
Model-Based Methods for Textile Fault Detection

J. G. Campbell,1 C. Fraley,2,3 D. Stanford,2 F. Murtagh,4 A. E. Raftery2

1 Faculty of Informatics, University of Ulster, Londonderry BT48 7JL, Northern Ireland

2 Department of Statistics, Box 354322, University of Washington, Seattle, WA 98195-4322

3 MathSoft Inc., 1700 Westlake Avenue N., Suite 500, Seattle, WA 98109

4 School of Computer Science, The Queen’s University of Belfast,
Belfast BT7 1NN, Northern Ireland

ABSTRACT: Addressing the problem of automatic fault detection in
woven and dyed fabric, we discuss a number of new statistical
model-based methods and relate them to a first stage of point/local
detection and a second stage of extended pattern detection. One
model-based method defines a maximum likelihood binarization of
the image. In another model-based method, we describe a discrete
Fourier transform-based texture analysis technique that is highly ef-
fective for woven textiles in discriminating subtle flaw patterns from
the pronounced background of repetitive weaving pattern and ran-
dom clutter. Finally, we describe a model-based clustering method
that can be employed to aggregate perceptual groupings of point and
local detections. © 1999 John Wiley & Sons, Inc. Int J Imaging Syst Technol,

10, 339–346, 1999

I. FLAW DETECTION IN TEXTILE FABRIC

Obstacles to machine inspection of textile fabrics include the diffi-
culty of characterizing defects and the high data rate. In the manual
inspection process, the flaws are marked using chalk or metallic
tape, to be later handled via cutting and excising. In the context of
automated manufacturing, there is clearly significant scope for in-
troducing intelligence to these phases. If automatically detected flaw
location can be supplied to an automatic cutter, then an optimal
cutting plan may be followed, i.e., allowing flaws to be avoided with
minimal waste. Moreover, manual inspection is known to be inef-
ficient due to its repetitive and tedious nature (Newman and Jain,
1995; Sanders and McCormick, 1987).

Obvious flaws can be detected by sizable and abrupt tone devi-
ations, perhaps using low-pass filtering to absorb small normal
spots. In this article, we pay attention to more subtle flaws—those
that present a minor local deviation but which, due to their occur-
rence in an extended spatial pattern, attract the attention of the
human eye.

Flaws may fall into one of the following classes:

1. Local point flaws, like those mentioned above, are character-
ized by a severe tone change over only a few pixels or very
few millimeters (e.g., holes). Because these are easy to detect
by simple variations on thresholding, they are not further
discussed here.

2. Medium scale flaws are characterized by change oftexture
over a number of millimeters.

3. Extended flaws (e.g., exhibiting a linear pattern extending
over a number of centimeters). There is a space-intensity
duality here. A very intense point flaw is easy to detect by the
inspector (and the consumer). At the other extreme, a very
extended pattern of very faint local flaws is quite perceptible
by a consumer, but presents significant inspection challenge.

Many extended flaws are difficult to detect locally, due to their
low intensity with respect to a strong background spatial pattern.
Human perception can pick them up as an anomalous pattern and it
is this ability that we attempt to replicate.

At a basic level (i.e., considering local and medium-scale flaws),
we note that flaw detection differs from mainstream pattern classi-
fication in that the range of possible flaws is not easily characterized,
but using a model, “normal” can be characterized and flaws then
defined as significant deviation from “normal.” In addition, consid-
ering extended patterns (clusters) of local and medium-scale flaws,
these clustersdo form identifiable shapes.

This leads to a general two-stage detection process (see Table I):
first, detection of local and medium-scale flaws using an anomaly
criterion, which for some fabrics may be a simple binarization; and
second, a model-based clustering method.

Section II describes local anomaly detection through a novel
binarization method. Section III proceeds to medium-scale flaw
detection through texture analysis. Thus, Sections II and III address
the first stage of our flaw detection program. Finally, Section IV
considers detection of extended flaw patterns by addressing the
second stage of our detection program.

The model-based clustering method described in Section IV is
novel in considering the flaws in terms of a superimposed linear
point pattern and a background uniform point pattern. The task is,
therefore, a distribution mixture one. The linear point pattern isCorrespondence to:F. Murtagh
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modeled as a very linear, highly elliptical Gaussian shape. This is
made operational, mathematically, by appropriately fine-tuning the
variances and covariances of the Gaussian distribution. The good-
ness of a given parameterization of the distribution mixture at any
time is judged on the basis of a Bayesian criterion, which allows one
such parameterization (or model) to be assessed relative to another.

II. FAST IMAGE BINARIZATION
For this model-motivated approach, we take the image intensity
distribution as the basis for creating a binary version of the image.
We deal with a combined mixture density of twounivariateGauss-
ian distributionsfk( x; u ) ; 1(mk, sk). The overall population has
the mixture density

f~x; u! 5 O
k51

2

pk fk~x; u!

where the mixing or prior probabilities,pk, sum to 1.
When the mixing proportions are assumed equal, the log-likeli-

hood takes the form

l ~u! 5 O
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The expectation-maximization (EM) algorithm is then used to

iteratively solve this (see Celeux and Govaert, 1995, and Section IV
below).

Figure 1 shows a selection of eight images of fabric with various
thread or tone imperfections or faults. The corresponding binarized
images are shown in Figure 2. The image in the lower row, second
from the left, is now taken as a typical case. Figure 3, bottom, shows
the horizontal and vertical marginal profiles based on the original
image (Fig. 1). Little of significance can be noted. Figure 3 (top)
shows the horizontal and vertical marginal profiles based on the
binarized image (Fig. 2). The upper left profile in Figure 3 shows
little of interest. The upper right profile, corresponding to the hori-
zontal distribution in our fabric image, is clear-cut in its portrayal of
the thread faults in this image. Typically up to 100 EM iterations are
required, these being carried out on a fixed number of histogram
bins.

The model-based binarization (adaptive thresholding) addresses
well-known data quality problems—sensing problems such as tem-
poral calibration drift, coupled with spatial variability of sensitivity
and illumination. As such, it is necessary to estimate parameters
only infrequently.

III. TEXTURE ANALYSIS USING A WINDOWED
FOURIER TRANSFORM
Denim fabric yields a very sparse frequency domain, associated with
the highly harmonic pattern due to weaving (see Figs. 5 and 8,
discussed below). A 323 32 windowed two-dimensional DFT is
used to provide a local feature extractor. This space-dependent
Fourier transform bears some similarity to the short-time Fourier
transform (STFT) (Oppenheim and Schafer, 1979). This method is
particularly well suited to woven textile, because it allows the
underlying woven pattern to be especially parsimoniously modeled
(i.e., characterizable by very few features). By using the power

Table I. Preprocessing and extended pattern detection.

Stage 1: preprocessing
P1. Binarization using a mixture model, suitable for knitted textiles.
P2. Anomalous texture detection (texture binarization) using DFT

features; suitable for woven textiles.
Stage 2: extended pattern detection

E1. Model-based spatial-pattern clustering; suitable for arbitrarily
shaped defects.

E2. Linear pattern detection via Hough transform (Campbell et al.,
1998); suitable for extended linear defects.

E3. Point pattern fusion via morphological filtering (Campbell and
Murtagh, 1998); suitable for medium-scale defects.

In stage 1, we select P1 or P2. In stage 2, we select E1 or E2 or E3. DFT, discrete
Fourier transform.

Figure 1. A selection of eight fabrics showing different types of thread and dyeing flaws.
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spectrum component, we note that we assure shift invariance, i.e.,
features are invariant with respect to the phase of the moving
window with respect to weaving pattern.

As an illustration, Figure 4 demonstrates the effectiveness of the
DFT for fixed-pattern characterization. The fixed-pattern (middle)
image results from only 0.5% of the Fourier components. The
variance of the input image decreased nearly threefold, following
removal of the fixed pattern (see image on right hand side in Fig. 4).

The effectiveness of this use of windowed DFT, as a local texture
flaw detector, has been described by Campbell and Murtagh (1998).
Assuming that the distribution of the texture feature (defined as the
DFT of the 323 32 subimage) can be modeled as Gaussian, the
Mahalanobis distance in feature space follows ax2 distribution.
Thus, a threshold on flaw detection can be easily specified which is
based on prescribed false-alarm rates. That is, this procedure is
based on an ROC (receiver operating characteristic) analysis of the
detection problem using a Neyman-Pearson criterion. Campbell and
Murtagh (1998) check the validity of the false-alarm rates empiri-
cally and find considerable agreement with theory. Detailed discus-
sion and formulae are given in Campbell and Murtagh (1998).

The DFT-Mahalanobis distance detector is especially amenable
to real-time implementation. Its implementation in a (possibly ana-
log) neural network structure is discussed in Campbell et al. (1995).
Moreover, the components (DFT, quadratic form, threshold) are
easily and efficiently implemented using DSP processor technology.

Recent work by Sari-Sarraf and Goddard (1998) has successfully
applied a wavelet transform to similar (woven textile) data. We note
the close analogy between the space-dependent Fourier transform
used here, the Gabor transform, and the wavelet transform (Masters,
1993). Other recent work includes the application of Gaussian
Markov random field modeling to detect flaws in woven textiles
including denim (Cohen et al., 1991), the use of the wavelet trans-
form (Jasper et al., 1996), and of neural networks (Hoffer et al.,
1996).

IV. MODEL-BASED CLUSTERING
As indicated in Table I, stage 2 of our processing involves any of a
selection of extended spatial pattern detection techniques. The ap-

plication of the Hough transform for linear flaws is described in
Campbell et al. (1998). The application of morphological filtering
for false-alarm elimination inmedium-scaledefects is described in
Campbell and Murtagh (1998).

In this section, we discuss the modeling of the (preprocessed)
two-dimensional point pattern data as a (highly elliptical) Gaussian,
subject to Poisson background clutter. To begin, we discuss the
modeling in the general context of distribution mixtures.

Figure 3. Marginal distributions for the image shown in the lower of
the two rows, second from left, in the previous two images. Top:
Marginals based on binarized image. Bottom: Marginals based on
original image.

Figure 2. Binarized versions of the fabrics shown in the previous image. Method: distribution mixture based on intensity distributions.
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A. The Distribution Mixture Problem. Consider data that are
generated by a mixture of (G 2 1) bivariate Gaussian densities,
fk( x; u ) ; 1(mk, Sk), for clustersk 5 2, . . . , G, and with
Poisson background noise corresponding tok 5 1. The overall
population thus has the mixture density

f~x; u! 5 O
k51

G

pk fk~x; u!

where the mixing or prior probabilities,pk, sum to 1, andf1( x; u )
5 !21, where! is the area of the data region. This is the basis for
model-based clustering(Banfield and Raftery, 1993; Dasgupta and
Raftery, 1998; Murtagh and Raftery, 1984; Banerjee and Rosenfeld,
1993).

The parameters,u andp, can be estimated efficiently by maxi-
mizing the mixture likelihood

L~u, p! 5 P
i51

n

f~xi; u!,

with respect tou andp, wherexi is the i -th observation.
In this article, we assume the presence of two clusters, one of

which is Poisson noise, the other Gaussian. This yields the mixture
likelihood

L~u, p! 5 P
i51

n Fp1!
21 1 p2

1

2pÎuSu

3 expH2
1

2
~xi 2 m!T O21

~xi 2 m!JG ,

wherep1 1 p2 5 1.

B. Implementation: Iterated E- and the M-Steps. An itera-
tive solution is provided by the EM algorithm of Dempster et al.
(1977). Let the “complete” (or “clean” or “output”) data beyi 5 ( xi,
zi) with indicator setzi 5 ( zi1, zi2) given by (1, 0) or (0, 1). Vector
zi has a multinomial distribution with parameters (1;p1, p2). This
leads to thecomplete data log-likelihood:

l ~y, z; u, p! 5 O
i51

n O
k51

2

zik@log pk 1 log fk~xk; u!#

The E-step then computesẑik 5 E( zik u x1, . . . , xn, u ), i.e., the
posterior probability thatxi is in clusterk. The M-step involves
maximization of theexpected complete data log-likelihood:

l* ~y; u, p! 5 O
i51

n O
k51

2

ẑik@log pk 1 log fk~xi; u!#.

The E- and M-steps are iterated until convergence.
For the two-class case (Poisson noise and a Gaussian cluster), the

complete data likelihood is

L~y, z; u, p! 5 P
i51

n Fp1

!G zi1F p2

2pÎuSu

3 expH2
1

2
~xi 2 m!T O21

~xi 2 m!JG zi2

The corresponding expected log-likelihood is then used in the EM
algorithm. This formulation of the problem generalizes to the case of
G clusters, of arbitrary distributions and dimensions.

C. Assessment: The Bayes Information Criterion. In order
to assess the evidence for the presence of a defect, we use theBayes
factor for the mixture model,M2, which includes a Gaussian density
as well as background noise, against the “null” model,M1, which
contains only background noise. The Bayes factor is the posterior
odds for the mixture model against the pure noise model, when
neither is favoreda priori. It is defined asB 5 p( xuM2)/p( xuM1),
wherep( xuM2) is the integrated likelihoodof the mixture model
M2, obtained by integrating over the parameter space. For a general
review of Bayes factors, their use in applied statistics, and how to
approximate and compute them, see Kaas and Raftery (1995).

We approximate the Bayes factor using the Bayesian Information
Criterion (BIC) (Schwarz, 1978). In the present context, this takes
the form:

2 log B < BIC 5 2 log L~û, p̂! 1 2n log ! 2 6 log n,

whereû and p̂ are the maximum likelihood estimators ofu andp
andL(û, p̂) is the maximized mixture likelihood. Any value of BIC
greater than zero corresponds to evidence for a defect. Convention-
ally, BIC values between 0 and 2 correspond to weak evidence,
values between 2 and 6 correspond to positive evidence, values
between 6 and 10 correspond to strong evidence, and values greater
than 10 correspond to very strong evidence (Kaas and Raftery,

Figure 4. Analysis and removal of fixed pattern.
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1995). The BIC is prone to false positives but performs very well
compared to other testing criteria (Titterington et al., 1985; Leroux,
1992). This is backed up by experimental results (Dasgupta and
Raftery, 1998).

D. Automated Linearity Finding and Testing. The method
described so far does not incorporate any explicit mechanism for
linearity or alignment seeking. When there is only one flaw in the
image, corresponding to a single Gaussian cluster, this does not
seem to matter. The unconstrained Gaussian density tends to adapt
to what is in the image, finding a feature that is highly linear (i.e.,
long and thin) if it is present. However, if there are several flaws,
perhaps intersecting one another, a more explicit incorporation of
linearity might be advantageous. We now indicate briefly how this
can be done.

In model-based clustering, the covariance matrixS associated
with a cluster is parameterized (Banfield and Raftery, 1993) asS
5 lDADT, wherel is the largest eigenvalue ofS, D is the matrix
of eigenvectors, andA 5 diag{1, a}. Each of the three compo-
nents of this decomposition of the covariance matrix corresponds
to a geometric and visually intuitive property of the cluster that
it describes. Thus,l corresponds to thevolumeof the cluster,D

to its orientation,andA (or equivalently here,a) to its shape.The
valuea is the ratio of second to first eigenvalues. Fora close to
1, clusters will be spherical; while for values approaching 0, the
clusters will be very linear (i.e., their members will be highly
aligned).

The user (or program, e.g., using Bayes factors as described
below) can set or determine values ofl to control the cluster
volume,D to control orientation, andA to control shape. By con-
straining some or all ofl, D, andA to be equal across clusters, the
finding of clusters of different types can be prioritized. In this article,
we are interested only in letting the data determine the best value for
A, which amounts to determining the best value fora. Murtagh and
Raftery (1984) assumed user specification ofa. A maximum like-
lihood estimate of the clusters (using EM) may additionally be used
automatically to determine an optimal value ofa in the following
way.

Take a set ofn points comprising a Gaussian cluster (n1 points),
with spatially homogeneous Poisson background (n0 points), and let
the sample covariance matrix for the cluster have spectral, or sin-
gular value, decompositionŜ 5 LVLT. The maximized classifica-
tion log-likelihood of the data, witha assumed known, is

Figure 5. A sample set of 16 results of model-based clustering. Black diamonds show aligned points. Crosses show background noise. See
text for discussion.
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2l 5 2~n 2 n0!~2 log~2p! 1 2~1 2 log 2!! 1 log~uAu!

2 2n1log~tr~VkA
21!/n1! 2 2n0log~!!.

The “profile likelihood” with respect toa is then maximized.
This results in a likelihood equation that yields an estimate ofa as
the ratio of eigenvalues of the estimated sample crossproduct matrix
for the Gaussian component (Dasgupta and Raftery, 1998). This
reinforces the approach of Murtagh and Raftery (1984) by casting
this problem in a likelihood framework.

To summarize, we seek a highly elliptical Gaussian cluster
superimposed on a homogeneous Poisson background. Furthermore,
we use the BIC quality criterion for the fit of this two-cluster mixture
model to the data.

E. Linear Pattern Detection through Model-Based Clus-
tering. Figure 5 shows a range of point patterns randomly gener-
ated in line with the point patterns representing textile flaws, which
will be looked at in the next subsection. In each case, in a region of
dimensions [0, 100]3 [0, 100], we generated (1) eight linear points,
approximately vertical, and (2) an additional set of eight background
uniformly distributed points. The linear points were all generated at
a horizontal pixel that was uniformly distributed in [25, 75]; each
point then had a uniformly distributed value in [0, 5] added. The
vertical component of these points was uniformly distributed in [1,
100] with a uniform value in [0, 5] added. The background points
were each uniformly distributed in [0, 100] with a uniform pertur-
bation from [0, 5].

Figure 5 shows the result of model-based clustering, where the
points represented as black diamonds are members of the linear
cluster and the crosses are points not assigned to the linear class. The
corresponding BIC values are revealing. From upper left, they are
2.4, 25.1, 1.0,26.2 (comprising row 1); 3.2, 7.1, 3.0,24.3 (com-
prising row 2);29.4, 25.3, 28.5, 23.7 (comprising row 3); and
0.7, 3.3,22.0, 215.1 (row 4). A few comments on these follow.

In Figure 5, row 1, result 1 is excellent; result 2 is mediocre and
is indicated as such by the low BIC value; result 3 is acceptable,
even if distant aligned points are lost; and result 4 is good, with the
low BIC value indicating some lack of tight linearity. In row 2, all
results are very good. In row 3, results 1, 2, and 4 are very good and
result 3 is acceptable. In row 4, results 1, 2, and 3 are reasonable to
very good. Result 4 shows one very poor result, which is clearly
indicated by the very low BIC value.

We see that excellent results can be obtained and that the BIC
value can valuably show up problematical results. Results on these
small point pattern sets, including plotting, were practically instan-
taneous.

F. High-Level Analysis. For model-based clustering, image pre-
processing consists of cropping image boundary; simple threshold-
ing using a three-sigma detection limit; a morphological opening
with a 3 3 3 cross element; labeling contiguous regions; rejecting
regions of low cardinality; and replacing retained regions with their
centroids. The morphological operation is being used here as a
decision filter; intuitively it can be seen to eliminate a particular
class of false alarms. Figure 6 shows a sample denim fabric image,
Figure 7 shows the thresholded and opened image, and Figure 8
(left) shows the point pattern retained for analysis. Figures 9 and 10
show another example. To explain the automatic detector of aligned
point patterns, we apply a distribution mixture methodology in an
unusual way. This methodology is both effective and computation-
ally highly efficient.

Figures 8 and 10 (left) show the random starting configurations
and the right panels show the final, optimized configurations. The
BIC is highly indicative of the best solution, indicating strong
evidence for the presence of a defect. The clustering method can
produce different results for different starting values, although the
results are highly consistent and the BIC value indicates when the
solution is not a good one. The ability of the method to detect flawsFigure 6. Image used for experimentation referred to as d10.

Figure 7. Image d10 following thresholding and a morphological
opening.
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declines if too many points are used. The BIC’s value was very
reliable for treating data without any apparent aligned set of points.
The clustering and BIC approach offers advantages in terms of
threshold selection and robustness.

Image preprocessing was carried out in IDL. The analysis of the
point patterns was carried out in S-Plus. The code used for the latter
is available in the S archive at the Statlib server, http://lib.stat.cm-
u.edu/S/mclustem.one and also at http://www.stat.washington.edu/
fraley/software.html.

The computation time for this model-based clustering is domi-
nated by the formation of the Cholesky factor of the weighted
sample crossproduct matrix, for the calculation of det(Sk) in the
M-step, which isO(np2). For a given data dimensionality,p, this is

linear in the number of observations. The latter number,n, is also
small for most applications. A few EM iterations are required to
reach convergence.

V. CONCLUSION
We have introduced model-based methods to counter the difficulties
that surround the characterization of flaws. Generally, a flaw is
defined by its departure from normality, so that characterization of
normality is an important part of any model. This is typical of “data
mining” type problems.

We described a range of model-based methods for the detection
of flaws in knitted and woven textiles and discussed the bases of
these methods. These ranged over image thresholding or binariza-
tion, the subtraction of “background” fixed pattern, and model-based
linearity finding.

We have indicated the effectiveness of these model-based meth-
ods in practical case studies. We concentrated on examples chosen
for their detection difficulty. We stressed theperceptual grouping
nature of the extended fault detection problem. Our methods are
effective and efficient in dealing with this problem.
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