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Abstract

We combine image-processing techniques with a powerful new statistical technique to detect linear pattern production
faults in woven textiles. Our approach detects a linear pattern in preprocessed images via model-based clustering. It employs
an approximate Bayes factor which provides a criterion for assessing the evidence for the presence of a defect. The model

Ž .used in experimentation is a possibly highly elliptical Gaussian cloud superimposed on Poisson clutter. Results are shown
for some representative examples, and contrasted with a Hough transform. Software for the statistical modeling is available.
q 1997 Elsevier Science B.V.
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1. The flaw detection problem

Garment production can be divided into two dis-
tinct phases: manufacture of the textile fabric, fol-
lowed by garment assembly. The two phases are
often performed in different locations and by differ-
ent organizations. Each phase in turn is made up of
sub-phases, between which there are opportunities
for inspection. Our interest is in the problem of
product inspection after fabric manufacturing, before
final assembly.
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Typically fabric is produced by looms in two-me-
ter wide rolls at a rate of about 10 mm per second.
Although it might seem that product inspection could
occur concurrently, the fabric is first packed into
rolls and later unrolled for inspection. Reasons for
this presumably include the slow speed of produc-
tion, which is insufficient to keep an inspector occu-
pied, and the relatively hostile working environment.
This work is concerned with the replacement of

Žmanual inspection by an automatic procedure New-
.man and Jain, 1995 .

Two major obstacles to machine inspection of
textile fabrics are the difficulty of characterizing
defects, and the high data rate. The denim fabric
considered here manifests the former problem in
abundance: there are many defect types, some of
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which are quite subtle, due to the local texture
irregularity that is one of its attractive features.

In the manual inspection process, the flaws are
marked using chalk or metallic tape. At garment
assembly, cutting into shapes is done on batches of
approximately fifty layers. This layering is manually
supervised, and the operators attempt to handle
flawed regions via cutting and excising, or overlap-
ping. In the context of automated manufacturing,
there is clearly significant scope for introducing in-
telligence to these phases: if location of automati-
cally detected flaws can be supplied to an automatic
cutter, then an optimal cutting plan may be followed,
i.e. flaws avoided with minimal wastage.

Obvious flaws, such as torn threads, can be cap-
tured by sizable deviations from the fixed back-
ground pattern. In this article, we assess a new and

powerful statistical methodology for less obvious
flaws – those which present a subtle local pattern but
which, due to their occurrence in an extended spatial
pattern, are easily picked out by the human eye.

Fig. 1 shows a sample of faults. The torn thread
‘‘splurges’’ can be detected through thresholding and
size of the contiguous area. The more difficult case
of faint aligned flaws will be investigated in this
article. Previous work on this data has included

Ž .Campbell et al. 1995 which used discrete Fourier
Žtransform texture descriptors the amplitude spec-

.trum in 32=32 subimage windows to provide input
to a trainable classifier system. In this work we study
one particular type of flaw only – a noticeable
highly aligned pattern, associated with torn fabric or
thread. In focusing on one type of flaw, we scan a
larger area of the image – pixel dimensions of

Fig. 1. Four different textile samples, rebinned to half their input dimensions and placed in the four quadrants seen here. Illustrated are
unclear torn threads, label and edging corrupts in the bottom two images; and linear flaws in the top two samples.
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around 500=500 are used in experiments. For this
reason, this work aims at being both practical and
task-specific.

The next section reviews the basis for the statisti-
cal cluster-finding and testing method. It assumes
that a point pattern cluster is to be found in a
background noise field. This section, Section 2, pre-
sents salient results from previous work in this area.
Another viewpoint on these results may be found by

Žperusing the software which implements this details
.of availability in Section 3 .

The preliminary image-processing steps are treated
Ž .in a section on experimentation Section 3 . This

involves thresholding and cleaning using mathemati-
cal morphology, followed by labeling and analysis of
contiguous areas in order to provide point pattern
data.

2. Model-based clustering

In our experimentation below, we will model the
Ž .data as a highly elliptical Gaussian, subject to

Poisson background clutter. The overall point pattern
will be derived by thresholding and by morphologi-
cal operators from the input image data. The data are
2-dimensional. To begin with, we discuss the model-
ing in the general context of distribution mixtures.

Consider data which are generated by a mixture
Ž . Ž .of Gy1 bivariate Gaussian densities, f x;u ;k
Ž .NN m , S , for clusters ks2, . . . ,G, and with Pois-k k

son background noise corresponding to ks1. The
overall population thus has the mixture density

G

f x ;u s p f x ;u ,Ž . Ž .Ý k k
ks1

where the mixing or prior probabilities, p , sum tok
Ž . y11, and f x;u sAA , where AA is the area of the1

data region. This is the basis for model-based clus-
Žtering Banfield and Raftery, 1993; Dasgupta and

Raftery, 1995; Murtagh and Raftery, 1984; Banerjee
.and Rosenfeld, 1993 .

The parameters, u and p , can be estimated effi-
ciently by maximizing the likelihood, sometimes also
called the mixture likelihood, namely

n

L u ,p s f x ;u ,Ž . Ž .Ł i
is1

with respect to u and p , where x is the ithi

observation.
In this work, we assume the presence of two

clusters, one of which is Poisson noise, the other
Gaussian. This yields the mixture likelihood

n 1
y1L u ,p s p AA qpŽ . Ł 1 2 '< <2p Sis1

=
1 T y1exp y x ym S x ym ,Ž . Ž .i i½ 52

where p qp s1.1 2

An iterative solution is provided by the expecta-
Ž .tion-maximization EM algorithm of Dempster et al.

Ž . Ž1977 . Let the ‘‘complete’’ or ‘‘clean’’ or
. Ž .‘‘output’’ data be y s x , z with indicator seti i i

Ž . Ž . Ž .z s z , z given by 1,0 or 0,1 . Vector z has ai i1 i2 i
Ž .multinomial distribution with parameters 1;p ,p .1 2

This leads to the complete data log-likelihood:

n 2

l y , z ;u ,p s z log p q log f x ;u .Ž . Ž .Ý Ý i k k k k
is1 ks1

ŽThe E-step then computes z s E z N x , . . . ,ˆi k i k 1
.x ,u , i.e. the posterior probability that x is inn i

cluster k. The M-step involves maximization of the
expected complete data log-likelihood:

n 2
)l y ;u ,p s z log p q log f x ;u .Ž . Ž .ˆÝ Ý i k k k i

is1 ks1

The E- and M-steps are iterated until convergence.
ŽFor the 2-class case Poisson noise and a Gauss-

.ian cluster , the complete-data likelihood is

zn i1p p1 2
L y , z ;u ,p sŽ . Ł 'AA < <2p Sis1

z i21 T y1=exp y x ym S x ym .Ž . Ž .i i½ 52

The corresponding expected log-likelihood is then
used in the EM algorithm. This formulation of the
problem generalizes to the case of G clusters, of
arbitrary distributions and dimensions.
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In order to assess the evidence for the presence of
a defect, we use the Bayes factor for the mixture
model, M , that includes a Gaussian density as well2

as background noise, against the ‘‘null’’ model, M ,1

that contains only background noise. The Bayes
factor is the posterior odds for the mixture model
against the pure noise model, when neither is favored

Ž < . Ž < .a priori. It is defined as Bsp x M rp x M ,2 1
Ž < .where p x M is the integrated likelihood of the2

mixture model M , obtained by integrating over the2

parameter space. For a general review of Bayes
factors, their use in applied statistics, and how to

Žapproximate and compute them, see Kass and
.Raftery, 1995 .

We approximate the Bayes factor using the
Ž . ŽBayesian Information Criterion BIC Schwarz,

.1978 . In the present context, this takes the form

2 log BfBIC

ˆs2 log L u ,p q2n log AAy6 log n ,Ž .ˆ

ˆwhere u and p are the maximum likelihood estima-ˆ
ˆŽ .tors of u and p , and L u ,p is the maximizedˆ

mixture likelihood. Any value of BIC greater than
zero corresponds to evidence for a defect. Conven-
tionally, BIC values between 0 and 2 correspond to
weak evidence, values between 2 and 6 correspond
to positive evidence, values between 6 and 10 corre-
spond to strong evidence, and values greater than 10

Žcorrespond to very strong evidence Kass and
.Raftery, 1995 . The BIC criterion is prone to false

positives but compared to other testing criteria per-
Žforms very well Titterington et al., 1985; Leroux,

.1992 , and this is backed up by experimental results.
The method described so far does not incorporate

any explicit mechanism for linearity- or alignment-
seeking. When there is only one flaw in the image,
corresponding to a single Gaussian cluster, this does
not seem to matter. The unconstrained Gaussian
density tends to adapt to what is in the image,

Žfinding a feature that is highly linear i.e. long and
.thin if it is present. However, if there are several

flaws, perhaps intersecting one another, a more ex-
plicit incorporation of linearity might be advanta-
geous. We now indicate briefly how this can be
done.

In model-based clustering, the covariance matrix
ŽS associated with a cluster is parametrized Banfield

. Tand Raftery, 1993 as SslDAD , where l is the
largest eigenvalue of S, D is the matrix of eigenvec-

� 4tors, and Asdiag 1,a . Each of the three compo-
nents of this decomposition of the covariance matrix
corresponds to a geometric and visually intuitive
property of the cluster that it describes. Thus, l

corresponds to the Õolume of the cluster, D to its
Ž .orientation, and A or equivalently here, a to its

shape. The value a is the ratio of second to first
eigenvalues. For a close to 1, clusters will be spheri-
cal; while for values approaching 0, the clusters will

Žbe very linear i.e. their members will be highly
.aligned .

ŽThe user or program, e.g. using Bayes factors as
.described below , can set or determine values of l to

Fig. 2. Image used for experimentation referred to as d8.
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control the cluster volume, D to control orientation,
and A to control shape. By constraining some or all
of l, D and A to be equal across clusters, the
finding of clusters of different types can be priori-
tized. In this work, we are interested only in letting
the data determine the best value for A which
amounts to determining the best value for a . Murtagh

Ž .and Raftery 1984 assumed user-specification of a .
ŽA maximum likelihood estimate of the clusters using

.EM may additionally be used automatically to de-
termine an optimal value of a in the following way.

Take a set of n points comprising a Gaussian
Ž .cluster n points , with spatially homogeneous Pois-1

Ž .son background n points , and let the sample0

covariance matrix for the cluster have spectral, or
ˆ Tsingular value, decomposition SsLV L . The maxi-

mized classification log-likelihood of the data, with
a assumed known, is

2 lsy nyn 2log 2p q2 1y log 2Ž . Ž . Ž .Ž .0

< < y1q log A y2n log tr V A rnŽ . Ž .Ž .1 k 1

y2n log AA .Ž .0

The ‘‘profile likelihood’’ with respect to a is
then maximized. This results in a likelihood equation
which reduces to the following simple expression for
the estimate of a : asv rv i.e. the ration ofˆ 2 1

Ž .eigenvalues Dasgupta and Raftery, 1995 . This rein-
Ž .forces the approach of Murtagh and Raftery 1984

by casting this problem in a likelihood framework.
To summarize, we seek a highly elliptical Gauss-

ian cluster superimposed on a homogeneous Poisson

Fig. 3. Image used for experimentation referred to as d10.
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background. Furthermore we use the BIC quality
criterion for the fit of this 2-cluster mixture model to
the data.

3. Sample processing of two images

Figs. 2 and 3 show the images used. The image
Žshown in Fig. 2 was cropped of edging to avoid

undesired effects on thresholding and other opera-
.tions and, as shown, is of dimensions 415=501.

The image shown in Fig. 3 is of dimensions 512=

512. A simple thresholding using a 3-sigma detection
Žlimit i.e. image mean value q3 times the image

.standard deviation was applied. A large number of
Žthresholded pixel values remained. An opening ero-

.sion followed by dilation was applied, with 3=3
ŽŽ . Ž . Ž ..structuring element, SE, 0,1,0 , 1,1,1 , 0,1,0 , i.e.

a cross shape. A 3=3 SE of one-values had worked
particularly well on Fig. 2, whereas a 2=2 SE of
one-values had worked particularly well on Fig. 3, so
the cross-shaped SE was chosen to cater for both
cases. Fig. 4 shows the result of thresholding and
applying the opening to Fig. 3. The contiguous
thresholded regions were then labeled, and their
centroids obtained. In this way a point pattern set
was derived from these images.

To counteract difficulties in dealing with many
Žunweighted points for example, size-related weights
.were not investigated , we excluded from considera-

Ž .tion all centroids associated with the numerous
smallest contiguous regions. A lower limit of five

Fig. 4. Image d10 following thresholding and a morphological opening.



( )J.G. Campbell et al.rPattern Recognition Letters 18 1997 1539–1548 1545

Fig. 5. Analysis of image d8. The point detections derived from the image shown in Fig. 2 are shown in pixel coordinates. The initial
Ž .classification consists of random assignments. The final classification is an extremely elongated elliptical cluster black with a Poisson

Ž .noise background white .

pixels was imposed, as well as a rejection rule for
labeled regions too close to the image boundary.
Figs. 5 and 6 show the point sets used with the initial
Ž .random and final configurations; dark points indi-
cate those alleged to belong to the cluster. In each

case, the final cluster assumes an elliptical shape
arising from the Gaussian model. A satisfactory solu-

Ž .tion was obtained Figs. 5 and 6 with corresponding
BIC values of 19.67 and 41.33, respectively. Thus,
in each case, BIC correctly indicated strong evidence

Fig. 6. Analysis of image d10. The point detections derived from the image shown in Fig. 3 are shown in pixel coordinates. As for the
Ž .previous figure, the initial classification consists of random assignments; and the final classification is a fit of an elongated ellipse black

Ž .with background noise white .
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Ž .for the presence of a defect since BIC)10 . Fig. 5
also show that the model-based clustering method
correctly identified where the defects were.

The clustering method can produce different re-
Žsults for different starting values although the re-

sults are highly consistent: more than 80% of the
time, in the case of examples discussed in this

.article . It is also the case that the ability of the
method to detect flaws declines if the criterion for
deriving the point pattern from the image is not

Žstringent enough e.g. if a lower limit of less than
.five pixels is used in images d8 and d10 . However

the BIC value was invariably reliable as an indicator
of the quality of the solution. Good results corre-

Žsponded to large BIC values of the order of 10–40
.for these examples , while bad ones yielded BIC

values that were either negative or fairly small in
magnitude. The BIC criterion was also very reliable
for treating data without any apparent aligned set of
points: point sets consisting of Poisson-distributed
data gave rise to small positive values of BIC for a
few such simulations, but overwhelmingly these sim-
ulations gave rise to negative values. We see there-
fore that the BIC criterion provides a ‘‘safety net’’ in
regard to starting configurations and in regard to the
no cluster or no fault situation.

ŽThe initial image processing thresholding, open-
.ing, labeling, object centroiding was carried out in

IDL. The analysis of the point patterns was carried
out in S-Plus. The code used for the latter is avail-
able in the S archive at the Statlib server,
http:rrlib.stat.cmu.edurSrmclustem.one and also at

Ž .Fig. 7. A Hough transform result for image d8 see Fig. 2 , using threshold 160 on the accumulator array. This method for finding aligned
points may be contrasted with the model-based clustering result shown in Fig. 5.
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http:rrwww.stat.washington.edurfraleyrsoftware.
html. From Statlib, the code can also be obtained by
email, by sending a message of the form ‘‘send
mclustem.one from S’’ to statlib@lib.stat.cmu.edu.
For point patterns with numbers similar to those
shown in the examples, the computational time re-
quired is insignificant.

The Hough transform is the traditional method for
Ž .alignment-detection Duda and Hart, 1973 and is

also fast. Figs. 7 and 8 show two results for the
image d8. Note that pixels were used for the Hough
transform, so therefore the size of potential faulty
regions of the fabric were taken into account. This is

Žadvantageous cf. discussion above on the general-
ization of the modeling method to account for

.weights . As opposed to this, the thresholding of the
accumulator array is highly sensitive and Figs. 7 and
8 illustrate this. As seen in the latter, fitting multiple
lines is possible. This is not necessarily advanta-
geous in the case of the current problem since, as
mentioned earlier, the thread-based faults are likely
to be unique in a given area of fabric. With further

Žprocessing of the Hough transform results perhaps
.even with incorporation of a BIC criterion! , this

method could provide very similar results to those
provided by the modeling approach.

Ž .Fig. 8. A Hough transform result for image d8 see Fig. 2 , using threshold 100 on the accumulator array. This less stringent but typical
threshold gives rise to the multiple lines. Compared to the model-based clustering result shown in Fig. 6, a conservative threshold selection
such as shown here is susceptible to false alarms.
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4. Conclusion

The question of whether or not a cluster is present
in a data set is a recurrent one with a long history.
The model-based methodology described here, with
its attendant inferential detection criterion, is one
which has worked well on other data. The model

Ž .assumes a possibly very linear, i.e. long and thin
Gaussian distribution for the cluster, and a uniform
distribution for noise, assumed to arise from a spatial
Poisson process. Here we apply this approach to the
difficult problem of detecting relatively faint aligned
faults in denim textiles. We have also devoted con-
siderable attention to the processing chain which
extends from the capture of the images. Finally, it
should be noted that the operations carried out here
are very fast, of the order of a second on Sparcsta-
tion 20 class platforms.

This work has focused on the aligned point pat-
tern detection issue. A comprehensive fault detection
system would need also to detect large discolored or
differently textured areas, to distinguish heavily tex-
tured boundary areas, and various other special cases.
The problem addressed here is quite an important
one. We see its use as a component of a fault
detection system, driven by a knowledge-based con-
trol module.
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