0-9
3 99 184 —272 0 0 57 0-2 0 0 1 0-1
3 107 133 —458 0 0 95 0 0 0 0 0

Note: i—j denotes the set of integers from i to j inclusive. Notation: Mopos = Nppoa —n; Mpoy=N,..i—n; M is the MLE of M:
M*=N*—n; M=N —n. 95% HPDR is the 95% HPD region from (3.2), while 0.5 LI is the 0.5 likelihood interval defined by Joe
and Reid (1985).

TABLE 3
Data for example 1

9 7 5 1 3 11 2 12 16
12 2 7 9 3 33 1 9 35
11 5 1 4 6 7 87 135

4 8 6 1 1 91 47 258

Note: The data consist of intervals, in days, between successive failures, and are to be read
down the columns. They are reproduced from Goel and Okumoto (1979, Table 1). There are
34 failures; the period of observation does not start with a failure but does end with one. The
last three failures occurred after the software had been released for use.
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Goel and Okumoto (1979). The software was released for use after the thirty-first
failure; here, the data up to that point are analysed.

Fig. 1 shows the outcome, for these data, of the model checking exercise described
in Section 5. The model appears to fit the data quite well. The Bayes factor B, at
about 1073, indicated decisive evidence for reliability growth, but P[M =0]t] was
only 0.27, indicating that the system had probably not been fully debugged. Indeed,
based on future data, three further failures later occurred. It seems likely that the
software should not have been released when it was.

This example illustrates the inadequacy, and, indeed, misleading nature, of point
estimators for this problem. All the point estimators of M lay between 0 and 1 inclusive,
while the 95% HPD region was 0-7.

The techniques proposed here gave similar results to the likelihood analysis of Joe
and Reid (1985). M,,,, and M were very close. The 0.5 likelihood interval, proposed
as an interval estimator by Joe and Reid (1985), had coverage probability close to
0.76, and was the same as the 76% HPD region based on (3.3).

Example 2

The failure times of a real-time command and control system are shown in Table
4. These data have been described and analysed by Musa (1975), Meinhold and
Singpurwalla (1983), Goel (1985), and Okumoto (1985).

Fig. 2 shows that there were more failures than predicted by the model in the first
one-twentieth of the observation period, during which 28 of the 136 failures occurred.
This may be due to the presence of faults which were easier to detect than others.
The violations of the model assumptions revealed by Fig. 2 are not too great, so that
the results of fitting it may provide at least a rough guide to decision-making in this
case.

Although the Bayes factor, By, = 107 %, provides clear evidence for reliability
growth, the probability that the system has been fully debugged is only 0.01, and the
95% HPD region for M includes values up to M = 16 remaining faults. Further
testing seems necessary. The present approach and the likelihood analysis of Joe and
Reid (1985) gave results which were in close agreement.

10 15 20 25 30 35

cumulative number of failures

5

0

0.0 0.2 0.4 0.6 0.8 1.0
normalised time

Fig. 1. Model checking for example 1. The solid line was calculated from the data. The broken lines
constitute the envelope of 19 simulations from the model, as described in Section 5. The time axis was
rescaled in such a way that the rescaled period of observation was [0, 1]
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TABLE 4
Data for example 2

3 108 600 452 236 44 1783 865 447 371
30 88 15 255 31 129 860 1435 386 790
113 670 36 197 369 810 983 30 446 6150
81 120 4 193 748 290 707 143 122 3321
115 26 0 6 0 300 33 109 990 1045
9 114 8 79 232 529 868 0 948 648
2 325 227 816 330 281 724 3110 1082 5485
91 55 65 1351 365 160 2323 1247 22 1160
112 242 176 148 1222 828 2930 943 75 1864
15 68 58 21 543 1011 1461 700 482 4116
138 422 457 233 10 445 843 875 5509
50 180 300 134 16 296 12 245 100
77 10 97 357 529 1755 261 729 10
24 1146 263 193 379 1064 1800 1897 1071

Note: The data consist of intervals, in CPU seconds, between successive failures, and are to be read down the columns. They are
reproduced from Meinhold and Singpurwalla (1983, Table 1).

140

cumulative number of failures

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0

normalised time

Fig. 2. Model checking for example 2.

An analysis after n =7 failures is of interest because it reveals differences between
the present approach and a likelihood analysis. The MLE of M was infinite, and the
0.5 likelihood interval was 2—oo, and had coverage probability less than 0.6, but
posterior probability 0.88 from (3.3).

Meinhold and Singpurwalla (1983) also analysed the data after n = 7 failures. They
suggested a Bayesian analysis with a proper prior for N which was Poisson with
mean 50. This yielded a posterior distribution for M concentrated between 21 and
57; by comparison (3.3) yielded the 95% HPD region 0-155. In fact, 129 further
failures occurred.

Example 3

Table 5 shows failure data for a data reduction program. These data were previously
analysed by Forman and Singpurwalla (1977), using the same model that is considered
here. The data were grouped, and, like them, I have assumed that the average time
of occurrence within each group was at the centre of the time interval.
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TABLE 5
Data for example 3

Interval Length of Number of
number interval Sfailures
1 .50 8
2 .60 7
3 .65 1
4 1.90 8
5 1.59 16
6 8.83 18
7 9.94 13
8 7.25 8
9 8.34 9
10 3.86 2
11 13.11 6
12 34.15 3
13 82.70 3
14 1.10 2
15 51.59 3

Note: The lengths of the intervals are given in CPU
seconds. These data are from Forman and Singpurwalla
(1977, Table 2).

Fig. 3 shows that the model does not fit at all well. The cumulative number of
failures lies outside the envelope for the first 71 failures, out of 107. This is followed
by an almost failure-free period whose length is about half that of the entire observation
period. In the last quarter of the observation period, the failure rate increases. This
pattern may reflect both differences in the ease with which different faults could be
found, and the introduction of new faults in the debugging process. Model failure is
also shown by the fact that after n = 99 failures, the probability of eight or more faults
remaining was less than 10~ *. Eight more failures did occur.

It is thus unwise to take at face value the conclusion from the model that the
program has been fully debugged, which was also drawn by Forman and Singpurwalla

120

100

80

40

cumulative number of failures
20 60

© o L ) L L '

0.0 0.2 0.4 0.6 0.8 1.0
normalised time

Fig. 3. Model checking for example 3. The solid line was calculated by linear interpolation, as follows. The points
corresponding to the ends of the time intervals in Table 5 were plotted, and then joined by straight lines
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(1983). One interesting feature of the analysis is that, after n = 8 failures, the procedure
of qu and Reid (1985) produced an interval estimate for M which included all its
possible values, but whose coverage probability was less than 0.64.

7. Discussion

A Bayesian analysis of a simple and widely used debugging model has been
presented. This provides a test for reliability growth, an estimation procedure for the
number of remaining faults, an evaluation of current system reliability, and a prediction
of the time to full debugging. It also yields an informal, simulation-based, model
checking procedure. This extends Ripley’s (1977) procedure to allow for the uncer-
tainty associated with unknown parameters.

One conclusion is that point estimation of the number of faults, which has been
the focus of much previous research, is difficult, inadequate, and potentially misleading.
One must look at the overall uncertainty contained in the complete posterior
distribution.

I have reanalysed three software reliability data sets. In the first example, the model
fits the data; in the second, it appears to be slightly inadequate; in the third,"it fits
poorly. There are four key assumptions underlying the model, namely:

(i) the failure times are exponential;

(ii) the failure times have a common mean;
(iii) no additional faults are introduced by the debugging process;
(iv) the failure times are independent.

The realism of each of these assumptions is, of course, questionable; one hopes
that they hold to a sufficient approximation for the model to yield useful results. This
does seem to happen in example 1, and to a lesser extent in example 2. However,
assumptions (i) and/or (ii) are clearly violated in example 3, as may also be assumptions
(iii) and/or (iv). I am currently extending the methods proposed here to models in
which assumptions (i) and (ii) are relaxed; this work will be reported elsewhere.
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