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Ice Floe Identification in Satellite Images Using
Mathematical Morphology and Clustering About

JEFFREY D. BANFIELD and ADRIAN E. RAFTERY*

Principal Curves

Identification of ice floes and their outlines in satellite images is important for understanding physical processes in the polar
regions, for transportation in ice-covered seas, and for the design of offshore structures intended to survive in the presence of
ice. At present this is done manually, a long and tedious process that precludes full use of the great volume of relevant images
now available. We describe an accurate and almost fully automatic method for identifying ice floes and their outlines. Floe
outlines are modeled as closed principal curves, a flexible class of smooth nonparametric curves. We propose a robust method
of estimating closed principal curves that reduces both bias and variance. Initial estimates of floe outlines come from the erosion-
propagation (EP) algorithm, which combines erosion from mathematical morphology with local propagation of information about
floe edges. The edge pixels from the EP algorithm are grouped into floe outlines using a new clustering algorithm. This extends
existing clustering methods by allowing groups to be centered about principal curves rather than points or lines. This may open
the way to efficient feature extraction using cluster analysis in images more generally. The method is implemented in an object-
oriented programming environment, for which it is well suited, and is quite computationally efficient.

KEY WORDS: Erosion; Feature extraction; Nonparametric curves; Object-oriented programming; Remote sensing; Robustness.

Knowledge of the shapes, sizes and spatial distribution
of ice floes is important for understanding the physical pro-
cesses operating on the ice pack in the polar regions. It is
also important for practical problems associated with trans-
portation in ice-covered seas and for the design of offshore
structures intended to survive in the presence of ice.

Such information can be found in satellite images of the
polar regions such as Figure 1, which exist in large and
rapidly increasing numbers. Practical use of such images
requires identification of the outlines of ice floes above a
certain size. To date this has been done manually (Rothrock
and Thorndike 1984), a slow and tedious process that often
takes a day or more to record the data from a single image
and effectively precludes full use of the data. Automating
the process is inherently difficult. Problems include the
presence of many smaller floes and of melt ponds on the
surface of floes, which ensure that floes often do not appear
as homogeneous blocks of ice in the image.

In this article we describe an almost fully automatic method
for identifying the outlines of ice floes. The outcome of this
is shown in Figure 2, and is virtually the same as the result
of very careful manual digitization. We model ice floe out-
lines as closed principal curves (Hastie and Stuetzle 1989—
hereafter HS), a flexible family of one-dimensional non-
parametric curves in a higher dimensional space. Our method
consists of identifying a set of edge pixels and grouping
them into clusters about a principal curve. Each cluster cor-
responds to a floe, and the corresponding pr1nc1pa1 curve
is the estimated floe outline.
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McDonald, Fionn Murtagh, Brian D. Ripley, Paul D. Sampson, Werner
Stuetzle, the editor, the associate editor, and two anonymous referees for
helpful comments and discussions.

The method involves several new statistical techniques:

1. A way of estimating closed principal curves that re-
duces both bias and variance and is robust to outliers. Here
outliers take the form of melt ponds on the surface of ice
floes (Section 1).

2. The erosion-propagation (EP) algorithm provides ini-
tial estimates of floe outlines. This combines the existing
idea of erosion from mathematical morphology (Matheron
1975; Serra 1982) with that of local propagation of infor-
mation about floe boundaries (Section 2).

3. A method for clustering about principal curves. It is
traditional in clustering algorithms to separate data into
groups, each of which is clustered about some central point
(Gordon 1981, 1987; Murtagh 1985; Committee on Ap-
plied and Theoretical Statistics 1989). Here we generalize
this to allow each group to be clustered about a different
principal curve. This opens the possibility that cluster anal-
ysis may be useful more generally for fast feature extraction
in images (Section 3).

The method is implemented in an object-oriented pro-
gramming environment for which it is well suited and which
seems computationally efficient.

1. ESTIMATING CLOSED PRINCIPAL CURVES

In this section we first review the definition and basic
properties of principal curves (Section 1.1). We then de-
scribe a new algorithm for estimating closed principal curves
that reduces both bias and variance and is robust (Section
1.2).

1.4 Principal Curves

A principal curve is a smooth, one-dimensional curve that
passes through the middle of an m-dimensional data set. It
is nonparametric, and its shape is suggested by the data; it
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Figure 1. A Polar LANDSAT Image Showing Ice Floes. This is a
200 x 200 pixel image, where each pixel is 80m square; it thus rep-
resents a 15 X 15 km area.

thus provides a nonlinear summary of the data. The idea
was introduced and developed by Hastie (1984), Hastie and
Stuetzle (1985), and HS.

A one-dimensional curve in m-space is an m-vector con-
sisting of m functions of a single variable A, called coor-
dinate functions. The variable A parameterizes the curve
and provides an ordering along it; A will often be arc-length
along the curve. Let X € R"™ be a continuous random vec-
tor. Then f(A) is a principal curve of X if

EX|f7'(X) = A] = f(»),
where

£7'00 = sup{A : || x — ]| = inf || x — fGw)l}

The quantity £~'(x) is the value of A for which () is clos-
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Figure 2. The Ice Floe Outlines, Larger Than a Fixed Minimum Size,
Found by Our Procedure for the Data in Figure 1.
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Figure 3. Estimated Principal Curves for Simulated Data. The data
were obtained by generating points uniformly on the circumference of
a circle and perturbing them randomly along the normal to the circle
according to a Gaussian distribution. The principal curves were esti-
mated using the algorithm (1.2) of HS with spans of .2 (outer dashed
line), .3 (inner dashed line), and .5 (solid line).

est to X. Given the distribution of X, HS proposed the fol-
lowing iterative algorithm for finding f:

f.,() = EIX | £7'(X) = Al
where f; is the ith iterate.

When the distribution of X is unknown, this extends to
estimation of f from a data set {x;, ..., X,} by estimating
E[X | f7'(X) = A]. HS did this by means of scatterplot
smoothing, using neighborhoods of each point defined by
their projections onto the current estimate of the principal
curve, rather than by their position in R".

Let £, be the ith iterate and let )\’ £ NG =1,...,n.
Let )\( » be the jth order statistic of the set {AL, )t .}, and
let x{;, be the data point that projects onto A{. Then let
N({; be the set of data points x(;, such that A{, is in a neigh-
borhood of A{;; the size of the neighborhood is controlled
by the span, equal to the fraction of all the data points that
are in the neighborhood. The next iterate is then

fi+1(A) = E[X INéj)]-

This is calculated using a coordinatewise scatterplot
smoother, and various possibilities are discussed by HS.

There is no formal proof that the algorithm converges,
but HS report that they have had no convergence problems
with more than 40 real and simulated examples. Figure 3
shows the result of applying the HS estimation procedure
to a simulated data set.

1.1)

(1.2)

1.2 An Algorithm for Estimating Closed Principal
Curves that Reduces Both Bias and Variance
and is Robust

Principal curve estimation is an iterative procedure, each
iteration consisting of two steps. In the first step the data
are ordered according to their projection on f,, the current
estimate of the principal curve. The ordering defines neigh-
borhoods, N { > that are used in the coordinatewise smooth-
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ing of the second step to provide the next estimate, f;,,, of
the principal curve as given in Equation (1.2).

Scatterplot smoothers generally produce curves that are
biased toward the center of curvature. It is clear from Fig-
ure 3 that the estimated principal curve suffers from this
problem, and that the bias increases with the span. In most
statistical problems there is a trade-off between bias on one
hand and smoothness and variance on the other. For closed
curves, the center of curvature is interior to the curve (ex-
cept for small local regions in nonconvex curves), which
emphasizes the bias. We propose a modification of the HS
algorithm that, for a fixed level of smoothness, reduces the
bias. It should be noted that the HS algorithm was not de-
signed for estimating closed curves.

Equation (1.1) can be rewritten as

f.1(A) = £ + 8 (X, )), (1.3)
where

(X, M) = E[X — £V | £7'(X) = AL

We can think of (X, A) as a measure of the bias at fi().
We define p{; = x{;, —fi(A{;) to be the projection residual
of x{; projected onto f;.. The bias measure 3(X, A) is the
expected value of the projection residuals of the x’s that
project onto f; at f(A). This suggests that, when the distri-
bution is unknown and is estimated from the data using an
iterative algorithm such as (1.2), the projection residuals of
the data in N{;, rather than the data themselves, should be
used to calculate £, ,(A). If we define P! ; as the coordi-
natewise average of the projection residuals of the data in
N{ 5> we can use Equation (1.3) to estimate f...(0) accord-
ing to
fi(A () = BAG) + Py

This may be regarded as a two-dimensional extension of
the twicing procedure of Tukey (1977) for the one-dimen-
sional case, which smooths the residuals from a nonpara-
metric regression curve and then adds the smoothed resid-
uals to the estimated curve. Here, however, we add the
smoothed projected residuals to the curve.

As with the HS algorithm, there is no formal proof that
our modification of it converges. Nonetheless, in the course
of the present work we have used it to estimate over 50
different closed principal curves, and in each case our al-
gorithm has converged in a satisfactory way.

Figure 4 shows the results of applying this algorithm to
the same data and with the same spans as used for the HS
algorithm in Figure 3. Our algorithm does not suffer from
the bias problem inherent in that of HS. Moreover, for closed
curves, the performance of our method is relatively insen-
sitive to the precise choice of span; this is not true for the
HS method. The principal curve estimated by our method
with a span of .5 is smoother than that estimated with a
span of .2, but the difference between them is barely no-
ticeable. Figure 5 shows that our algorithm produces a much
smoother curve when the span is small enough for that of
HS to yield a relatively unbiased curve.

Outliers arise in the form of shallow, but sometimes large,
melt ponds on the surface of the ice floe. An example of
this is shown in Figure 6, which shows the edge pixels of

Figure 4. Estimated Principal Curves Using the Unbiased Algorithm
Proposed in This Article. This shows the principal curves resulting from
our unbiased estimation algorithm on the same data and at the same
spans (.2, .3, and .5) used for the HS algorithm in Figure 3. The three
curves almost totally overlay each other.

one floe in Figure 1 identified by the EP algorithm. The
points near the left side interior to the floe are from melt
ponds. Since they do not belong to the edge of the floe,
we need to ensure that they do not affect the estimate of
the principal curve.

To eliminate the effect of outliers, we use a slight mod-
ification of an approach suggested by HS. In the scatterplot
smoothers we use a weighted average, where the weight of
a point depends on its distance from the current estimate
of the principal curve. We calculate the standard deviation
of the lengths of the projection residuals and set the weight
for a point to zero if it is more than three standard devia-
tions from the current estimate of the principal curve, and

Figure 5. The Principal Curve From the HS Algorithm (dashed line)
at a Span Small Enough to Eliminate Most of the Bias, Compared With
the Estimate Proposed Here (solid line) With a Span of .2. The smaller
the span, the less the bias and the rougher the estimated curve. No-
tice how rough the HS curve is, compared with our estimate.
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Figure 6. The Small Circles Are the Edge Pixels for One of the Floes
in Figure 1, as Identified by the EP Algorithm. The points interior to
the floe are from melt ponds. The lines show a principal curve esti-
mated using the robust procedure described in the text (thick line),
compared with the estimate from the nonrobust procedure (thin line).
The robust estimate is unaffected by the melt ponds, while the non-
robust estimate is pulled toward them.

to unity otherwise. Figure 6 shows the result of this robust
procedure as well as that of the nonrobust procedure, which
uses the mean of all the data in each neighborhood. The
robust procedure has clearly achieved its goal. It could be
improved further by using a robust measure of scale, such
as 1.25 times the mean absolute deviation, in place of the
standard deviation. For our data, however, such a refine-
ment makes no difference to our final result.

2. THE EROSION-PROPAGATION (EP) ALGORITHM

To select the potential edge pixels and provide an initial
grouping of them into floe outlines, we use the EP algo-
rithm. This operates on binary images. Images of ice floes,
however, such as Figure 1, are usually greyscale. The mar-
ginal distribution of pixel intensities is highly bimodal, and
so we work with the simpler binary image obtained by
thresholding the original image; see Figure 7. The final result
is relatively insensitive to the precise choice of threshold.

The erosion part of the EP algorithm, which identifies
the potential edge elements, is a standard application of ideas
in mathematical morphology (Serra 1982). The propagation
part of the EP algorithm keeps track of the floe to which
an edge pixel belongs by locally propagating the informa-
tion about edge elements into the interior of the floe as it
is eroded. This is facilitated by the object-oriented pro-
gramming environment.

The algorithm is iterative and operates on a binary image
consisting of figures (ice floes) on a contrasting background
(water). At the first iteration, if a pixel is ice and a specified
subset of its neighbors is water, the pixel is “melted” and
becomes water, so that the figure to which it belongs is

Journal of the American Statistical Association

eroded. In our implementation, a pixel is melted if any of
the eight neighboring pixels is water. At the second itera-
tion, the same operation is performed on the image result-
ing from the first iteration, and so on. This can be formally
described in terms of structuring elements using the ter-
minology of mathematical morphology (Serra 1982; Ban-
field 1988). Any edge locating operator can be used to pro-
vide the initial set of potential edge pixels. We use the pixels
melted at the first iteration of the EP algorithm.

Some results are shown in Figure 7. We can control the
minimum size of the floes by waiting until a specified num-
ber of iterations, i;,, have passed before recording a floe.
The smallest floe that can be recorded is then a square of
side (2ip, + 1) pixels. Smaller floes melt and are not
recorded.

The idea of the propagation part of the EP algorithm is
that the locations of the edge pixels are propagated toward
the interior of the figure as it is eroded. At the end of the
process, a single interior point of the figure will “know”
the locations of all the edge pixels to which it corresponds.
The location information is passed to only a few pixels that
are taken as far from the eroded pixel as possible, subject
to them not belonging to a different floe. This ensures that
the amount of location information to be processed does not
become unmanageable. It also prevents loss of information
due to irregularity of the floe, melt ponds, or pixel mis-
classification at the thresholding stage.

The key to the propagation part of the EP algorithm is
that it is never necessary for any pixel to know the direction
of the interior of the floe. If a pixel is eroded at the ith
iteration, then it was the center of a (2i + 1) by (2i + 1)
square of ice pixels before the start of the erosion process.
Thus its location may be passed anywhere within the square
of side (2i + 1) pixels surrounding it without any risk of
the information being passed to another floe. We have found
that it is enough to pass the location information in two
opposite directions within the square. All of the eroded pix-
els are processed in exactly the same manner, and it is this
uniform processing that allows the algorithm to be imple-
mented on parallel processing machines.

In Figure 8 we show the results of the EP algorithm ap-
plied to the data in Figure 1, with a minimum floe size of
15 X 15 pixels (i.e., 1.2 km. square). The results are rea-
sonably good: Of the 35 floes identified by the EP algo-
rithm, 23 are “right” in the sense of being close to floes
identified by careful manual digitization.

However, the EP algorithm tends to subdivide floes. This
can occur when the floes are nonconvex or when they have
melt ponds or noise in the interior. Figure 9 shows an ex-
ample of the nonconvex case. As the floe shown in Figure
9 was eroded, the narrow middle section was pinched in
and the floe was divided into two partial floes. Figure 10
is an example of a floe with melt ponds that cause the EP
algorithm to produce three partial floes.

3. CLUSTERING ABOUT CLOSED PRINCIPAL CURVES

The EP algorithm tends to subdivide floes. We have,
therefore, developed a method for determining which of the
floes identified by the EP algorithm should be merged, based
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(c)

(d)

Figure 7. Binary Version of Figure 1 for Two Threshold Levels. The results are similar. However, (a) has a lower threshold level than (b)
and, therefore, has more clutter in the water but less noise interior to the floes. The results of applying the EP algorithm to (a) is shown in

(c) after three iterations and in (d) after 12 iterations.

on an algorithm for clustering about closed principal curves.
Since we want to find out whether to merge tentatively
identified floes, this is hierarchical and agglomerative.

The objective of cluster analysis is to group a set of ob-
servations into “interesting” subsets. In practice this has
usually meant grouping observations that are close to one
another. Ward (1963) proposed a hierarchical agglomera-
tive algorithm for dividing data into g groups such that the
sum of the within-group sums of squares is minimized. The
algorithm starts by assigning each observation to a separate
group. At each agglomeration two groups are merged, cho-
sen so as to minimize the increase in the sum of within-
group sums of squares. This clustering criterion is optimal
if the data are generated by a finite mixture of spherical
normal distributions. This corresponds to clusters that tend
to be of the same size and spherical.

In cluster analysis, one of the major problems is deciding
when to stop clustering. This is not a problem in our ap-
proach. The EP algorithm can subdivide floes, but potential
partial floes can be identified by the fact that they will share
edge elements. Complete floes that are touching can also
share edge elements, so this fact alone does not provide an
adequate criterion for determining which floes should be
merged. We develop a clustering criterion based on a
weighted decomposition of variance, V*, that can distin-
guish between partial and complete floes. In general there
are very few objects within each set of partial floes, so it
is possible to evaluate all possible mergers and choose the
result that minimizes 2 V*. Since we are finding the par-
tition of each set of partial floes that minimizes X V*, the
question of when to stop clustering does not arise.

Murtagh and Raftery (1984) proposed decomposing the
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Figure 8. Result of the EP Algorithm Applied to the Data in Figure
1. Floes are not recorded unless they have survived at least 7 itera-
tions. This corresponds to a minimum floe size of 15 X 15 pixels, or
1.2 km square. The open circles are the edge elements identified by
the EP algorithm. The numbers (or solid dots) interior to each floe are
the centers found by the EP algorithm. Note that centers 1 and 4 are
on the same floe, which was subdivided because of the melt ponds.
Other floes were also subdivided.

within-group sum of squares into parts and using a weighted
sum of the parts as the clustering criterion, with weights
chosen so as to emphasize aspects of interest in the appli-
cation. For two-dimensional data, they suggested decom-
posing the within-group sum of squares into parts parallel
and perpendicular to the first principal component of the
group and downweighting the parallel part. This criterion
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Figure 9. This Figure Shows How, When a Nonconvex Floe is Eroded,
the Narrow Region Can be “Pinched Off,” Resulting in Two Partial
Floes (indicated by a + and a O).

Figure 10. Noise in the Interior of a Floe Can Erode Outwards and
Cause the Floe to be Subdivided. In this case, the melt ponds in the
center caused the floe to be subdivided into three partial floes (indi-
cated by an X, +, and a O).

was generalized by Banfield and Raftery (1989), who also
showed that it is optimal when the data are generated by a
mixture of normal distributions with covariance matrices
whose eigenvalues are constant across clusters. This cor-
responds to clusters that tend to be elliptical with the same
size and shape but different orientations.

We now apply the idea of decomposing and reweighting
the within-group sum of squares to the present problem.
The edge pixels for an ice floe that has not been subdivided
should be (a) tightly clustered about the floe outline, as
estimated by the principal curve, and (b) regularly spaced
along the outline, so that the variance of the distances be-
tween neighboring edge pixels should be small; see Figure
11.

We decompose the variance, V, for a group of edge pix-
els into parts corresponding to (a) and (b), and a residual
part, as follows. Let the locations of the edge pixels be x;
(j=1,...,n), ordered so thatf()tj) =Xx,and A, =:-- =),
where f is the principal curve of the group, estimated by
the method of Section 1.2. Let €; = f(1) — (A;1,) (sub-
scripting is modulo 7) be the vector defined by two adjacent
projections onto the estimated principal curve.

We may now write the within-group variance as

n
V = 2 ”xj - inz = Vabout + Valong + Vresidual’
j=1

where Vabout = 21"‘=1 ”xj - i‘.(Aj)llz and Valong = (l /2) Ejr"=l ”Ej - 5”2
The component V,, is a measure of lack of tightness of
the distribution of the edge pixels about the floe outline and
thus of the extent to which requirement (a) is not satisfied.
The component V,,, is a measure of the lack of regularity
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Figure 11. A Complete Floe (a) and a Partial Floe (b), Showing the
Edge Pixels Identified by the EP Algorithm (open circles) and Their
Projections Onto the Estimated Principal Curve (solid circles). The dis-
lance between adjacent projections in (a) has a smaller variance than
the distance between adjacent projections for the partial floe shown in

().

of the distribution of the pixels along the floe outline and
thus of the extent to which requirement (b) is not satisfied.
It was shown by Banfield (1988) that

1 n n
Viesidual = 5 z ”31‘"2 + 2 LYAR Y23 D
=1 j=1

where r; = f()tj) - (1/n) 2, f(/\j) and - denotes the dot
product. It follows that V4. iS @ measure of the overall
size of the floe. The general reweighted within-group vari-
ance is thus

aVabout + Bvalong + ’eresidual'

The component V4, contains no information of interest
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Table 1. Floe Merger Results '

Criterion values

Floes Individual Merged
1 11.36
4 5.71 .64
5 4.07
8 10.86 2.36
12 8.29
2 1.32
3 1.36 .86
10 6.95
6 4.37
11 3.71 .60
25 1.33
34 1.90 .33

NOTE: This table shows the values of the merger criterion V* for the subdivided floes from
Figure 8. The value of the criterion for the individual partial floes is shown under the Individual
column. The value under the Merged column is the criterion value when the floes in the left
column are merged. The fact that the value under the Merged column is smaller than any of
the values under the Individual column indicates that the floes should be merged.

to us here, so we set y = 0. Moreover, without loss of
generality, we set 8 = 1. Our clustering criterion is therefore

V* = aVabout + Valong-

To determine whether a set of groups should be merged,
we first calculate V* for each of the individual groups, and
then we calculate V* for the union of the groups. If the
union has a smaller value of V* than any of the individual
groups, we merge them, and otherwise we do not. To make
the number of candidate mergers manageable, we note that,
if a floe has been subdivided, the partial floes will have
common edge pixels, but not conversely. Therefore, only
mergers of groups with common edge pixels are considered.

To determine «, we note that, by arguments similar to
those of Banfield and Raftery (1989), V* will be an optimal
criterion, conditional on the estimated principal curves, if
the edge pixels are normally distributed about the floe out-
lines and if E[V ] = aE[Vyou]. We therefore estimate «
as the average of Vone/Vapou for the floes that we know
were not subdivided, namely, those that have no shared
edge elements. Using a span of .3 to estimate the principal
curves, this yielded & = .39. Reasonable choices for the
smoothing parameter can be determined by the time of year
(early summer floes are rough and jagged; late summer floes
have lost their rough edges) and location (open ocean, mar-
ginal ice zone, or within the ice pack). The procedure is
relatively insensitive to the precise choice of the smoothing
parameter, as one would expect from Figure 4. Since & is
estimated from the complete floes, it can adapt the proce-
dure to whatever smoothing parameter is used.

Table 1 shows the results of merging the partial floes in
Figure 8, and Table 2 shows the results of trying to merge
floes that should not be merged. In each case our method
gives a result that is both correct and clearcut. Figure 12
shows the final results of the procedure, together with the
identified edge pixels.

4. DISCUSSION

We have developed an almost fully automatic method for
finding the outlines of ice floes in satellite images. It is
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Table 2. Floe Nonmerger Results

Criterion Values

Floes Individual Merged

27 .24

13 .39 10.70

34 1.90

25 1.33 7.41
7 .20

30 .59

31 .93 2.27

NOTE: This table shows the values of the merger criterion V* for nonsubdivided floes from
Figure 8. The value of the criterion for the individual partial floes is shown under the Individual
column. The value under the Merged column is the criterion value when the fioes in the left
column are merged. The fact that the value under the Merged column is larger than any of
the values under the Individual column indicates that the floes should not be merged.

accurate and computationally efficient. It involves three new
statistical techniques: a way of estimating closed principal
curves that reduces both bias and variance and is robust,
the EP algorithm, and a method for clustering about prin-
cipal curves.

The only control parameters that need to be specified by
the user are the span in the principal curve estimation al-
gorithm and the threshold for the initial transformation to
a binary image. The final results are quite insensitive to
even fairly large changes in these control parameters. Once

Journal of the American Statistical Association

they have been set for one image, the same values can safely
be used for the available stream of similar images, opening
the way to truly automatic processing of the image database.

The approach would seem to be applicable more gener-
ally to the detection of nonlinear features in images. It ex-
tends cluster analysis to the case where similar pixels tend
to be grouped about arbitrary curved features, open or closed,
using the idea of decomposing and reweighting the within-
group sum of squares proposed by Murtagh and Raftery
(1984). This suggests that cluster analysis may be useful
for feature extraction in images more generally.

The procedure is implemented in an object-oriented pro-
gramming environment. One of the advantages of this en-
vironment is that each floe resulting from the procedure can
be represented as an instance of a “floe object” and can
carry with it, in the form of instance variables, specific in-
formation about the floe to be used in further analysis. It
is relatively fast: A 512 X 512, eight-bit image can be ana-
lyzed in approximately one hour on a Symbolics 3600 and
should be considerably faster on some of the newer work-
stations (e.g., about 20" minutes on a Sun-3/80 and three
minutes on a Sun SPARCstation 1). The processing time
is linear in the number of pixels, but it does depend on the
complexity of the image.

In our implementation of the EP algorithm, we erode an

Figure 12. The Circles Are the Floe Edge Elements Found by the EP Algorithm. The lines are the principal curves of the floes, which were

estimated after using the clustering method to merge partial floes.
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ice pixel if any of its eight neighbors are water. Other rules
for eroding a floe may be used, and they can change the
rate of erosion, the effect of pixel misclassification, and the
shape of the floes that can be found. The rules may also
be changed as the erosion procedes. For example, dilating
the image, or “refreezing” the ice, at an early iteration could
eliminate some pixel misclassifications and other noise in
the interior of the floes. The EP algorithm has the potential
of being implemented on parallel processing machines.

To date, the development of automated techniques for
the analysis of polar satellite images has been limited to ice
floe tracking (Ninnis, Emery, and Collins 1986; Fily and
Rothrock 1986, 1987; Vesecky, Samadani, Smith, Daida,
and Bracewell 1988). The primary tool in these automated
tracking methods is cross-correlation, which provides the
ability to match regions in two different images, but does
not give any information about the morphology of the in-
dividual ice floes or the spatial structure of the ice pack.
Vesecky et al. (1988) used segments of ice floe boundaries
to track ice floe movements, but this does not provide the
type of information needed to study ice floe morphology
and spatial structure. The need for more information on both
morphology and spatial structure was clearly shown by the
1984 Marginal Ice Zone Experiment (Burns et al. 1987;
Campbell et al. 1987). Floe outlines estimated using the
present methods have been used to track individual floes
through a series of remotely sensed images (Banfield 1991).

A referee has suggested that the entire problem could be
solved using mathematical morphology in combination with
the propagation algorithm introduced here, but without re-
course to principal curves or clustering. This would be done
by applying a thinning process (Rosenfeld and Kak 1982;
Pavlidis 1982) to produce a skeletal set of pixels or medial
axis. Such an approach would probably work well when
the floes of interest are well separated, however, this is not
usually the case. In the situation where the floes are not
well separated, methods based on thinning algorithms would
tend to merge floes when it is not appropriate. The problem
then becomes one of how to break the floes apart, rather
than how to merge them. This seems to leave us no further
along than with the output of the EP algorithm. While such
an approach is certainly worth further investigation, we feel
that the work reported here does provide a satisfactory so-
lution to the ice floe identification problem.

The problem considered here does not fall neatly into one
of the problem areas in image understanding that have been
intensely studied in recent years, namely, image restora-
tion, classification, segmentation, and feature extraction. It
does, however, combine elements from all of them. Image
restoration attempts to reconstruct a degraded image. Image
classification tries to assign each pixel to one of several
predetermined categories; It may be regarded as a special
case of restoration. Image segmentation (Rosenfeld and Kak
1982; Chellappa and Sawchuk 1985) seeks to identify areas
of contiguous pixels that are, for example, devoted to the
same crop. The aim of feature extraction is to find linear
or curvilinear features in images. ,

Our problem shares goals with feature extraction, seg-
mentation, and classification. While restoration is not an
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explicit goal, we would expect the methods developed here
to work well in the presence of degradation. Restoration
and classification methods do not, by themselves, address
the present problem. Current feature detectors would seem
to have difficulty locating features as arbitrary as ice floes.
For example, the Hough transform (Hough 1962; Ballard
1981; Davis 1982), an obvious candidate for locating closed
curves, requires an initial pattern description which it then
tries to find in the image. It would be difficult to provide
an initial pattern description that is general enough to ac-
commodate the wide range of commonly found ice floe
shapes. Our approach may also be applicable to segmen-
tation problems, especially those concerned with identify-
ing not only regions but also the shapes of their outlines.

A large variety of commercial software is available for
image processing. Many of these programs can identify dis-
tinct figures but provide only a rudimentary capability, based
on template matching, for identifying overlapping figures.
This limits their application to images in which all the fig-
ures have a similar shapg. Our method can distinguish be-
tween arbitrarily shaped overlapping figures since it is based
on an edge pixel model instead of templates. In addition,
our method can identify and properly handle “holes,” such
as melt ponds. None of the commercial packages that we
are aware of have this capability.

The Bayesian and stochastic relaxation approach of Ge-
man and Geman (1984) may well be applicable to the pres-
ent problem, although it has to date been used mainly for
restoration. It would require extensive modeling assump-
tions for the ice floe problem, and experience suggests that
it would be computationally expensive. The computational
burden might be reduced by using as an approximation the
ICM algorithm of Besag (1986), although this does not yet
appear to have been applied to problems such as the present
one. Ripley (1989) has suggested using mathematical mor-
phology to provide starting values for an approach to such
problems based on Bayesian image reconstruction. Our
procedure on the other hand requires only the assumption
that the ice floe boundaries be closed curves, and it is rel-
atively fast.

[Received August 1989. Revised May 1991 .]
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