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Inference in model-based cluster analysis
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A new approach to cluster analysis has been introduced based on parsimonious geometric

modelling of the within-group covariance matrices in a mixture of multivariate normal distri-

butions, using hierarchical agglomeration and iterative relocation. It works well and is widely

used via the MCLUST software available in S-PLUS and StatLib. However, it has several

limitations: there is no assessment of the uncertainty about the classi®cation, the partition

can be suboptimal, parameter estimates are biased, the shape matrix has to be speci®ed by

the user, prior group probabilities are assumed to be equal, the method for choosing the num-

ber of groups is based on a crude approximation, and no formal way of choosing between the

various possible models is included. Here, we propose a new approach which overcomes all

these di�culties. It consists of exact Bayesian inference via Gibbs sampling, and the calculation

of Bayes factors (for choosing the model and the number of groups) from the output using the

Laplace±Metropolis estimator. It works well in several real and simulated examples.

Keywords: Bayes factor, eigenvalue decomposition, Gaussian mixture, Gibbs sampler

1. Introduction

Ban®eld and Raftery (1993)Ðhereafter BRÐbuilding on

work of Murtagh and Raftery (1984), introduced a new

approach to cluster analysis based on a mixture of multivari-

ate normal distributions, where the covariance matrices are

modelled parsimoniously in a geometrically interpretable

way. The general ®nite normal mixture distribution for n

data points x � �x
1

; . . . ; xn� in p dimensions with K groups is

p�xj�; �� �

Yn

i� 1

XK

k� 1

�k��xij�k;�k� �1�

where ���j�;�� is the multivariate normal density with

mean � and covariance matrix �, � � ��
1

; . . . ; �K� is a vec-

tor of group mixing proportions such that �k � 0 and

P

�k � 1, and � � ��
1

; . . . ; �K ; �1

; . . . ;�K�.

The BR approach is based on a variant of the standard

spectral decomposition of �k, namely

�k � �kDkAkD
t

k �2�

where �k is a scalar, Ak � diagf1; ak2; . . . ; akpg where

1 � ak2 � . . . akp > 0, and Dk is an orthogonal matrix

for each k � 1; . . . ;K . Each factor in Equation 2 has a

geometric interpretation: �k controls the volume of the kth

group, Ak its shape and Dk its orientation. By imposing con-

straints such as �k � � and Ak � A 8k (i.e. each group has

the same volume and shape, but di�erent orientations), one

obtains di�erent models, which lead in turn to di�erent clus-

tering algorithms. The models considered here, including par-

simonious spherically shaped ones, are listed in Table 1.

BR developed algorithms aimed at maximizing the clas-

si®cation likelihood

p�xj�; �� �

Yn

i� 1

��xij��i
;�

�i
� �3�

as a function of both � and �, where � is the vector of group

memberships, namely �i � k if xi belongs to the kth group.

These algorithms use hierarchical agglomeration and itera-

tive relocation. They worked well on several real and simu-

lated data sets and are now fairly widely used. They are

implemented in the software MCLUST, which is both an

S-PLUS function and a Fortran program available from

StatLib. (The Fortran version is at http://lib.stat.cmu.edu/
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general/mclust, and can also be obtained by e-mail by send-

ing the message `send mclust from general' to the address

statlib@lib.stat.cmu.edu.)

However, the BR algorithms have limitations, several of

which are common to all agglomerative hierarchical clus-

tering methods:

1. They give only point classi®cations of each individual

and produce no assessment of the associated uncertainty.

2. They tend to yield partitions that are suboptimal (even

if often good). This is due to the use of hierarchical

agglomeration.

3. Estimates of the model parameters � based on the esti-

mated partition tend to be biased (Marriott, 1975).

4. They assume the mixing proportions �k in Equation 1

to be equal.

5. The algorithms based on models 5 and 6 in Table 1

require the shape matrix A to be speci®ed in advance by

the user. This can be useful but it limits the general useful-

ness of the model.

6. To choose K , the number of groups, BR proposed an

approximation to the posterior probabilities based on a

quantity called the AWE (ApproximateWeight of Evidence).

While this has worked fairly well in practice, it is quite crude.

7. BR proposed no formal way of choosing among the

possible models; this must be done by the user.

We know of no way of fully overcoming limitations 1, 6

and 7 other than the fully Bayesian analysis that we develop

here. Other possible ways of overcoming 2±5 are discussed

in Section 4.

Here we present a new approach to clustering based on

the models in Table 1; it consists of fully Bayesian inference

for these models via Gibbs sampling. This overcomes all the

limitations mentioned. A recently proposed way of calcu-

lating Bayes factors from posterior simulation output, the

Laplace±Metropolis estimator (Lewis and Raftery, 1997;

Raftery, 1996a), is used to choose the model and determine

the number of groups simultaneously. In Section 2.1 we

describe Bayesian estimation for the models of Table 1

usingMarkov chainMonte Carlo (MCMC)methods. In Sec-

tion 2.2 we outline how Bayes factors can be calculated from

the MCMC output and used to determine the appropriate

model and the number of groups. In Section 3 we show the

methods at work on real and simulated data sets.

2. Bayesian estimation of the Ban®eld±Raftery

clustering models using the Gibbs sampler

2.1. Estimation

We assume that data xi, i � 1; . . . ; n; xi 2 R
p
to be classi®ed

arise from a random vector with density (1), and that the

corresponding classi®cation variables �i are unobserved.

We are concerned with Bayesian inference about the model

parameters �, � and the classi®cation indicators �i. MCMC

methods provide a general recipe for Bayesian analysis of

mixtures. For instance, Lavine and West (1992) and

Soubiran et al. (1991) have used the Gibbs sampler for esti-

mating the parameters of a multivariate Gaussian mixture

assuming no speci®c characteristics for the component var-

iance matrices; Diebolt and Robert (1994) have considered

the Gibbs sampler and the Data Augmentation method of

Tanner and Wong (1987) for general univariate Gaussian

mixtures and proved that both algorithms converge in distri-

bution to the true posterior distribution of the mixture para-

meters.

Like these authors, we use conjugate priors for the para-

meters � and � of the mixture model. The prior distribution

of the mixing proportions is a Dirichlet distribution � � D

��
1

; . . . ; �K�; and the prior distributions of the means �k of

the mixture components conditionally on the variance

matrices �k are Gaussian: �kj�k � N��k;
1

�k

�k�. The con-

jugate prior distribution of the variance matrices depends

on the model, and will be given for each model in turn.

We estimate the models in Table 1 by simulating from the

joint posterior distribution of �, � and � using the Gibbs

sampler (Smith and Roberts, 1993). In our case, this con-

sists of the following steps:

1. Simulate the classi®cation variables �i according to

their posterior probabilities (tik; k � 1; . . . ;K ) conditional

on � and �, namely

tik �
�k��xij�k;�k�
P

j �j��xij�j;�j�

; i � 1; . . . ; n

2. Simulate the vector � of mixing proportions according

to its posterior distribution conditional on the �i's.

3. Simulate the parameters � of the model according to

their posterior distributions conditional on the �i's. Details

are given in the Appendix.

The validity of this procedure, namely the fact that the

Markov chain associated with the algorithm converges in

distribution to the true posterior distribution of �, was

shown by Diebolt and Robert (1994) in the context of

Table 1. Clustering models. The entries indicate whether the feature

of interest (shape, orientation or volume) is the same for each group

or not

Model �k Shape Orientation Volume

1. �I Spherical None Same

2. �kI Spherical None Di�erent

3. � Same Same Same

4. �k� Same Same Di�erent

5. �DkAD
t

k Same Di�erent Same

6. �kDkAD
t

k Same Di�erent Di�erent

7. �kDAkD
t

Di�erent Same Di�erent

8. �k Di�erent Di�erent Di�erent
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one-dimensional normal mixtures. Their proof is based on

a duality principle, which uses the ®nite space f1; . . . ;Kg,

and is thus geometrically convergent and '-mixing. These

properties transfer automatically to the sequence of values

of � and �, and important properties such as the central

limit theorem or the law of the iterated logarithm are

then satis®ed (Diebolt and Robert, 1994, Robert, 1993).

The same results apply here, the only di�erence being

the more complex simulation structure imposed by the

variance assumptions. Steps 1 and 2 do not depend on

the model considered. Step 1 is straightforward, and

Step 2 consists of simulating � from its conditional pos-

terior distribution, namely � � D ��
1

�

P
n

i� 1

If�i � 1g;

. . . ; �K �

P
n

i� 1

If�i � Kg�. Step 3 is not the same for the

di�erent models of Table 1, and is described in the Appen-

dix for each model in turn.

2.2. Choosing the number of groups and the model by Bayes

factors

BR left the choice of model to the user, and they based the

choice of number of clusters on the AWE criterion, which is

a crude approximation to twice the log Bayes factor for that

number of clusters versus just one cluster.

Here we develop a way of choosing both the model

and the number of groups in one step, using a more accu-

rate approximation to the Bayes factor than that of BR.

We compute approximate Bayes factors from the Gibbs

sampler output using the Laplace±Metropolis estimator of

Raftery (1996a). This was shown to give accurate results

by Lewis and Raftery (1997).

In what follows, the word `model' refers to a combination

of one of the models in Table 1 with a speci®ed number of

clusters. The Bayes factor, B
10

for a model M
1

against

another model M
0

given data D is the ratio of posterior

to prior odds, namely

B
10

� pr�DjM
1

�=pr�DjM
0

� �4�

the ratio of the integrated likelihoods. In Equation 4,

pr�DjMk� �

�

pr�Dj�k;Mk�pr��kjMk�d�k �5�

where �k is the vector of parameters ofMk, and pr��kjMk� is

its prior density (k � 0; 1); this is called the integrated like-

lihood of modelMk. For a review of Bayes factors, their cal-

culation and interpretation, see Kass and Raftery (1995).

Bayesian model selection is based on Bayes factors, whose

key ingredient is the integrated likelihood of a model. Our

main computational challenge is thus to approximate the

integrated likelihood using the Gibbs sampler output.

We do this using the Laplace±Metropolis estimator of the

integrated likelihood (Raftery, 1996a; Lewis and Raftery,

1997). The Laplace method for integrals is based on a

Taylor series expansion of the real-valued function f �u� of

the d-dimensional vector u, and yields the approximation

�

e

f �u�
du � �2��

d=2
jAj

1

2

expf f �u
�

�g �6�

where u
�

is the value of u at which f attains its maximum,

and A is minus the inverse Hessian of f evaluated at u
�

.

When applied to Equation 5 it yields

p�D� � �2��
d=2
j	j

1

2

pr�Dj~��pr�~�� �7�

where d is the dimension of �,
~

� is the posterior mode of

�, and 	 is minus the inverse Hessian of h��� �

logfpr�Dj��pr���g, evaluated at � �
~

�. Arguments similar

to those in the Appendix of Tierney and Kadane (1986)

show that in regular statistical models the relative error in

Equation 7, and hence in the resulting approximation to

B
10

, is O�n
ÿ1

�, where n is sample size.

While the Laplace method is often very accurate, it is

not directly applicable here because the derivatives it

requires are not easily available. The idea of the Laplace±

Metropolis estimator is to get around the limitations of

the Laplace method by using posterior simulation to

estimate the quantities it needs. The Laplace method

requires the posterior mode,

~

�, and j	j. The Laplace±

Metropolis estimator estimates these from the Gibbs

sampler output using robust location and scale estimators.

The likelihood at the approximate posterior mode is

pr�Dj~�� �

Yn

i� 1

XK

k� 1

~�k��xij~�k;
~

�k�

These quantities are then substituted into Equation 7 to

obtain the integrated likelihood, and Bayes factors are

computed by taking ratios of integrated likelihoods, as in

Equation 4.

3. Examples

We now present four examples to illustrate the ability of

our methods to overcome the limitations of other methods

described in Section 1. The ®rst and fourth examples use

simulated data and the second and third examples are based

on real data sets.

For each example, we consider only the models ��I �,

��kI �, ���, and ��k��. Models ��I � and ��� are probably

the most used Gaussian mixture models for clustering

data (e.g. McLachlan and Basford, 1988), and the general-

izations of these, ��kI � and ��k��, to allow for di�erent

volumes have proved to be powerful in many practical

situations (Celeux and Govaert, 1995).

Our priors are chosen from among the conjugate priors

of Section 2.1 so as to be fairly ¯at in the region where

the likelihood is substantial and not much greater else-

where. Thus they satisfy the `Principle of Stable Estimation'

(Edwards et al., 1963), and so it could be expected that the
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results would be relatively insensitive to reasonable changes

in the prior; we also checked this empirically for each

example.

We used �k � 1=K , �k � �x, �k � 1, mk � m
0

� 5, s
2

k �

s
2

0

� �̂
2

, and 	

0

� S, for k � 1; . . . ;K , where �x and S are

the empirical mean vector and variance matrix of the whole

data set, and �̂
2

is the greatest eigenvalue of S. (The other

notation used is de®ned in the Appendix.) The amount of

information contained in this prior is similar to that con-

tained in a typical single observation. Thus the prior may

be viewed as comparable to the true prior of a person

with some, but rather little, information. Similar priors

have been used for generalized linear models by Raftery

(1996a) and for linear regression models by Raftery et al.

(1996). In each example we assessed the sensitivity of the

results to changes in this prior and found it to be small;

some of the sensitivity results for the ®rst example are

included below.

3.1. Example 1: simulated data

We simulated 200 points from a bivariate two-component

Gaussian mixture with equal proportions, mean vectors

�
t

1

� �8; 8�, �
t

2

� �2; 2�, and variance matrices �

1

� 4I ,

�

2

� I ; the data are shown in Fig. 1. The ®rst 600 iterations

from the Gibbs sampler output for the model ��kI �with two

groups are shown in Fig. 2. Convergence was immediate

and successive draws were almost independent; similar

results were obtained for other starting values. We used

1500 iterations, estimated by the gibbsit program to be

enough to estimate the cumulative distribution function

at the 0.025 and 0.975 quantiles to within �0:01 for all

the parameters (Raftery and Lewis, 1993, 1996).

The model comparison results are shown in Table 2. The

correct model, ��kI �, and the correct number of groups, 2,

are strongly favoured. The posterior means of the para-

meters for the preferred model are �
1

� �7:8; 8:3�, �
2

�

�1:9; 2:2�, �
1

� 4:2, �
2

� 1:1, which are close to the true

values. The marginal posterior distribution is summarized

in Fig. 3, which shows the posterior distribution of the

principal circles of the two groups.

Sensitivity to the prior distribution is investigated in

Table 3. A new Gibbs sampler run was done for each choice

Fig. 1. Example 1: simulated data

Fig. 2. Example 1: Time series plot of the ®rst 600 Gibbs sampler iterations: (a) volume parameters; (b) mean for group 1; (c) mean for group 2
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of prior parameters, and so the di�erences in Table 3 are

due to both true sensitivity and Monte Carlo variation;

the true sensitivity is thus likely to be smaller. The estima-

tion results are quite insensitive. The testing results are

somewhat more sensitive, which is to be expected (Kass

and Raftery, 1995), but the overall conclusions remain the

same over all combinations of prior parameters considered.

Perhaps the greatest advantage of the present approach is

that it fully assesses uncertainty about group membership,

rather than merely giving a single `best' partition. In Fig.

4, this is summarized by showing the uncertainty for each

point, measured by Ui � mink� 1; ... ;K (1ÿ
b
Pr��i � kjD�).

When it is clear that xi belongs to the kth group, then

(1ÿ
b
Pr��i � kjD�) is small, and so Ui is also small. In these

data, Ui is large for only one point, no. 55, the one that

lies on the boundary of the two groups, for which

b
Pr��

55

� kjD� � 0:50 (k � 1; 2).

3.2. Example 2: butter¯y classi®cation

Figure 5 shows four wing measurements of a butter¯y. Here

we analyse data on two of these measurements, z
3

and z
4

,

for 23 butter¯ies, shown in Fig. 6, from Celeux and Robert

(1993). The aim is to decide how many species are repre-

sented in this group of insects, and to classify them.

Table 4 shows that model ��k�� with four groups is

favoured quite strongly over the alternatives. The posterior

means of the parameters are: �
1

� �24:7, 19:7�, �
2

� �26:2,

16:2�, �
3

� �21:5, 21:5�, �
4

� �23:1, 31:7�, �
11

� 6:4,

�
12

� 4:2, �
22

� 4:5, �
1

� 1, �
2

� 0:55, �
3

� 0:55,

�
4

� 0:13. The most likely group memberships a posteriori

are shown in Fig. 7, along with the associated uncertainties.

All the butter¯ies are classi®ed with con®dence except

numbers 4 and 15 which are close to the boundary between

groups 1 and 3. Group 4 consists of just one butter¯y,

which is clearly out on its own. The correct classi®cation

Table 2. Example 1: approximate log integrated likelihoods

No. of groups ��I � ��kI � ��� ��k��

1 ÿ1064 ÿ1067 ÿ991 ÿ991

2 ÿ907 ÿ861 ÿ915 ÿ869

3 ÿ923 ÿ883 ÿ931 ÿ894

4 ÿ901 ÿ875 ÿ909 ÿ880

Fig. 3. Example 1: posterior distribution of principal circles for the
[�kI] model with two groups. There is one circle for each Gibbs
sampler iteration and each group, with centre �k and radius �k

Table 3. Example 1: sensitivity of selected results to changes in the prior hyperparameters for 1500

simulations. Log B23 is the log Bayes factor for two groups against three groups. x represents the

data, �xo is the mean of the two optimal partitions, �xo1 � (7.78, 8.28), �xo2 � (1.85, 2.16), �x is the

classes global mean �x � (4.9, 5.2), and � � 20.6

Perturbation logB
23

Pr��
55

� 1jx� E��
1

jx� E��
11

jx�

� � �x, s
2

0

� �
2

, m
0

� 5, � � 1 22 0.50 4.20 7.80

� � �x, s
2

0

� �
2

, m
0

� 10, � � 1 27 0.50 4.16 7.78

� � �x, s
2

0

� �
2

=4, m
0

� 5, � � 1 25 0.50 4.18 7.78

� � �x, s
2

0

� 4�
2

, m
0

� 5, � � 1 25 0.50 4.18 7.78

� � �x, s
2

0

� �
2

, m
0

� 5, � � 2 40 0.44 4.23 7.76

� � �xo , s
2

0

� �
2

, m
0

� 5, � � 1 22 0.46 4.10 7.80

Fig. 4. Example 1: uncertainty plot. At each point a vertical line of
length proportional to Ui � mink� 1; 2(1ÿ bPr[�i � kjD]) is plotted.
The longest line is of length 0.5
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is known, and is exactly equal to the optimal classi®cation

found by our methods (Celeux and Robert, 1993).

3.3. Example 3: kinematic stellar data

Until fairly recently, it was believed that the Galaxy consists

of two stellar populations, the disk and the halo. More

recently, it has been hypothesized that there are in fact three

stellar populations, the old (or thin) disk, the thick disk,

and the halo, distinguished by their spatial distributions,

their velocities, and their metallicities. These hypotheses

have di�erent implications for theories of the formation

of the Galaxy. Some of the evidence for deciding whether

there are two or three populations is shown in Fig. 8, which

shows radial and rotational velocities for n � 2370 stars,

from Soubiran (1993).

Table 5 shows that model ��k�� is preferred and that

there is strong evidence for three groups as against two.

The balance of astronomical opinion has also tilted towards

this conclusion, but based on much more information than

just the velocities used here, including star positions

and metallicities (Soubiran, 1993). It is impressive that

such a strong conclusion can be reached with the present

methods using only a relatively small part of the total avail-

able information.

The posterior means of the parameters for the preferred

model are: �
1

� 1, �
2

� 11:9, �
3

� 1:8; �
1

� �ÿ9:8,

ÿ10:1�, �
2

� �ÿ2:4;ÿ101:1�, �
3

� �15:8;ÿ37:8�; �
11

�

1046, �
12

� ÿ23, �
22

� 552. The corresponding partition

is shown in Fig. 9.

Fig. 5. Example 2: butter¯y measurements

Fig. 6.Example 2: butter¯y data. Values of (z3, z4) for 23 butter¯ies

Table 4. Example 2: approximate log integrated likelihoods

No. of groups ��I � ��kI � ��� ��k��

1 ÿ124 ÿ121 ÿ122 ÿ129

2 ÿ123 ÿ114 ÿ121 ÿ119

3 ÿ122 ÿ110 ÿ120 ÿ114

4 ÿ119 ÿ117 ÿ107 ÿ104

Fig. 7. Example 2: estimated group memberships and uncertainty
plot for the butter¯y data

Fig. 8. Example 3: kinematic stellar data. Radial (U) and rotational
(V) velocities for 2370 stars in the Galaxy

Table 5. Example 3: approximate log integrated likelihoods

No. of groups ��I � ��kI � ��� ��k��

1 ÿ26397 ÿ26416 ÿ26421 ÿ26418

2 ÿ26566 ÿ26283 ÿ26424 ÿ26212

3 ÿ27120 ÿ26010 ÿ27162 ÿ25668

4 ÿ28440 ÿ26244 ÿ27161 ÿ25705

6 Bensmail et al.



The uncertainty plot is shown in Fig. 10. The areas of

high uncertainty are those on the boundaries between any

two of the three groups. The greatest uncertainty is in the

two small areas where all three groups intersect.

3.4. Example 4: simulated data in 20 dimensions

We simulated 200 points as in Example 1 but from a 20-

dimensional two-component Gaussian mixture with

equal proportions, mean vectors �
1

� �8; 8; 0; . . . ; 0�,

�
2

� �2; 2; 0; . . . ; 0�, and variance matrices �

1

� 4I ,

�

2

� I . The ®rst 600 iterations from the Gibbs sampler

output for the model ��kI � with two groups are shown in

Fig. 11. Convergence was almost immediate and succes-

sive draws were almost independent; similar results were

obtained from other starting values. We ran the Gibbs

sampler for 1000 iterations in all; this was ample to achieve

the required level of accuracy according to the gibbsit

method of Raftery and Lewis (1993, 1996).

The model comparison results are shown in Table 6. The

correct model, ��kI �, and the correct number of groups, 2,

Fig. 9. Example 3: optimal partition for Model 4 [�k�]. The three
groups are represented by �, ÿ and �

Fig. 10. Example 3: uncertainty plot

Fig. 11. Example 4: time series plot of the ®rst 600 Gibbs sampler iterations for model [�kI] with two groups: (a) volume parameter, �1 and
�2; (b) ®rst three coordinates of the mean for group one; (c) ®rst three coordinates of the mean for group two

7Inference in model-based cluster analysis



are strongly favoured. The posterior means of the para-

meters for the preferred model are:

�
1

� (8, 7.9, ÿ0.2, ÿ0.1, 0, ÿ0.1, 0, ÿ0.1, 0, 0, 0.1, 0.1,

ÿ0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, ÿ0.1),

�
2

� (1.9, 1.8, 0, 0.2, 0, 0.1, ÿ0.1, ÿ0.1, 0, 0.2, 0.1, 0.1, 0.1,

0, 0.1, 0.2, 0.2, 0.2, 0, 0.1),

�
1

� 3:92, �
2

� 0:94, which are close to the true values.

4. Discussion

We have presented a fully Bayesian analysis of the model-

based clustering methodology of Ban®eld and Raftery

(1993), which overcomes many of the limitations of that

approach. It appears to work well in several examples.

Alternative frequentist approaches, which might be

easier to implement, consist of maximizing the full (mix-

ture) likelihood using the EM algorithm or of maximizing

the classi®cation likelihood using the Classi®cation EM

(CEM) algorithm. Celeux and Govaert (1995) considered

those approaches to the full range of clustering models

derived from the eigenvalue decomposition of the group

variance matrices including those considered here. They

have shown in particular how it is possible to ®nd the maxi-

mum likelihood estimate of the shape matrix A. Both

approaches could overcome limitations 2, 4 and 5 of Sec-

tion 1, and the mixture maximum likelihood approach

could also overcome limitation 3. They would overcome

di�culty 1 only partly: they do provide an estimate of the

uncertainty about group membership, but this assessment

is incomplete because it does not take account of uncer-

tainty about � and �. They do not overcome limitations 6

and 7.

In our examples, we explicitly considered only models 1±

4 of Table 1; these were su�cient for the data we consid-

ered. However, more generally it would be useful to con-

sider the other models, proceeding in the same way and

using the results of Section 2.1.
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Appendix: Gibbs sampling for the clustering models

We now give details of Step 3 of Gibbs sampling for each of

the clustering models used in the examples. Given a classi-

®cation vector � � ��
1

; . . . ; �n�, we use the notation

nk �

X

i

If�i � kg; �xk �
1

nk

X

i; �i � k

xi;

Wk �

X

i; �i � k

�xi ÿ �xk��xi ÿ �xk�
t

�8�

the componentwise statistics of location and scale

�k � 1; . . . ;K�.

(a) Model ��I � Here the scale parameter � is common to

all components of the mixture. We assume that the prior

distribution on the parameters is conjugate, namely that

�kj� � N p��k; �Ip=�k� �k � 1; . . . ;K�

� � Ig�m
0

=2; s
2

0

=2�

�9�

where � � Ig�
1

2

r;
1

2

��means that � has the inverted gamma

distribution

pr��� �

�
ÿ�r=2�ÿ1

exp�ÿ�=2��

ÿ�r=2��ÿr=2=2

The posterior distribution on (�
1

; . . . ; �K ; �) is therefore a

convolution of normal distributions on the �ks and of an

inverse gamma distribution on �.

The Gibbs components of Step 3 are then:

3.1 For k � 1; . . . ;K ; simulate

�kj�; � � N p
�

�k;

�

nk � �k

Ip

� �

with

�

�k � �nk�xk � �k�k�=�nk � �k�

3.2 Simulate

�j� � I g

 

m
0

� n

2

;

1

2

s
2

0

�

X

k

tr�Wk� �

X

k

nk�k

nk � �k

��xk ÿ �k�
t
��xk ÿ �k�

( )!

(b) Model ��kI � When the variance scales are di�erent,

the prior distributions are similar for all components

�kj�k � N p��k; �kIp=�k� and �k � Ig�mk=2; s
2

k=2�

�k � 1; . . . ;K�

�10�

We recover the case treated in Diebolt and Robert (1994),

namely that in which the parameters ��k; �k� are generated

separately:

3.1 For k � 1; . . . ;K , simulate

�kj�k; � � N p
�

�k;

�k

nk � �k

Ip

� �

with

�

�k � �nk�xk � �k�k�=�nk � �k�.

3.2 Simulate

�kj� � Ig
mk � nkp

2

;

�

1

2

s
2

k � tr�Wk� �

nk�k

nk � �k

��xk ÿ �k�
t
��xk ÿ �k�

� ��

(c) Model ��� There is no need to consider the eigenvalue

decomposition of the covariance matrix �, and the prior

distribution is given by

�kj� � N p��k;�=�k� �k � 1; . . . ;K�; � � W

ÿ1

p �m
0

;	
0

�

�11�

where � � W

ÿ1

p �m;	� means that � has the inverse

Wishart distribution

pr��� / j�j

ÿ�m�p�1�=2
expÿftr�	�

ÿ1

�=2g

Step 3 of Gibbs sampling is then decomposed as follows:

3.1 For k � 1; . . . ;K , simulate

�kj�; � � N p
�

�k;

1

nk � �k

�

� �

with

�

�k � �nk�xk � �k�k�=�nk � �k�.

3.2 Simulate

�j� � W

ÿ1

p

 

m
0

� n;

	

0

�

X

k

Wk �

nk�k

nk � �k

��xk ÿ �k���xk ÿ �k�
t

� �
!

(d) Model ��k�0� The prior distribution has three

components

�kj�k;�0

� N p��k; �k�0

=�k�; �k � 1; . . . ; k�

�k � Ig�rk=2; �k=2�; �k � 2; . . . ;K�

�

0

� W

ÿ1

p �m
0

;	
0

�

We make the model identi®able by setting �
1

� 1. Step 3 of

Gibbs sampling is then decomposed as follows:
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3.1 For k � 1; . . . ;K simulate

�kj�0

; �k; � � N p
�

�k;

�k

nk � �k

�

0

� �

with

�

�k � �nk�xk � �k�k�=�nk � �k�.

3.2 Simulate �k � 2; . . . ;K�

�kj�0

; � � Ig �rk � nkp�=2;
1

2

�k � tr�Wk�
ÿ1

0

�

�
�

�

nk�k

nk � �k

��xk ÿ �k�
t
�

ÿ1

0

��xk ÿ �k�

��

3.3 Simulate

�

0

j�
1

; . . . ; �K ; � � W

ÿ1

p

 

m
0

� n;

	

0

�

X

k

Wk=�k �

nk�k

�k�nk � �k�

��xk ÿ �k���xk ÿ �k�
t

� �
!

(e) Model ��k� This is the standard Gaussian mixture

model considered by Lavine and West (1992) and by

Soubiran et al. (1991). The prior distribution on (�k;�k)

is then

�kj�k � N p��k;�k=�k� �k � 1; . . . ;K�

�k � W

ÿ1

p �mk;	k�

and the corresponding Gibbs step is, for k � 1; . . . ;K ,

simulate

�kj�k � N p�
�

�k;�k=��k � nk��

�kj� � W

ÿ1

p

�

nk �mk;

	k �Wk �

nk�k

nk � �k

��xk ÿ �k���xk ÿ �k�
t

�
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