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SUMMARY

The classification maximum likelihood approach is sufficiently general to encompass many current
clustering algorithms, including those based on the sum of squares criterion and on the criterion of
Friedman and Rubin (1967, Journal of the American Statistical Association 62, 1159-1178). However,
as currently implemented, it does not allow the specification of which features (orientation, size, and
shape) are to be common to all clusters and which may differ between clusters. Also, it is restricted
to Gaussian distributions and it does not allow for noise.

We propose ways of overcoming these limitations. A reparameterization of the covariance matrix
allows us to specify that some, but not all, features be the same for all clusters. A practical framework
for non-Gaussian clustering is outlined, and a means of incorporating noise in the form of a Poisson
process is described. An approximate Bayesian method for choosing the number of clusters is given.

The performance of the proposed methods is studied by simulation, with encouraging results. The
methods are applied to the analysis of a data set arising in the study of diabetes, and the results seem
better than those of previous analyses. A magnetic resonance image (MRI) of the brain is also
analyzed, and the methods appear successful in extracting the main features of anatomical interest.
The methods described here have been implemented in both Fortran and S-PLUS versions, and the
software is freely available through StatLib.

1. Introduction

Cluster analysis has developed mainly through the invention and empirical investigation of ad hoc
methods, in isolation from more formal statistical procedures. In recent years it has been found that
basing cluster analysis on a probability model can be useful both for understanding when existing
methods are likely to be successful, and for suggesting new methods (Symons, 1981; McLachlan,
1982; McLachlan and Basford, 1988).

One such probability model is that the population of interest consists of G different subpopulations,
and that the density of a p-dimensional observation x from the kth subpopulation is f;(x; 8) for some
unknown vector of parameters 8. Given observations X = (X, ..., X,), we.let ¥ = (y1, ..., v.)"
denote the identifying labels, where v; = k if x; comes from the kth subpopulation. In the so-called
classification maximum likelihood procedure, 8 and v are chosen so as to maximize the likelihood

L@, v) = illﬁf(xi; 0). (L.1)

Scott and Symons (1971) have worked out the solution when fi(x; 6) is multivariate normal with
mean vector g, and variance matrix 2, a distribution which we denote by MVN (u, =). When
2= (k=1, ..., G), this reduces to the sum of squares criterion (Gordon, 1981, pp. 50-51),
whereas when 2, = 2 (k = 1, ..., G) it yields the criterion of Friedman and Rubin (1967). For a
more detailed review of these ideas, see Gordon (1981, Chap. 3).

Key words: Bayes factors; Classification; Diabetes; Hierarchical agglomeration; Iterative relocation;
Magnetic resonance imaging; Mixture models.
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However, as currently implemented, the classification maximum likelihood procedure has several
limitations:

1. It considers only the restrictive model where the covariance matrices are constant across all clusters,
or the unparsimonious model where they are arbitrary and unequal. The latter is rarely used in
practice, probably because of difficulties caused by its very generality and lack of parsimony
(Symons, 1981). It would seem desirable to have criteria based on intermediate models that allow
some of the characteristics of the covariance matrices to differ across clusters. For example, clusters
may be elliptical with roughly the same size and shape, but oriented in different directions.

2. It allows only for Gaussian distributions, whereas other distributions may be more appropriate in
some situations. An example of this arises frequently in unsupervised pattern recognition, where
edges may be represented by points clustered uniformly, rather than normally, along a straight
line (Banfield and Raftery, 1992; Vesecky et al., 1988).

3. It does not, in general, allow for noise, or data points that do not fit the prevailing pattern of
clusters. Indeed, when the covariance matrices are unequal, each cluster must contain at least
p + 1 observations (Symons, 1981).

In this article, we present a framework for model-based clustering that is sufficiently general to
overcome these limitations. In Section 2, we develop maximum likelihood criteria for Gaussian
clustering that allow clusters to have different orientations or sizes, while preserving some common
features, such as shape. In Section 3, we present practical criteria for non-Gaussian clustering, and
we extend the framework to incorporate Poisson noise. In Section 4, we present a model-based
approximate Bayesian approach to choosing the number of clusters. In Section 5 we report the results
of a Monte Carlo study of the methods presented, and in Section 6 we study their performance on
two data sets.

2. Allowing Orientation and Size to Vary Between Clusters in the Gaussian Case
When fi(x; 8) is a MVN (u, ;) density, the likelihood (1.1) has the form

«
L6, v) = const. [T T |Zx|™"* expf—5(x; — m)"Zi'(x; — mi)}, (2.1)
k=1 i€}
where E; = {i: v, = k}. The maximum likelihood estimator of u is Xx = nx' ¥z X, where n, is the
number of elements in E;. Replacing u, in (2.1) with the MLE, X, yields the concentrated log-
likelihood

G
/6, v) = const. — % ¥ {tr(WiZiY) + nm log | 2}, (2.2)
k=1

where W) is the sample cross-product matrix for the kth cluster, namely

Wk = Z (X,‘ - )'(k)(x,- - )_(k)T.
IEE)
Note that W, /n, is the MLE of Z,.

If 2, =l (k=1,...,G), then the log-likelihood (2.2) is maximized by choosing v to minimize
tr(W), where W = 3¢, W,. This is the sum of squares criterion which underlies, for example, Ward’s
(1963) agglomerative hierarchical clustering method. If 2, = Z (k= 1, ..., G), then the log-likelihood
(2.2) is maximized by choosing v to minimize | W |, the criterion of Friedman and Rubin (1967).
Finally, when the 2, are not constrained in any way, the likelihood is maximized by choosing v to
minimize 3¢, # log | Wi/ni |. This is similar to, but not the same as, equation (14) of Scott and
Symons (1971), which we have been unable to reproduce exactly.

Here we develop new criteria that are more general than that of Friedman and Rubin (1967), but
based on more parsimonious models than that of Scott and Symons (1971). They allow some but not
all of the features of cluster distributions (orientation, size, and shape) to vary between clusters, while
constraining others to be the same. The key to this is a reparameterization of the covariance matrix
3, in terms of its eigenvalue decomposition

Ek = DkAsz, (23)

where Dy is the matrix of eigenvectors and A, is a diagonal matrix with the eigenvalues of 2, on the
diagonal. The orientation of the principal components of X, is determined by D,, while A, specifies
the size and shape of the density contours. We write A, = A\ Ay, where \, is the first eigenvalue of =y,
Ar = diag{ayk, ..., ap), and 1 = @ = o = -+ = a, > 0. Thus Dy determines the orientation of
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the kth cluster, A, its size, and A, its shape. By size we mean the volume occupied by the cluster in
p-space rather than the number of elements it contains. If the aj’s are of similar magnitude, then the
kth cluster will tend to be hyperspherical, whereas if ay < 1, it will be concentrated about a line,
and if ay = 1 and a3 << 1 it will be concentrated about a two-dimensional plane in p-space,
and so on.

This analysis suggests that the sum of squares criterion is likely to be most appropriate when the
clusters all have the same dispersion (Symons, 1981). The criterion of Friedman and Rubin (1967),
based on the assumption that D,, A\, and A, are the same, favors clusters that are ellipsoidal with the
same orientation and size, whereas the criterion of Scott and Symons (1971), which assumes all the
components to be different, favors clusters of different orientations, shapes, and sizes. By allowing
some but not all of these quantities to vary between clusters, we obtain criteria that are appropriate
for various intermediate situations.

Assuming that 2, = \.I leads to a generalization of the sum of squares criterion. The fact that =,
is a multiple of the identity matrix indicates that the underlying densities are spherical. Allowing A,
to vary between densities allows the sizes of the clusters to differ. The resulting criterion to be
minimized is

G W
Y, 1 log tr<—"> .
k=1 Ry

Our analysis indicates that this criterion will be most appropriate when the clusters are hyperspherical,
but of different sizes.

Next, we allow the orientations to vary while keeping size and shape constant, by requiring that
M=NAr=A(k=1,...,G), where 4 is known, and by allowing the D,’s to vary between clusters.
By noting that | 2| = N [[%, «;, replacing D, and A in (2.2) with their maximum likelihood
estimators and writing the eigenvalue decomposition of W as

Wk = LkaL;\T-, (24)

where Q, = diag{wik, ..., wx} and wy is the jth eigenvalue of W,, we see that the resulting log-
likelihood is maximized by choosing v to minimize S = ¥, Si, where S, = tr(47'Q;). When p = 2,
this is the criterion that underlies the clustering method of Murtagh and Raftery (1984).

We now allow both size, v, and orientation, D,, to vary between clusters, while assuming that the
shape matrix A is constant across clusters. In this setting, the maximum likelihood estimator of # is
obtained by minimizing

G Sk
S*= % nclogl—]. (2.5)
A=1 Hly

Table 1 shows the relationships among orientation, size, and shape for the criteria we have found to
be the most useful in practice. There are, of course, criteria based on other combinations of these
factors.

It is usually not feasible to find the global minimum by evaluating the criterion for all possible
partitions of the observations. Many algorithms have been devised for finding local minima or good
suboptimal solutions, particularly for the sum of squares criterion. These involve agglomeration,

Table 1
Constraints imposed on clusters by different criteria
Criterion Origin Distribution Orientation Size Shape

tr(W) Ward (1963) Spherical Undefined  Same Same
| W| Friedman and Rubin Ellipsoidal =~ Same Same Same

(1967)
S Murtagh and Raftery Ellipsoidal  Different Same Same

(1984)
G
Y mlog tr( Wi/ni) This article Spherical Undefined  Different Same
k=1
S* This article Ellipsoidal  Different Different Same
% ndog | — Scott and Symons Ellipsoidal ~ Different Different Different
k=1 My (1971)
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iterative relocation, or other methods; for reviews see Gordon (1981, 1987), Murtagh (1985), and
Jain and Dubes (1988). Algorithms developed for the sum of squares criterion can be adapted for use
with the other criteria in Table 1. For example, Murtagh and Raftery (1984) showed how Ward’s
(1963) agglomerative hierarchical method based on the sum of squares criterion can be generalized
for use with the criterion S.

3. Non-Gaussian Clustering and Noise

3.1 Non-Gaussian Clustering: The Uniform-Normal Case

The model (1.1) is general enough to encompass clusters with non-Gaussian distributions. To date,
attention has been focused on the multivariate normal distribution because it leads to relatively simple
criteria. Here we suggest practical criteria for some non-Gaussian situations.

The basic idea is the use of a local parameterization. We assume that there are matrices Dy
(k=1,..., G)such that if z; = D, (x; — n.,), then z; has the density g,,(z;; 8); often these densities
will be the same, perhaps modulo a scale parameter. In this general framework, criteria can be derived
by maximizing the likelihood, as in Section 2. When the distribution of x; is MVN(u,,, Z,), and D,
is defined by (2.3), then z, is the value of x; in the local coordinate system with origin at u,, and axes
along the principal components of Z,,.

We now carry out a more detailed analysis of one specific, but important, non-Gaussian situation—
when observations are clustered uniformly along and tightly about a line segment in p-space. Such
situations arise in ecology when the data include the geographic locations of plants or animals that
may be clustered about roughly linear natural features such as rivers or valleys. They also arise in
unsupervised pattern recognition, where observations may be edge elements in an image, or data
points in a point pattern with a linear feature.

Welet u; = z;, and v, = (Ui, . . ., Vip-1)' = (Zi2y - - - » Zip)'. We assume that u; is uniformly distributed
between ¢, and ¢,,2, and that v, ~ MVN(O0, Z). Let ¢x = ¢uo — ¢ and Z; = o1; typically oy will
be small compared to ¢x.

We now derive an approximate maximum likelihood estimator for 4 under this model. We estimate
Dy by Dy = L, where L, is defined by (2.4), and we estimate ux by ju = %. We then define z, =
D, (x; — X,,), with corresponding definitions for i; and ¥,. Conditionally on these estimated values of

D, and p,, the log-likelihood for ¢ = (¢, . . ., ¢¢)", o7, and v is
) ¢ 1 5 | U
l(¢, o°, ¥) = const. — Y, {m log ¢ + = (p— Dnlog o7 + — X V! v,-}. 3.1)
k=1 2 207 €Ly,
If we assume that ¢t = ¢> (k =1, ..., G), then the log-likelihood in equation (3.1) is maximized by
& = max {i;} — min {#}, & ={n(p— D" Y Vv
IS €Ly i=1
We therefore choose v to minimize the criterion
1 ¢ A
3 (p— Dnlog &>+ Y nlog ¢x. (3.2)
k=1
In the situation where the o¢7’s are not constant across clusters we obtain
ot ={m(p— D" ¥ ¥,
ST
and v is chosen to minimize the criterion
[ 1 . .
U= X {; (p — Dny log a7 + ni log dn}. (3.3)
k=1 <

Many variations on this “uniform-normal” theme are possible, and lead to simple criteria. For
example, clusters may be distributed tightly about a two-dimensional planar region in p-space; this
can be represented by specifying the distribution of (z;, z») to be concentrated on such a region.
Also, the distribution of the scatter about the main line segment or planar region may be more general
than assumed above, leading, for example, to a range of values for the covariance matrix of v;, such
as those considered in Section 2.

3.2 Allowing for Noise

So far, we have assumed that each observation belongs to a cluster. However, even when a data set is
made up mainly of clusters of the prescribed type, there may be other data points that do not follow
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this pattern. We allow for this possibility by extending our model to include such observations,
assumed to arise from a Poisson process with intensity ». Let E = UL, E, and no = n — Y1 g
Then the likelihood (1.1) is modified as follows:

VA 10 p—vA
(pAJRe™ I1 £.(xi; 8), (3.4)

no! i€E

L@®, v, v) =

where A4 is the hypervolume of the region from which the data have been drawn. The clustering
criteria developed so far can easily be modified to be based on (3.4). Taking account of noise in this
way facilitates our proposed method for choosing the number of clusters, described in Section 4.

4. Choosing the Number of Clusters: An Approximate Bayesian Approach

Here we suggest an approximate Bayesian approach to the choice of the number of clusters. We first
write down an exact Bayesian solution, but this usually cannot be computed in a reasonable amount
of time. Arguing heuristically, we obtain an approximation to the Bayesian solution that seems to
work well in numerical experiments, some of which are reported in Sections 5 and 6.

We view the problem of estimating the number of clusters as one of choosing between competing
models for the same data. The exact Bayesian solution consists of finding the posterior probability
p(G | x) of each number of clusters G given the data x. This approach seems to have advantages over
the alternative of hypothesis testing in the general context of model comparison, as it avoids the
problems of multiple comparisons, comparing nonnested models, and the tendency of hypothesis
tests to select unparsimonious models when the sample size is large (Berger and Sellke, 1987; Raftery,
1986b, and Technical Report No. 121, Department of Statistics, University of Washington, 1988).
The details have been worked out for many statistical problems, including the general linear model
(Smith and Spiegelhalter, 1980), generalized linear models (Raftery, 1986a, and unpublished technical
report cited above), change-points and point processes (Akman and Raftery, 1986; Raftery and
Akman, 1986), and software reliability (Raftery, 1987, 1988).

Technically, it is easiest to start with the Bayes factor, or ratio of posterior to prior odds for G = r
against G = s, defined by

B, = p(x| G =r)/px|G = s3). 4.1)
In (4.1), p(x | G = r) is the marginal likelihood

pxIG=r= 3 f f L(6, v, )6, v, ) db b,
YET,
where T, = {0, 1, ..., r}", L(8, v, v) is the generalized likelihood defined by (3.4), and p(6, », ) is the
joint prior density of 8, v, and v. When v, = 0, x; belongs to the “noise” and appears in the Poisson
part of the likelihood (3.4). A different but related approach is described in unpublished work by
Rissanen.

Here we concentrate on the approximate calculation of B, ,+, (r = 1, ..., n — 1). This yields
posterior probabilities p(G = r| x) directly, as follows. Noting that B, = II={ By 4+ (¥ < 5) and
B, = B!, we calculate B,,, forr =1, ..., n — 1 and some fixed so. Then

n—1
G =r|x) =BG =1/Y Byp(G=1), 4.2)
=1

where p(G = r) is the prior probability that there are r clusters.

We approximate B,,., as follows. In an agglomerative hierarchical clustering algorithm, the choice
between G = r + | and G = r is a decision whether or not to merge two particular clusters into one.
In the p-dimensional multivariate normal case, this is exactly a standard comparison of nested
hypotheses in the general linear model, and Smith and Spiegelhalter (1980) have shown that in that
case minus twice the logarithm of the Bayes factor is approximately equal to

A — {5 + log(pn,,.1)}o, (4.3)

where ), is the likelihood ratio test statistic, §, is the number of degrees of freedom in the asymptotic
chi-square distribution of A,, and »,.,,, is the number of observations in the merged cluster. However,
(4.3) is invalid in the clustering context because the regularity conditions on which it is based do not
hold. Wolfe (1971) suggested getting around the problem by doubling the number of degrees of
freedom, and Hernandez-Alvi (unpublished Ph.D. thesis, University of Oxford, 1979) found that to
be a reasonable approximation. Aitkin, Anderson, and Hinde (1981) and McLachlan (1987) had
some reservations about the use of Wolfe’s (1971) approximation when 6, is large, but the simulations
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of Everitt (1981) showed it to perform well for values of §, between | and 5, which is the range of
primary interest to us. We therefore use the approximation

=2 1Og Br‘r+1 = A — {% + 10g(pnr,r+1)}25r = Er, (44)

where §, is now the decrease in the number of parameters caused by going from G=r+ 1to G =r.

In Table 2, for the case where the data are two-dimensional, we show the values of 6, and the
individual cluster parameters that must be estimated for the clustering criteria from Sections 2 and 3.
We write

D= cos ¥ —sin ¥
sin ¢ cosV¥ )/’

where ¥ is the orientation of the cluster. For the criteria in Section 3, ¢« can be superefficiently
estimated, i.e., the asymptotic variance goes to zero faster than the usual rate of O(1/n) [here it is
O(1/m?)], and so it is not included in the count. For the models corresponding to all the criteria in
Table 1 except that of Friedman and Rubin (1967), the term ), in (4.4) involves only the contributions
to the likelihood of the clusters involved in the merger. If we define the maximized log likelihoods
for the two clusters that are merged as /i and /.- and the maximized likelihood for the cluster resulting
from the merger as /,, we may write

No=2(le + b — k). (4.5)

The likelihoods for the clusters that are not involved in the merger cancel out in the likelihood ratio.

If we assume that the clusters are embedded in a Poisson process, the outcomes of the mergers are
slightly more complicated since at each stage in the agglomerative process the number of clusters, G,
can increase, decrease, or remain the same. The reason for this is that we have two types of data:
clusters and noise. If we form a new cluster by merging two singletons that were considered noise,
then G will increase. If we merge a singleton with an existing cluster, then G will not change. If two
existing clusters are merged, then G will decrease. If two singletons are merged to form cluster k, then
N\, = 2[,, and §, for the merger is equal to minus the value of 6, given in Table 2. If a singleton is
merged with cluster &’ to form cluster k then \, = —2(/,, — /i) and §, = O since the parameterization
has not changed. When two existing clusters, &’ and k”, are merged to form cluster &, A, is given by
equation (4.5) and §, is as given in Table 2.

Having obtained B, .+, (r = 1, ..., n — 1) from (4.4), we may calculate p(G = r|x) (r =
I, ..., n— 1) using (4.2). A simple approach is to use as an estimate of the number of clusters
the value of r for which p(G = r|x) is greatest. However, (4.4) provides a rather crude approxi-
mation to p(G = r|x). We therefore prefer to consider several values of the number of clusters,
guided by the values of p(G = r|x), or, equivalently, by F,, defined by F;, =0 and F, = 3/ E, =
constant + 2 log p(G = r|x) (r = 2). Following Good (1983), we refer to F, as the approximate
weight of evidence (AWE) for the number of clusters being r. In our experience, the change in the
approximate weight of evidence, E, = F,., — F,, is often large and positive for the first few values of
r(r=1,..., R, say) and small or negative thereafter. If that is the case, considerations of parsimony
lead us to consider G = R + 1, as well as the value of r that maximizes the approximate weight of
evidence, and any intervening values.

Table 2
Decrease in the number of parameters caused by reducing the number of clusters by one, for several
criteria, in the two-dimensional case

Criterion o, Parameters
tr(W) 2 My My
[ W] 2 s My
S 3 s py, W
G
S milog te(Wi/ny) 3 b s A
k=1
S* 4 Mxs My, ‘I/s V

My My W, A, ook

Equation (3.2) 3 s By W
U 4 Mxs Myy v, U%‘

=13
W
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5. Simulations

5.1 Simulated Clusters
Figure 1(a) shows three clusters generated from bivariate normal distributions with the same shape
but different sizes and orientations. Figures 1(b), 1(c), and 1(d) show the results of grouping the data
into three clusters using the criteria S*, tr(#), and single-link method (SL), respectively. The S*
criterion performed well. Three of the four misclassified points are within or close to the intersections
of the clusters. This is inevitable, since even the human eye, with its remarkable pattern recognition
and classification abilities, finds it hard to classify points at the intersection of clusters. Ward’s
criterion, tr(W), misclassified 18 of the 45 points and did not reproduce the general shape of the
clusters. As can be seen from Figure 1(c), it tends, instead, to find “circular” clusters. The single-link
method has been suggested for finding long clusters such as those in Figure 1(a). However, as can be
seen from Figure 1(d) and Tables 3, 4, and 5, it does not perform well when the clusters intersect.
Clusters that are physically separate, in whatever metric is being used, are easy to distinguish with
most clustering criteria. The clusters we have been working with are distinguished from each other
by their structure. A point within one cluster may be closer, in Euclidean distance, to points in other
clusters than to any point in the cluster to which it belongs, yet we are able to classify it correctly due
to the known structure of the clusters. For example, consider Figure 1(b). Note the two points on the
left that have been correctly classified as belonging to cluster 2 (triangles), yet they are closer to points

O Cluster 1
A Cluster 2
¢ Cluster 3

Figure 1. (a) Three clusters generated from bivariate normal distributions with the same shape but

different sizes and orientations. The solid lines are the convex hulls of the groups. (b) The clusters

formed by the S* criterion. The filled-in symbols represent misclassified points. For example, the

filled-in triangle at the top right-hand corner was classified as a diamond, but in fact is a circle.

(c) The clusters found by Ward’s sum-of-squares criterion, tr(#). (d) The clusters found by the
single-link method.
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in cluster 3 (diamonds) than to any point in cluster 2. Criteria based strictly on distance measures,
such as the single-link method, are unable to handle clusters that are defined by their structure.

5.2 Simulated Clusters with Noise

Figure 2 shows three clusters with added noise. The clusters were generated from bivariate normal
distributions with the same shape but different sizes and orientations while the noise was generated
by a Poisson process. This example differs from that in Section 5.1 in that noise has been added and
we do not assume the numbers of clusters to be known in advance.

After clustering the data in Figure 2 using S* in a hierarchical agglomeration procedure, the
approximate weight of evidence was calculated at each iteration, as shown in Figure 3. The AWE is
maximized at seven clusters and falls off sharply after that, indicating that the clustering algorithm
should be stopped at seven clusters. Figure 4 shows the results at seven clusters after using an iterative

2
g
g
2
2

<
(O Cluster 1 ¢
/\ Cluster 2
[ Cluster 3
€ Noi

oise ¢ .

Figure 2. Three clusters with noise. The clusters were generated from bivariate normal distributions
with the same shape but different sizes and orientations. The noise was generated from a Poisson

process.
o
2 .
5 P . oo o
= . .
w ° ) .
; L]
<C
(@} ' .
0 .
o ° _
0 10 20 30 40

Number of Clusters

Figure 3. Approximate weight of evidence (AWE) for the number of clusters in Figure 2 using the
criterion S$*. The maximum occurs at seven clusters and leads to the results shown in Figure 4.
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L 2
L 2
L J
2
2
g
O Cluster 1
/\ Cluster 2
(] Cluster 3
Noi

€ Noise V'S .

Figure 4. The clusters resulting from the data in Figure 2 using the criterion S* and stopping with
seven clusters as indicated by the AWE in Figure 3. Four of the seven clusters had three or fewer
points and are considered noise.

relocation algorithm to improve upon the original agglomerative results. Four of the seven clusters
contained a total of ten points and have been classified as noise. The three main clusters are well
defined with one misclassification, and only one of the noise points has been misclassified.

5.3 Simulation Results

To compare the performance of our clustering criteria with that of standard, commonly used criteria,
we carried out a Monte Carlo study. The standard criteria used were the single-link method (SL) and
Ward’s sum of squares criterion, tr( ). These were compared with the three criteria S, introduced
for two dimensions by Murtagh and Raftery (1984) and generalized to higher dimensions in
Section 2, $* defined by (2.5), and U defined by (3.3).

To compare the criteria we generated 100 random samples from each of the three types of data for
each of four values of @ = \2/\;, where the \; are the eigenvalues of the covariance matrix, giving a
total of 1,200 samples. The three types of data correspond to the three models for which S, S*, and
U are optimal criteria. When generating the data for which U was optimal, ¢, was generated from a
U(.2, .6) distribution and 67 was proportional to «a¢?. Each sample consisted of three clusters, the
orientation of each cluster was randomly chosen from a U(0, =) distribution, and the centers were
randomly chosen in the unit square. The number of points in each cluster was generated from a
discrete uniform distribution on the integers between 15 and 25.

Tables 3, 4, and 5 show the proportion of points misclassified by each of the five criteria considered.
The single-link method performed poorly, while Ward’s sum of squares did only slightly better. The
three criteria S, S*, and U all performed much better. Of these three, S* did marginally better than
the others, but the differences between them were small. As one might expect, each of the three

Table 3
Bivariate normal clusters with the same size and shape but different orientations. S is the optimal
criterion. One hundred random samples were generated for each value of o. The entries in the table
are the percentages of points misclassified.

63
Criterion .001 .005 .01 .025
S 4 13 16 25
S* 4 16 18 24
U 7 19 26 30
SL 51 51 52 52

tr(W) 40 41 41 40
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Table 4
Bivariate normal clusters with the same shape but different sizes and orientations. S* is the optimal
criterion. One hundred random samples were generated for each value of «. The entries in the table
are the percentages of points misclassified.

o
Criterion .001 .005 .01 .025
S 14 17 24 31
S* 7 12 17 22
U 7 12 18 26
SL 46 47 50 48
tr(W) 48 48 46 46

Table 5
Bivariate uniform-normal clusters. The observations are clustered uniformly along and tightly about
a line segment in two-dimensional space, as described in Section 3.1. U is the optimal criterion. One
hundred random samples were generated for each value of «. The entries in the table are the
percentages of points misclassified.

63
Criterion .001 .005 .01 .025
S 4 11 13 18
S* 5 9 12 19
U 3 7 9 14
SL 38 41 45 43
tr(W) 43 41 44 43

criteria S, S*, and U performed best on the type of data for which it was designed, but it also
performed well on the other kinds of data.

The clear superiority of S, S* and U to the single-link and Ward’s method held for each
combination of the three kinds of data with the four values of «. The results for the three kinds of
data were quite similar. As « increased, the proportion of points misclassified by S, S*, and U
increased. This reflects the fact that as « increases, the data-generating mechanism more closely
approximates that for which tr(1¥) is the best criterion, and so the superiority of S, $*, and U becomes
less marked. Averaged over the 1,200 random samples generated, the proportion of points misclassified
was 16% for S, 14% for S*, 15% for U, 47% for the single-link method, and 43% for Ward’s sum of
squares.

It is assumed that some prior information about « is available. This can come from a training
sample or knowledge of the mechanism generating the data—for example, the resolution of the edge
detector used in processing a digital image. Our numerical work, including the examples in Section
6, indicates that our criteria are not overly sensitive to errors in the estimation of «. In the simulation
study the correct value of « was used in S, S* and U. This provides information on the best
performance that can be expected.

6. Examples

6.1 Example 1: Diabetes Data

Reaven and Miller (1979) described and analyzed data consisting of the area under a plasma glucose
curve (glucose area), the are under a plasma insulin curve (insulin area) and steady-state plasma
glucose response (SSPG) for 145 subjects. The subjects were clinically classified into three groups,
chemical diabetes (Type 1), overt diabetes (Type 2), and normal (nondiabetic). Symons (1981)
reanalyzed the data using seven different clustering criteria. Taking the clinical classification to be
correct, we evaluate one of our criteria and compare it with those considered by Symons (1981),
using the data as published in Andrews and Herzberg (1985).

Reaven and Miller (1979, Figs 1-4) showed four two-dimensional projections of the data. The data
have the three-dimensional shape of a boomerang with two wings and a fat middle. One of the wings
corresponds to patients with overt diabetes, the other wing is composed primarily of patients with
chemical diabetes, and the “fat middle” is composed of normal patients. By viewing the data using a
rotating three-dimensional scatterplot, such as the ones provided in MacSpin (Donoho, Donoho, and
Gasko, 1988) or XLISP-STAT (Tierney, Technical Report No. 528, School of Statistics, University
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of Minnesota, 1988), this structure is obvious and several other features become apparent. One of
the “wings” is almost planar, the other is linear with some curvature, and the “fat middle” has
a shape similar to an American football. Four two-dimensional projections of the data are shown
in Figure 5.

Based on this information, we could use the approach developed in Sections 2 and 3 to design a
purpose-built clustering criterion for this application. However, we prefer to use a very general
criterion of the form S*, where 4, = diag{l, «, «}. This criterion is optimal for trivariate normal
clusters with different sizes and orientations but the same “tubular” shape, clustered circularly about
a line in R®. The estimated values of « for the three clinically identified groups are .09, .19, and .34.
The results were relatively insensitive to changes in « so long as it remained in that broad range. The
results we report are for « = .2. We have scaled each variable by dividing it by its maximum value.

Starting from the correct clinical classification and using a single point iterative relocation algorithm
with the criterion .S*, the optimal classification, as given in Table 6, resulted in only 10% of the
points being misclassified. This compares favorably with the results given by all seven clustering
criteria used by Symons (1981) for this data set. We also used a hierarchical agglomerative clustering
algorithm followed by iterative relocation. Once again, the results compare favorably with those of
Symons (1981). The clusters found are shown in Figure 6.

The AWE for the hierarchical agglomerative clustering algorithm increased steadily until the final
four iterations. Figure 7 shows the number of clusters versus the AWE over the last 20 iterations.
From this it can be seen that the AWE increases sharply as one goes from one cluster to two, and
again from two to three. It increases slightly as the number of clusters goes up to four and decreases
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Figure 5. Four two-dimensional projections of the three-dimensional diabetes data of Reaven and

Miller (1979). The symbols indicate the clinical classification of subjects as having chemical diabetes,

overt diabetes, or being normal. Lower right panel shows the approximate projections represented by
the artist’s sketch in Reaven and Miller (1979) and reproduced in Symons (1981).
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Table 6
Results of clustering the diabetes data. The first row shows the result of single point iterative

relocation using the criterion S* with A, = diag{1, .2, .2}, starting with the clinical classification. The

second row shows the result of hierarchical agglomeration followed by iterative relocation with the
same criterion. The remaining rows show the results of seven other clustering procedures, starting at

the clinical classification, as reported by Symons (1981). Criterion (13) of Symons (1981) is due to

Maronna and Jacovkis (1974). The error rate % is the percentage of the subjects who were not
classified in the same way by the clustering method as by the clinical diagnosis.

Clinical classification

Error Normal Chemical Overt
Method rate % (76, 0, 0) (0, 36, 0) (0, 0, 33)
S* from clinical 10 (65, 0,0) (11, 36, 4) (0, 0, 29)
S* agglomerative 10 (65, 0,0) (11, 36, 4) 0, 0, 29)
| W| 19 (73, 17, 3) ( 3,19,4) (0, 0, 26)
Reaven and Miller (1979) 14 (73, 10, 1) ( 3,26,6) (0, 0, 26)
variant of | W|
(8) in Symons (1981) 26 (75, 30, 6) (1, 6,1) (0, 0, 26)
(10) in Symons (1981) 26 (75, 30, 6) (1, 6,1) (0, 0, 26)
(13) in Symons (1981) 13 (73, 10, 0) ( 3,26,7) (0, 0, 26)
(11) in Symons (1981) 14 (63, 0,0) (13, 30, 2) (0, 6, 31)
(12) in Symons (1981). 13 (73, 9,0) (3,27,7) (0, 0, 26)
O
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Figure 6. The three clusters in the diabetes data found by hierarchical agglomeration followed by

iterative relocation using the criterion S* with A4, = diag{1, .2, .2}. The two-dimensional projection

shown is that of Figure 5(c). The symbols indicate the classification of the subjects based on the

clustering algorithm. The filled-in symbols represent subjects whose clustering classification differs
from the clinical classification.

thereafter, although very slowly until six clusters. If we did not know the true number of clusters this
would lead us to focus attention on the groupings into three, and four clusters, and to perform a more
detailed analysis on these sets of clusters, keeping in mind that a solution with five or six clusters may
be reasonable.

6.2 Example 2: MRI Brain Scan
Magnetic resonance imaging (MRI) is a method for measuring the chemical characteristics of body
tissue based on the magnetic resonance of hydrogen nuclei within the tissue (Oldendorf and Oldendorf,
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Figure 7. Approximate weight of evidence (AWE) for the number of clusters in the diabetes data

over the last 20 iterations of the clustering algorithm. The AWE increases sharply up to three clusters,

with a further slight increase going to four clusters. This would lead us to focus on the groupings into
three and four clusters.

1988). MRI can unobtrusively distinguish between different tissue types within small-volume ele-
ments, called voxels, over very thin cross-sections of the body. Depending on how the hydrogen
nuclei are stimulated, different characteristics within each voxel can be measured. This leads to
multiple measurements on each voxel within the image, analogous to multiband satellite images such
as LANDSAT (an abbreviation for Land Satellite, a series of satellites designed to monitor the Earth’s
surface). Figure 8 shows three bands from an MRI scan of a human brain.

Problems in MRI scanning include the identification of anatomical structures, the identification
of different anatomical structures with similar chemical characteristics (especially when dealing with
new organisms), volumetric measurement of specific components (such as fat or gray matter), and
smooth rendering of anatomical features for use in creating three-dimensional images of the brain.
In this example we provide an initial step in addressing all of these questions by using cluster analysis
to identify individual anatomical structures in the phase space. We define the phase space to be the
p-dimensional space defined by the different MRI bands without reference to the spatial information.
In this example the phase space is three-dimensional.

Since the different MRI bands measure chemical characteristics within each voxel, it is reasonable
to assume that voxels with similar chemical components will cluster together in the phase space.
Furthermore, there are physical reasons to expect the clusters to have linear shapes since the response

A B C

Figure 8. Three bands from a magnetic resonance image (MRI) of the brain. A is the 7', band, B is
the T, band, and C is the PD band. Each band contains a circular image but the low-intensity pixels,
due to air around the skull, blend into the background (see Figures 11 and 12).
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within each voxel can be modeled as a linear combination of the individual chemical components
that make up the voxel. This linear mixing model has been used with success in other imaging
applications (Adams, Smith, and Johnson, 1986; McDonald and Willis, unpublished videotape,
Department of Statistics, University of Washington, 1987).

It is not practical to try to cluster all 26,100 voxels shown in Figure 8. We therefore propose to
cluster a random sample of voxels from the image and use the resulting clusters to classify the
remaining image voxels. This procedure has the flavor of discriminant analysis except that in
discriminant analysis the features of interest must be known in advance. Our approach requires no
such specific prior knowledge.
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Figure 9. The approximate weight of evidence (AWE) for the MRI brain scan data. The AWE is
maximized at 21 clusters.
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Figure 10. The rate of change in the AWE from Figure 9. For example, the bar above 5 indicates

the change in the AWE when going from five to six clusters. It is clear that the AWE increases rapidly

from one cluster up to seven clusters, where the rate of increase slows down dramatically. Beyond 20

clusters the changes in the AWE are negative, leading us to explore in more detail the solutions
having from 7 to 20 clusters.
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We clustered 522 randomly chosen voxels (2% of the total) from the images in Figure 8 using S*
with 4, = diag(l, .3, .3). We find S*, with 4, of this form, to be adaptable and robust to the choice
of the values for A,.

We consider numbers of clusters between the number at which the AWE first levels off and the

Figure 11. The spatial configuration of the clusters in the seven-cluster solution (the smallest number
of clusters indicated by the AWE, Figures 9 and 10). The light gray pixels around the outside of the
skull (giving a circular appearance) represent air.

Figure 12. The clusters from Figure 11 shown individually. A: Bone; B: Air; C: White matter;
D: Fluids; E: Muscle; F: Fat; G: Gray matter.
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number of clusters for which the AWE is maximized. For distinct clusters the AWE indicates an
obvious optimal number of clusters as shown in the earlier simulations. When the clusters are not
distinct, as is often the case, the AWE provides a reasonable subset. Our experience is that out of this
subset the solutions with fewer clusters generally provide more interpretable results.

Figure 9 shows the AWE for the 522 points we have clustered for this example. The maximum
occurs at 21 clusters. Figure 10 shows the rate of change in the AWE and indicates that for fewer
than seven clusters the fit is seriously degraded. This leads us to consider the solutions that have
between 7 and 21 clusters. These results agree with those of independent medical analysis. Six or
fewer clusters lead to the merging of anatomically dissimilar structures. Between 7 and 21 clusters
most of the mergers combine obviously similar anatomical structures except in the situations where
it is uncertain whether MRI can distinguish between structures such as subcutaneous fat and bone
marrow or spinal and corneal fluid.

Figure 11 shows the spatial configuration of the seven-cluster solution. Figure 12 shows the
individual clusters in Figure 11, together with the anatomical features to which they correspond.
These figures, together with the independent medical assessment, suggest that the linear clusters found
in the phase space do correspond to distinct anatomical structures. We have used other clustering
methods on this problem (for example, complete link clustering and Ward’s method) and find that
they tend to group together dissimilar anatomical voxels. The reason for this is that the features in
the phase space are defined by their linear shape and not simply by Euclidean distance so that criteria
based strictly on a distance measure will not be able to identify individual features accurately.

7. Discussion

We have proposed ways of overcoming some of the limitations of the classification maximum
likelihood procedure for cluster analysis, as currently implemented. These are (1) the inability to
specify some but not all features (orientation, size, shape) to be constant across clusters; (2) the
restriction to normal distributions; and (3) the failure to account for “noise.” We have also proposed
an approximate Bayesian solution to the problem of choosing the number of clusters, which seems
to avoid some of the difficulties associated with solutions to this problem based on significance testing.

In the context of Gaussian clustering, we reparameterize the covariance matrices in terms of their
eigenvalue decompositions. Each group of parameters then corresponds clearly to a particular feature
of the cluster (orientation, size, or shape), and criteria appropriate for a range of different situations
result by constraining none, some, or all of these features to be constant across clusters. This leads to
a range of criteria that are more general than that of Friedman and Rubin (1967) and more
parsimonious than that of Scott and Symons (1971) for the unequal-covariance case. The reparame-
terization of covariance matrices in terms of the eigenvalue decomposition has also been considered
by Flury (1988) although he did not view it in the context of cluster analysis and he assumed the
eigenvector matrices, Dy, to be the same across all groups.

A general and practical approach to non-Gaussian clustering is introduced. It is developed in detail
for the important special case where points are distributed uniformly along and tightly about a line
segment in p-space. “Noise” is allowed for by permitting isolated observations to be distributed over
the data region according to a Poisson process. We propose an approximate Bayesian method for
choosing the number of clusters. We also write down the exact Bayesian solution, which is optimal
given the model, but is usually not computable; our approximation seems to perform well in numerical
examples. :

An alternative specification of the model (1.1), which leads to the so-called mixture maximum
likelihood approach, has been considered by Wolfe (1970), Symons (1981), McLachlan (1982), and
McLachlan and Basford (1988). This assumes that x is a random sample from a mixture of the G
densities f;(x; 8) (k =1, ..., G) in the proportions ¢ = (e, . . ., ¢¢)". Then 6 and ¢ are estimated, and
conditional probabilities p(y; = k| x, 8, é) are calculated. Marriott (1975) and Bryant and Williamson
(1978) showed that when, unlike here, estimation of 8 is of primary interest, then the classification
maximum likelihood method is inconsistent. However, when the covariance matrices are unequal,
the mixture maximum likelihood approach appears to break down in practice (Day, 1969). McLachlan
and Basford (1988, §2.1) discuss some theoretical results which suggest that it may be possible to
apply the mixture maximum likelihood approach when the covariance matrices are unequal, but this
does not seem to have been done yet. If it could be done, it seems likely that the methods proposed
in this paper could also be extended to the mixture maximum likelihood approach using the EM
algorithm (McLachlan and Basford, 1988, §1.6).

The classification and mixture maximum likelihood approaches are in conflict only when the
primary aim is to estimate 8; the conflict is resolved when, as here, the aim is to estimate 4, and 8 is
a nuisance parameter. This is easiest to see in a Bayesian framework, where the full solution is the
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posterior distribution p(7y | x). It follows from equation (2.2) of Binder (1978) that this is the same
under the two models when the prior for 4 in (1.1) is hierarchical and compatible with the prior for
¢ in the mixture model. Thus the classification maximum likelihood solution y may be viewed as an
approximation to the posterior mode of vy under both models.

8. Software Implementation

A comprehensive set of programs has been written by Dr Chris Fraley to implement the methods
described here as well as a wide range of other clustering methods that have a model-based
interpretation. The software is called “mclust” (for model-based clustering), and is available free from
StatLib either as a stand-alone Fortran program, or as an S-PLUS function.

The program carries out hierarchical clustering on a data set of arbitrary dimension using any of
the six criteria in Table 1, or any of the centroid, weighted average link, group average link, complete
link, or single link criteria; see Gordon (1981) for definitions of these other criteria. The program
allows iterative relocation if desired, and can accommodate noise explicitly with each criterion, as
described in Section 3.2. It calculates the AWE for each criterion and each number of clusters.

The S-PLUS version produces output in a form that can be used by the other S-PLUS functions
“plclust,” “labclust,” “cuttree,” “clorder,” and “subtree” to plot the hierarchical clustering tree, or
dendogram, with labels if desired, to create groups for further analysis within S-PLUS, and to create
subtrees.

The programs may be obtained from StatLib by sending an e-mail message to
“statlib@temper.stat.cmu.edu” with the single line “send mclust from general” for the Fortran version,
or the single line “send mclust from S” for the S-PLUS version. While the program is not maintained,
questions may be addressed by e-mail to Chris Fraley (statsci!fraley@uunet.uu.net) or to Adrian
Raftery (raftery@stat.washington.edu).
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RESUME

L’approche par maximum de vraisemblance de la classification est suffisamment générale pour
recouvrir de nombreux algorithmes classiques de regroupement, incluant ceux fondés sur le critére
de la somme des carrés et sur celui de Friedman et Rubin (1967, Journal of the American Statistical
Association 42, 1159-1178). Néanmoins, dans son usage courant, il ne permet pas de spécifier quelles
caractéristiques (orientation, taille, forme) sont communes a toutes les classes et quelles sont celles
qui different entre classes.

Nous proposons des moyens pour dépasser ces limitations. Une reparamétrisation de la matrice de
dispersion nous permet de spécifier que certaines caractéristiques, mais pas toutes, sont identiques
pour toutes les classes. Nous précisons un cadre pratique pour des classes non-gaussiennes, et nous
décrivons le moyen d’incorporer un bruit dans la forme d’un processus de Poisson. Nous proposons
une méthode bayesienne approchée pour choisir le nombre de classes.

Nous étudions par simulation la performance des méthodes proposées, avec des résultats encour-
ageants. Nous appliquons ces derniéres a I’analyse de données sur le diabéte, et les résultats semblent
meilleurs que ceux préalablement obtenus. Nous analysons aussi une image du cerveau par résonance
magnétique nucléaire, les méthodes apparaissent couronnées de succés pour faire apparaitre les
caractéristiques essentielles d’intérét anatomique. Les méthodes décrites ont été codées en Fortran et
en S-PLUS, elles sont disponibles librement via StatLib.
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