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Abstract

A Bayesian approach to model selection for structural equation models is outlined. This
enables us to compare individual models, nested or non-nested, and also to search through
the (perhaps vast) set of possible models for the best ones. The approach selects several
models rather than just one, when appropriate, and so enables us to take account, both
informally and formally, of uncertainty about model structure when making inferences about
quantities of interest. The approach tends to select simpler models than strategies based
on multiple P -value-based tests. It may thus help to overcome the criticism of structural
equation models that they are too complicated for the data they are applied to.
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1 Introduction

The class of structural equation models is broad, and its very generality makes model

selection difficult. This is especially so when the underlying theory does not allow one to

specify the model structure fairly completely in advance. In that case, the number of

models initially entertained can be very large and some exploratory model selection

strategy is necessary. A common approach is to use theory to specify an initial model, and

then to use a sequence of tests based on P -values to decide whether the model should be

simplified or expanded (e.g. Bollen, 1989; Long, 1983a,b).

There are many difficulties with such a strategy. The theory of P -values was developed for

the comparison of two nested models. In a typical structural equation model application,

there may be hundreds of substantively meaningful models, many of them non-nested.

Wheaton’s (1978) model for the sociogenesis of psychological disorders contains about 20

parameters, or arrows in the corresponding graph, some of which could be removed (see

also Long, 1983b, Figure 4.1). Indeed, the key scientific issue may often be expressed in

terms of which of the arrows can be removed. Thus, there may be up to about 220, or

roughly one million competing models; this number will be smaller if theory or prior

research enables us safely to assume in advance that some of the arrows are in or out, but

will typically still be large. The sampling properties of the overall strategy in such
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circumstances is unknown and may be very different from the properties of the individual

tests that make it up (Miller, 1984; Fenech and Westfall, 1988).

Perhaps most fundamentally, conditioning on a single selected model ignores model

uncertainty and so leads to underestimation of the uncertainty about the quantities of

interest. This underestimation can be large, as was shown by Regal and Hook (1991) in the

contingency table context and by Miller (1984) in the regression context. One bad

consequence is that it can lead to decisions that are too risky (Hodges, 1987).

Even when there are only two models, M0 and M1, and they are nested, it is not clear that

the P -value is a suitable criterion for model comparison. Indeed, Berger and Sellke (1987)

and Berger and Delampady (1989) have argued that P -values and evidence are actually

often in conflict; these articles are highly recommended to the reader.

Also, I have argued elsewhere (Raftery, 1986b) that significance tests based on P -values

ask the wrong question. They ask whether the null model is “true”, a question to which we

already know that the answer is “no”. A scientifically more relevant question is “Which

model predicts the data better?” (i.e. under which model are the data more likely to have

been observed?), and this leads to a different approach, the Bayesian one. One consequence

is that tests based on P -values tend to reject the null model frequently with large samples

of the sizes typically met with in sociology, even when M0 predicts the data well; see

Raftery (1986b) for a dramatic example with n = 110,000. By the same token, when there

are many models, specification searches that consist of multiple P -value-based tests tend to

yield models that are over-complicated.

An alternative that seems to overcome these problems is provided by the Bayesian

approach, which is described in Section 2. In Section 3, the Bayesian approach is applied to

structural equation modeling, model selection strategies are discussed, and an example is

given. This approach is applicable whether the prior theory and research is strong, in

which case the number of models considered will be small, or weak, in which case the

number of models that could potentially be entertained is often enormous. In the latter

case, the research is often exploratory.

The Bayesian approach tends to favor simpler, more parsimonious, models than the

sequential P -value approach. This can lead to further simplification by allowing the

removal of variables that now appear irrelevant to the research hypothesis, yielding less

cluttered graphs and making interpretation easier. It has been said that structural

equation modeling is a “castle built on sand”, because it is based on models that are too

complex for the data used to estimate them. On the other hand, structural equation
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models do correspond well to the actual research hypotheses of social scientists. They also

implement the famous advice of R.A. Fisher for the analysis of observational data, “Make

your theories elaborate”, so as to minimize the possibility of observed associations being

spurious (i.e. due to unobserved variables), rather than causal (see also Blalock, 1979). I

believe that Bayesian model selection for structural equation models may give us the best

of both worlds: simple and interpretable models that are well supported by the data, and

yet reflect the real research hypotheses and are based on sufficiently “elaborate” theories.

2 Bayesian Model Comparison

2.1 Comparing Two Models: Bayes Factors

We first consider the artificial situation where only two models, M0 and M1 are being

compared. These may be any two competing structural equation models. This is relevant

if, for example, we are interested in whether one particular parameter is zero or not, and

we are prepared to assume that the model is otherwise well specified. The results are also

useful as building blocks in the more general and realistic situation where there are many

models.

The posterior odds for M0 against M1 given data D are

p(M0|D)

p(M1|D)
=

[

p(D|M0)

p(D|M1)

] [

p(M0)

p(M1)

]

= B01λ01. (1)

The first equality follows from Bayes’ theorem. In equation (1), λ01 = p(M0)/p(M1) is the

prior odds for M0 against M1; it is often taken to be unity, representing “neutral” prior

information that does not favor either model. The quantity B01 = p(D|M0)/p(D|M1) is the

Bayes factor, or ratio of posterior to prior odds, and p(D|Mk) (k = 0,1) is the marginal

likelihood defined by

p(D|Mk) =
∫

p(D|θk,Mk)p(θk|Mk)dθk, (2)

where θk is the (vector) parameter of Mk, p(θk|Mk) is the prior distribution of θk and

p(D|θk,Mk) is the likelihood.

The marginal likelihood p(D|Mk) is also the predictive probability of the data given the

model Mk, and so it measures how well the model predicts the data, which I would argue is

the right criterion for model evaluation. Thus the Bayes factor measures how well M0

predicts the data relative to M1, and so is just the right quantity on which to base model
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comparison. Note that this comparison does not depend on the assumption that either

model is “true”, unlike model comparisons based on P -values.

Finding B01 involves the multiple integral in equation (2), which is often of high dimension;

this is not in general easy to evaluate analytically. However, good analytic approximations

are available. A Taylor series expansion of the log-likelihood about the maximum

likelihood estimator θ̂k shows that

2 log p(D|Mk) ≈ 2 log p(D|θ̂k,Mk)− log |Vk|+ 2 log p(θ̂k|Mk)− νk log(2π), (3)

with a relative error that is O(n− 3

2 ) (Chow, 1981). The first term on the right-hand side of

equation (3) is twice the maximized log-likelihood, the second term is minus the log of the

determinant of Vk, the variance matrix of θ̂k, the third term is twice the log of the prior

density at θ̂k, and the fourth term is − log(2π) times νk = dim(θ̂k), the number of

independent parameters in Mk. The first, second and fourth terms are readily obtained

from the standard output of most statistical model-fitting programs. The third term is

readily calculated and is generally negligible in moderate to large samples. Slightly more

accurate approximations are available using the Laplace method (Raftery, 1988), but these

are harder to calculate.

The matrix Vk/n tends to a constant matrix as n→∞, where n is the number of

independent (scalar) observations that contribute to the likelihood. Thus the determinant

of Vk/n, namely |Vk/n| = |Vk|/nνk , tends to a scalar constant, and so does its logarithm,

(log |Vk| − νk logn). Thus, if we remove from the right-hand side of equation (3) all the

terms that do not tend to infinity as n→∞, we obtain the cruder but simpler

approximation

2 log p(D|Mk) ≈ 2 log p(D|θ̂k,Mk)− νk log n, (4)

with a relative error of O(n−1).

We thus have two approximations to the Bayes factor, namely, by equation (3),

−2 logB01 ≈ L2 − log |V0|+ log |V1| − 2 log

{

p(θ̂0|M0)

p(θ̂1|M1)

}

+ (ν1 − ν0) log(2π), (5)

where L2 is the standard likelihood-ratio test statistic, and, by equation (4),

−2 logB01 ≈ L2 − (ν1 − ν0) logn = BIC01. (6)

When BIC01 > 0, the criterion favors M1, and when BIC01 < 0 it favors M0. This result

was first established by Schwarz (1978) for regression models and extended to log-linear
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models by Raftery (1986a). It is usually stated in terms of twice the logarithm because of

the connection with the likelihood-ratio test statistic, but one can recover the approximate

Bayes factor itself from the equation

B01 ≈ e−
1

2
BIC01 . (7)

In structural equation models, the Lagrange multiplier (LM) and Wald (W) tests are often

used in place of the likelihood-ratio test because they can be much less expensive

computationally.1 The LM and W test statistics are asymptotically equivalent to L2 (see

Bollen, 1989, pp.293-296), and so may be used, at least roughly, in place of L2 in equation

(6). If M0 is nested within M1 and the only difference between them is that M0 constrains

one parameter of M1 to be equal to zero, then the W test statistic is equal to t2, where t is

the relevant t-statistic. Thus, in that case, L2 may be replaced by t2 in equation (6).

For the comparison of two nested models, Jeffreys (1961, Appendix B) has suggested the

following order of magnitude interpretation of the Bayes factor, B01. (Corresponding

approximate values of BIC01 from equation (7) are also shown.) If B01 > 1 (BIC01 < 0),

the data favor M0 and there is no evidence for the additional effects represented by M1. If

1 ≥ B01 > 10−1 (0 ≤ BIC01 < 4.6), then there is weak evidence for M1. If

10−1 ≥ B01 > 10−2 (4.6 ≤ BIC01 < 9.2), the evidence for M1 is strong, while if B01 ≤ 10−2

(BIC01 ≥ 9.2), the evidence for M1 is conclusive. As a rough rule of thumb, I use BIC

values of 0, 5 and 10 as cut-off points for the different “grades of evidence”. Of course, the

interpretation depends on the context. For example, Evett (1991) has argued that for

forensic evidence alone to be conclusive in a criminal trial one would require posterior odds

for M1 (guilt) against M0 (innocence) of at least 1000:1, rather than the 100:1 suggested by

Jeffreys. This corresponds to a BIC value of about 14, but in such a matter one would also,

presumably, want B01 to be calculated more accurately than by the BIC approximation.

The approximate t-values corresponding to different grades of evidence and different sample

sizes are shown in Table 1. For minimal evidence this is t =
√

logn, for “strong” evidence

it is t =
√

log n+ 5, while for “conclusive” evidence it is t =
√

log n+ 10. Note that the

critical values are larger than those based on P -values, and also that they increase with n.

2.2 Many Models: Accounting for Model Uncertainty

Suppose now that instead of just two models there are (K + 1) models M0,M1, . . . ,MK. In

most studies, there is one, or perhaps a small number of quantities of primary interest such

as the coefficient associated with a particular arrow in the graph that represents the
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structural equation model; we denote such a quantity of interest by ∆. The full Bayesian

solution to inference about ∆ takes account explicitly of model uncertainty and is as

follows. First we form the posterior distribution of ∆ under each model Mk, namely the

conditional distribution of ∆ given the observed data D. If θk is the parameter of Mk

(consisting of the identified parameters in the eight matrices that define the structural

equation model), then the posterior distribution of θk is

p(θk|D,Mk) =
p(D|θk,Mk)p(θk|Mk)

∫

p(D|θk,Mk)p(θk|Mk)dθk

, (8)

and the posterior distribution of ∆ is just the marginal distribution of ∆ from equation (8),

obtained by integrating out the other components of θk. The posterior distribution of ∆

will usually be approximately normal if the sample size is reasonably large. It can often be

well approximated by a normal distribution with mean ∆̂k, the maximum likelihood

estimator of ∆ under Mk, and variance Vk, the (approximate) variance matrix of ∆̂k; the

precise form of the prior p(θk|Mk) often has little effect on the final inference. For further

discussion of these results and the basic ideas of Bayesian inference see, for example,

Edwards, Lindeman and Savage (1963), Box and Tiao (1973, ch.1) and Cox and Hinkley

(1974, ch.10).

We then form the final posterior distribution of ∆ as a weighted average of the posterior

distributions of ∆ under each of the models, weighted by their posterior model

probabilities p(Mk|D), namely

p(∆|D) =
K

∑

k=0

p(θk|D,Mk)p(Mk|D), (9)

where

p(Mk|D) =
p(D|Mk)p(Mk)

∑K
k=0 p(D|Mk)p(Mk)

. (10)

If all the models have the same prior probability, then this may be approximated by

p(Mk|D) ≈ e
1

2
BIC0k

∑K
k=0 e

1

2
BIC0k

, (11)

where BIC00 = 0 and BIC0k results from comparing Mk with M0, considered as a baseline

model.

Note that Bayes factors and BIC values for comparing two models may, in general, be

computed by comparing each with a different, third model. Suppose that we want to
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compare M1 with M2, and we compare each of them separately with M0, then we have

B12 =
B02

B01

, (12)

and

BIC12 = BIC02 −BIC01. (13)

An approximate combined point estimate and standard error can be calculated from the

formulae:

E[∆|D] ≈
K

∑

k=0

∆̂kpk, (14)

Var[∆|D] ≈
K

∑

k=0

(Vkpk + ∆̂2
kpk)− E[∆|D]2, (15)

where pk = p(Mk|D).

When the total number of models is very large, the sums over all models will be

impractical to calculate. In Madigan and Raftery (1991), we argued that one should

exclude from the sum

(a) models that are much less likely than the most likely model, say 10, 20 or 100 times

less likely, corresonding to BIC differences of about 5, 6 or 10; and

(b) models containing effects for which there is no evidence, i.e. those that have more

likely models nested within them.

We refer to the models that are left as falling within Occam’s window, a generalization of

the famous Occam’s razor, or principle of parsimony in scientific explanation.

3 Application to Structural Equation Models

3.1 Bayes Factors for Structural Equation Models

The results in Section 2 apply quite generally to structural equation models. Note that in

the definition of BIC, “n” is equal to the total number of (scalar) observations, namely

N(p+ q) in the notation of Bollen (1989, Table 2.2), where N is the number of cases. Note

also that for the calculation of BIC, most structural equation model software reports L2 in

terms of a comparison with the saturated model, MS.

Suppose that we want to compare two models M1 and M2 and that for each model we have

the likelihood ratio test statistic L2
k (relative to the saturated model), and the number of
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degrees of freedom, dfk, equal to 1
2
(p+ q)(p+ q + 1)− νk (k = 1,2). Then we may compare

each model in turn with the saturated model MS using

BICkS = L2
k − dfk log{N(p+ q)}. (16)

Thus, by equation (13) we may compare M1 with M2 using

BIC12 = BIC1S −BIC2S. (17)

In what follows, when we write BIC without subscripts, we will be referring to BICkS.

Note that Mk will be preferred to MS if BICkS < 0. Thus BICkS may be regarded as a

kind of “goodness of fit” test of Mk in the sense that if BICkS > 0, Mk will be “rejected”

in favor of the saturated model. Note also that the more accurate approximation in

equation (5) can be calculated fairly easily from the output of standard programs such as

LISREL and EQS.

3.2 Search Strategy

How should we carry out the search for good models? The number of possible models can

be huge and, in principle, each new model considered must be checked for identifiability, a

non-trivial task.

It seems that the search should be limited from the outset by substantive considerations.

One way to do this might be as follows. First, develop one or several “encompassing”

models that are sufficiently elaborate to include all the postulated effects, and check that

each of these models is identified. Then specify which arrows have to be in all the models

considered, for substantive reasons or in light of previous empirical results. Then the search

would be restricted to models that are nested within the “encompassing” models and that

contain the “essential” arrows. Since these are all nested within identified models, they are

themselves quite likely to be identified. However, this is not necessarily the case and needs

to be checked for the preferred models.2 I now outline two main types of search strategy.

3.2.1 Stepwise Strategies

Stepwise strategies have been used for many years for variable selection in regression, and

have been extended to other contexts such as log-linear models (Goodman, 1971). They

include forward selection, backward elimation and strategies that combine features of both.

One possibility is a stepwise strategy that sequentially adds and deletes arrows in the

structural equation model graph, with the criterion for making a change being that the
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Bayes factor (or BIC) favor the change. Probably the most convenient criterion for this

purpose is the approximation to BIC obtained by replacing L2 by t2 in equation (6) for

deciding whether to remove an arrow, and the approximation that replaces L2 by the LM

test statistic or modification index (Bollen, 1989, p.293) for deciding whether to add an

arrow. A good starting model could be found by first estimating the “encompassing”

model, and including all the arrows that have t-values greater than the critical value for

weak evidence, which, if BIC is used, is
√

logn (see Table 1).

Such a strategy would, hopefully, lead to the most likely single model, Mmax, say (although

this is not guaranteed). One could then attempt to find the other models that lie in

Occam’s window by comparing Mmax with models that differ from it by at most a few

arrows, and retaining those models Mk such that Bmax,k is less than some appropriate

number such as 10, 20 or 100. Finally, models that have more likely models nested within

them would be removed.

3.2.2 The Down–Up Algorithm

This algorithm was proposed by Madigan and Raftery (1991) in the context of graphical

models for contingency tables, and it seems also to be applicable to structural equation

models. It is a direct and efficient way of finding all the models in Occam’s window. It

proceeds through model space from larger to smaller models and then back again in a

series of pairwise comparisons of nested models.

It eliminates models by applying the principle that if a model is rejected, then its

submodels (i.e. the models nested within it) are also rejected. All models that have not

been rejected are included in Occam’s window. In a pairwise comparison of M0 with M1,

where M0 is nested within M1, M0 (and all its submodels) is rejected if B01 < C−1, M1 is

rejected if B01 > 1, and both models are retained if C−1 ≤ B01 ≤ 1. Here C is a constant

set equal to, for example, 10, 20 or 100. Generally, the smaller C is, the fewer models there

are in Occam’s window, but we have found that the results tend to be fairly insensitive to

the precise choice of C.

We now outline the search technique. The search can proceed in two directions: “Up” from

each starting model by adding arrows, or “Down” from each starting model by dropping

arrows. When starting from a non-saturated, non-empty model, we first execute the

“Down” algorithm. Then we execute the “Up” algorithm, using the models from the

“Down” algorithm as a starting point. Experience to date suggests that the ordering of

these operations has little impact on the final set of models. Let A and F be subsets of
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model space M, where A denotes the set of “acceptable” models and F denotes the

models under consideration. For both algorithms, we begin with A = ∅ and F =set of

starting models.

Down Algorithm

1. Select a model M from F

2. F ← F −M (i.e. replace F by F −M), and A ← A+M

3. Select a submodel M0 of M by removing an arrow from M

4. Compute B = p(M0|D)
p(M |D)

5. If B > 1 then A ← A−M and if M0 6∈ F ,F ← F +M0

6. If C−1 ≤ B ≤ 1 then if M0 6∈ F ,F ← F +M0

7. If there are more submodels of M , go to 3

8. If F 6= ∅, go to 1

Up Algorithm

1. Select a model M from F

2. F ← F −M and A ← A+M

3. Select a supermodel M1 of M by adding an arrow to M

4. Compute B = p(M |D)
p(M1|D)

5. If B < C−1 then A ← A−M and if M1 6∈ F ,F ← F +M1

6. If C−1 ≤ B ≤ 1 then if M1 6∈ F ,F ← F +M1

7. If there are more supermodels of M , go to 3

8. If F 6= ∅, go to 1
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Upon termination, A contains the set of potentially acceptable models. Finally, we remove

all the models which have a more likely submodel, and those models Mk for which

p(Mmax | D)

p(Mk | D)
> C. (18)

A now contains the acceptable models, namely those in Occam’s window.

The algorithm has been coded for discrete recursive causal models and also for graphical

log-linear models. It is very efficient, carrying out about 3,000 model comparisons per

minute on a workstation. Efficient computer implementation of the algorithm for structural

equation models remains to be done.

4 Example

I now outline how some of these ideas might apply in an example. The data considered is

that of Wheaton (1978) on the sociogenesis of psychological disorder (PD); this data was

reanalyzed by Long (1983b). The main issue is whether low socio-economic status (SES)

leads to PD, PD leads to low SES, both, or neither. Low SES causing PD is referred to as

social causation, while PD leading to low SES is called social selection. One of Wheaton’s

data sets consisted of N = 603 individuals in Illinois for whom SES was measured at three

different time points; two indicators of PD were also measured at each of the last two time

points. Father’s SES was also used, giving a total of eight observed variables and

n = 603× 8 = 4, 824, so that log n = 8.48. Figure 1, reproduced from Long (1983b), shows

the main variables and represents Long’s model Mf , which was close to his preferred model

for the data.

Twenty-two models for the data are shown in Table 2. Long (1983b, Table 4.2) fitted six

models to the data, and the BIC values are shown in Table 2. Models Ma, Mb and Mc have

positive BIC values, and so are unsatisfactory. Model Md does fit slightly better than the

saturated model, but model Me fits much better. Model Me is preferred to model Mf , even

though the evidence is weak. Also, Me is nested within Mf , so that if we considered only

Long’s six models to start with, only Me would be in Occam’s window, and we would not

need to average over models to make inference about individual parameters. Also, Me “fits”

the data in the sense of being better than the saturated model (note that this is in conflict

with the result based on P -values), but this does not preclude our search for better models.

The remaining sixteen models document part of an implementation of the Down algorithm

starting from model Me, so that F = {Me}. Here we take C = 20, by analogy with the
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popular 5% significance level for tests, so that B01 < C−1 if BIC01 > 6. Thus we will reject

the larger model M1 if BIC0S < BIC1S, while we will reject the smaller model, M0, if the

difference between the BIC values is greater than 6, i.e. if BIC01 = BIC0S −BIC1S > 6. If

BIC01 is between 0 and 6, both M0 and M1 will be retained for the time being.

Model 7 specifies that γ31 = 0 in model Me, i.e. the γ31 arrow is removed. This model is

preferred to Me and is nested within it, so that Me is now rejected and model 7 is retained

for comparison with further models. Models 8–10 also represent simplifications of Me that

are preferred to it; thirteen other simplifications of Me were also tried but were rejected

and are not shown in Table 2. The comparison between models 11 and 13 is a case where

both models were retained, with a BIC difference of 5 in favor of the larger model

(although both were later rejected, model 11 in favor of model 15, and model 13 in the

final phase of the algorithm, in favor of the best model, model 22).

In the end, only model 22 is in Occam’s window, so that the result is fairly clear-cut. All

the parameters in model 22 have highly significant t-values (all are greater than√
log n+ 6 = 3.8), none of the meaningful modification indices (LM test statistics) is

significant according to BIC (i.e. greater than log n = 8.48), and there are no outliers

among the standardized residuals (each residual corresponds to one of the 36 sample

covariances).

Model 22 is shown in Figure 2; it is considerably simpler than the model in Figure 1.

Substantively, it leads to the conclusion that there is social causation but not social

selection; the key feature that indicates this is the absence of β43, the arrow from PD at

time 2 (PD2) to SES at time 3 (SES3). Wheaton (1978) came to the same conclusion, but

Long (1983b) pointed out that Wheaton’s own model corresponds closely to model Md,

and that there β43 is significant, supporting the social selection hypothesis.

Why this conflict? It seems that the significance of β43 in Md is an artefact due to the

misspecification of Md. As one moves towards better-fitting models, from Md to Me to

model 15, β̂43 goes from −1.50 to −0.85 to a non-significant −0.47 (t = −0.8), while in

models 16, 17 and 19, β̂43 remains close to -0.5 and non-significant. The non-significance of

β43 is also indicated by the contrasts between models 19 and 22, and between models 15

and 18, which in each case favor the model that does not include β43. In comparing Md

with model 22, note that model 22 not only fits substantially better in terms of L2, but

also uses seven less parameters. The estimates of all the parameters that are present in the

favored model 22 remained quite stable across models, but this was not true for β43.

A backward selection strategy starting from Me that uses a sequences of P -value-based
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significance tests at the 1% level would, like our approach, select model 22. However, a

similar strategy at the 5% level would both choose model 20 rather than model 22, as

would the AIC (Akaike, 1987), The only difference between the two models is that model

20 includes γ41 (the direct effect of Father’s SES on SES at time 3), but model 22 does not.

The P -value for γ41 in model 20 is 0.017, and even if one wishes to use P -values, a

reasonable balance between power and significance would suggest a lower significance level

with such a large sample size. In addition, model 20 is substantively unsatisfactory because

it says that Father’s SES has a direct on SES at time 3 but not at time 2. In any event,

models 20 and 22 both lead to the same conclusions about the research question of primary

interest.

5 Discussion

An approach to Bayesian model selection and accounting for model uncertainty in

structural equation models has been described. This seems to hold out the promise of

selecting simpler and more interpretable models, without compromising the richness of the

structural equation model framework for representing substantive research hypotheses.

When appropriate, several models are selected, rather than just one. Thus ambiguity

about model structure is pinpointed and taken into account when making inference about

quantities of interest.

Another common approach to model selection consists of selecting a single model based on

an information criterion such as AIC (Akaike, 1987; Sclove, 1987; Bozdogan, 1987; Cudek

and Browne, 1983). Note that BIC can be used in this way, as can the posterior probability

or other approximations to it such as equation (5), to select the single model with the best

value of the criterion; however this is not what is advocated here. A key difference between

that approach and the one described here is that we select several models when

appropriate and base inferences on all the selected models, thus taking account of

uncertainty about model structure. While model uncertainty was not a crucial issue in the

example discussed here, Madigan and Raftery (1991) gave several examples with

multivariate data where it is important and failing to take account of it leads to inferior

predictive performance as well as reduced scientific insight.
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Table 1: Approximate minimum t-values for different grades of evidence and sample sizes

Evidence Minimum n =
BIC 30 100 1000 10000

“Weak” 0 1.84 2.15 2.63 3.03
“Strong” 5 2.90 3.10 3.45 3.77
“Conclusive” 10 3.66 3.82 4.11 4.38
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Table 2: Model comparison for Wheaton’s data.

k Model L2 df BICkS

1. Ma 142.6 13 32.3
2. Mb 147.5 15 20.3
3. Mc 131.0 13 20.7
4. Md 89.9 11 −3.4
5. Me 45.4 10 −39.4
6. Mf 40.8 9 −35.5
7. Me − {γ31} 45.4t 11 −47.9
8. Me − {γ51} 45.4t 11 −47.9
9. Me − {β52} 45.4t 11 −47.9

10. Me − {θε
47} 43.7t 11 −49.6

11. Me − {γ31, γ51, β52, θ
ε
47} 46.9 14 −71.8

12. 11. −{β43} 47.8 15 −79.4
13. 11. −{ψ54} 60.4 15 −66.8
14. 11. −{β43, ψ54} 60.6 16 −75.1
15. 11. with ψ23 = ψ54 48.5 15 −78.7
16. 15. −{γ21} 49.5t 16 −86.2
17. 15. −{γ41} 52.5t 16 −83.2
18. 15. −{β43} 49.1t 16 −86.6
19. 15. −{γ21, γ41} 55.0M 17 −89.2
20. 15. −{γ21, β43} 50.2M 17 −94.0
21. 15. −{γ41, β43} 53.3M 17 −90.9
22. 15. −{γ21, γ41, β43} 55.9 18 −96.8

NOTE: The first six models are those fit in Table 4.2 of Long (1983b). The “−{}” notation
indicates that the parameters inside the curly brackets have been constrained to equal zero.
For example, model 11 is the same as model Me with the additional constraints that γ31,
γ51, β52, and θε

47 are equal to zero. In the L2 column, a superscript “t” indicates that the
quantity shown is an approximation equal to the L2 value for a larger model plus the square
of the relevant t-statistic, while the superscript “M” indicates that the quantity shown is an
approximation equal to the L2 value for a smaller model minus the relevant LM test statistic
or modification index.
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Figure 1: Model Mf for data from Wheaton (1978), and definitions of the main variables.
This is reproduced from Long (1983b), in which it is Figure 4.1.
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Figure 2: Model 22 from Table 2 for data from Wheaton (1978).
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