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Computing Bayes Factors By Combining Simulation
and Asymptotic Approximations

Thomas J. DiCicclo, Robert E. KASS, Adrian RAFTERY, and Larry WASSERMAN

The Bayes factor is a ratio of two posterior normalizing constants, which may be difficult to compute. We compare several methods
of estimating Bayes factors when it is possible to simulate observations from the posterior distributions, via Markov chain Monte
Carlo or other techniques. The methods that we study are all easily applied without consideration of special features of the problem,
provided that each posterior distribution is well behaved in the sense of having a single dominant mode. We consider a simulated
version of Laplace’s method, a simulated version of Bartlett correction, importance sampling, and a reciprocal importance sampling
technique. We also introduce local volume corrections for each of these. In addition, we apply the bridge sampling method of
Meng and Wong. We find that a simulated version of Laplace’s method, with local volume correction, furnishes an accurate
approximation that is especially useful when likelihood function evaluations are costly. A simple bridge sampling technique in
conjunction with Laplace’s method often achieves an order of magnitude improvement in accuracy.

KEY WORDS: Bartlett corrections; Laplace’s method; Model selection; Monte Carlo.

1. INTRODUCTION

Recently developed methods for simulating observations
from posterior distributions greatly enhance the applicabil-
ity of Bayesian inference. These methods include Markov
chain Monte Carlo methods (Besag, Green, Higdon, and
Mengersen 1995; Smith and Roberts 1992; Tierney 1994),
the sampling importance resampling (SIR) algorithm (Rubin
1987, 1988), and the weighted likelihood bootstrap (Newton
and Raftery 1994). However, the simulation methods avoid
calculation of the posterior normalizing constant, which is
necessary for computing Bayes factors. Several ways of
estimating the normalizing constant have been proposed
(Carlin and Chib 1995; Chib 1995; Gelfand and Dey 1994;
Gelman and Meng 1993; Green 1995; Kass and Wasser-
man 1992; Lewis and Raftery 1994; Meng and Wong 1993;
Newton and Raftery 1994; Raftery 1995; Verdinelli and
Wasserman 1995). It was not clear to us whether any of
these is satisfactory for easy, routine use in a wide variety
of well-behaved problems—well-behaved in the sense that
the posterior would have a single, dominant mode. Thus we
investigated several alternative methods, and modified some
of these (in simple ways) to make them more effective. This
article reports our results.

The Bayes factor for testing H; versus H, based on data
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where (§ and 6 are parameters and 7; and m are the priors
under the respective competing models p; and p,. (For a
review, see Kass and Raftery 1995.) The integrals in Bi,
have the form C = [ h(6)df, where h(8) = L(6)n () and
L(8) = p(y|@) with y fixed. We are concerned with the
estimation of C' via posterior simulation.

We consider a simulated version of Laplace’s method,
simulated versions of Bartlett correction, importance sam-
pling, and a reciprocal importance sampling technique. We
also introduce modifications to each of these. In addition,
we apply the bridge sampling method of Meng and Wong
(1993).

The modifications of Laplace’s method and the Bartlett
correction simply estimate the (unknown) value of the pos-
terior probability density at the mode using the (simulated)
probability assigned to a small region around the mode
divided by its area. The importance sampling techniques
are modified by restricting them to small regions about the
mode. In Section 2 we describe the various methods for es-
timating C' and their volume-corrected versions. In Section
3 we briefly discuss the problem of estimating the loca-
tion and scale for the normal approximation to the pos-
terior, which is used throughout. In Section 4 we provide
theoretical remarks about these methods; in Section 5 we
present numerical comparisons in simplified settings; and in
Section 6 we analyze a nonlinear regression example. We
present some closing remarks in Section 7. The main con-
clusion of this article is that the volume-corrected version
of Laplace’s method furnishes an accurate approximation
that is especially useful when likelihood function evalua-
tions are costly. A simple bridge-sampling technique used
in conjunction with Laplace’s method can achieve an order-
of-magnitude improvement in accuracy.

2. METHODS FOR ESTIMATING C

Throughout, we assume that we have a sample 64, .. .,0,,
from the posterior distribution. For simplicity, when com-
puting error rates, we assume that the sample is indepen-
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dent, although in practice our methods can be used with de-
pendent samples as well. We also assume that it is possible
to evaluate the nonnormalized posterior h(6) = L(6)h(9).
Recall that the posterior density is p(6|y) = h(6)/C, where
C = [h(6)do

Note that C = h(6)/p(6]y). If we can obtain an estimate
of the posterior density at any point 6, then we can estimate
C by C = h(6o)/p(boly). This idea has been mentioned
by Raftery (1995) and discussed in detail by Chib (1995).
Laplace’s method is a version of this; it uses a normal esti-
mate of the posterior density. We discuss this in more detail
in Section 2.6, but we take this opportunity to point out that
we are interested mainly in problems in which estimating
the posterior density is difficult, so that this strategy might
not be feasible.

We denote the estimators of C based on Laplace’s
method, Bartlett correction, importance sampling, and re-
ciprocal importance sampling by CL, Cg, C, and Cg. In
addition, we introduce alternatives to these that we denote
by C’ﬁ, C’g,. C’f‘, and C’ﬁ. We refer to the alternatives as
“yolume-corrected” or “localized.” In this section we state
the forms of the estimators. We defer theoretical remarks
about C; and the Bartlett correction estimators to Sec-
tion 4.

Let § be the posterior mode and let 3 be minus the in-
verse of the Hessian of the log-posterior evaluated at 6.
If these cannot be obtained analytically, then they can be
estimated via simulation; see Section 3. The normal approx-
imation to the posterior is ¢(-) = ¢(-;8,3), where ¢(-;a, V)
denotes a normal density with mean vector a and covari-
ance matrix V. Let B = {8 € 6;[|(6 — 8)'S~1(6 — §)||? <
62}, Wthh has volume v = 6P7r1’/2|21/2|/1"(p/2 + 1). Let
P(B) = [ p(8ly)dd and let P be the Monte Carlo estimate
of P( ), that is, the proportlon of the sampled values inside
B. Also, we write ®(B fB &(6; 6, E df = a.

2.1 Laplace Approximation

The Laplace approximation to C is obtained by approx-
imating the posterior with a normal distribution. This ap-
proximation has a long history. (A good reference, which re-
newed interest in the method, is Tierney and Kadane 1986.)
The approximation is given by

A (é) — (97 \P/2|5 /2 k(B
6 = 2505 (2m)P/2| 5|2 h(8). @)

This approximation has error of order O(n~1); that is, C =
CL(14 O(n™1)); see (A.2) in the Appendix.
The modification of Cj, is motivated by the observation

that

_ h®) _mb) ¢0) kO o
p(ly)  #(0) p(bly) . ¢(6) P(B)
This observation suggests the volume-corrected estimator
A h‘(A) o
C = T X
L= 56) P (3)

which was discussed by Kass and Wasserman (1992).
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2.2 Bartlett Adjustment

Bartlett adjustments are corrections that can improve
first-order approximations. (See DiCiccio and Stern 1993
for a detailed discussion and further references.) The
Bartlett-adjusted Laplace estimator is

B
CA’B:CA’L'{%} , 4)

where W (6) = 2log(h(d)/h(6)) and
EWly) = —

Ignoring simulation error, this approximation has error of
order O(n~2), and thus improves the Laplace estimator by
an order of magnitude.

The local volume-corrected modification is defined by

where
N = g P(xp42 < xp(@)),
Z’L 1W( (01)
W |B,
( | ) 21:1 ZB( ) ’

and Zp is the indicator function for B.

2.3

Importance sampling is a common technique for estimat-
ing expectations using simulation (Geweke 1989; Hammer-
sley and Handscomb 1964). The constant C' may be esti-

Importance Sampling

mated by importance sampling as follows. Draw 61, .. L 0m
from a distribution @ with density g. Then

A 1 h(éi)

Ci=; Z - (6)

An important practlcal problem is the choice of g. Gener-
ally, to reduce the variance of the ratio h(6;)/q(6;), ¢ should
be similar to and have tails no thinner than h. In this article
we use the sample from the posterior to choose ¢. In par-
ticular, we take g(-) = ¢(-;0, ). This is slightly different
from the usual importance sampling method, because we
are using a sample from the posterior to choose the impor-
tance sampling function. Our approach is to consider only
this simple choice and see how it and its locally restricted
version behave.
The locally restricted version is based on the identity

R hO)Zs0)  QB) . (h(6)
C= 5@ EQ( 20) )‘ P(B) D (qw))’ @

where Zp is the indicator function for B and Qp(-) =
Q(-|B). The first factor on the right side of (7) can be es-
timated from the original sample. The second factor can
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be estimated using the sample from Q. This gives the local
importance sampling estimate

ﬁ Ei h(éi)ZB(éi)/Q(éi)
# Zi ZB(Hi) .

Alternatively, it is usually more efficient to sample from Qg
and use the expression on the right side of (7) directly.

Cr = (8)

2.4 Reciprocal Importance Sampling

The disadvantage of importance sampling is that it re-
quires a second sample from Q. It is possible to use the
posterior sample directly. Gelfand and Dey (1994) and Tier-
ney (personal communication) proposed the estimator

-1
A 1 8(01')
CR_{;n—i h(ei)} ’ ©)

where s(-) is an arbitrary probability density function.
Choosing s = 7 gives the harmonic mean estimator pro-
posed by Newton and Raftery (1994). However, taking
s =  leads to an estimator of C~! that may have infinite
variance. If s has tails that are thin enough—specifically,
if [s?/h < co—then this estimator will be well behaved
(Newton and Raftery 1994, p. 47). This is the opposite of
importance sampling, in which the importance sampling
function must have thicker tails than the target distribution.
Like importance sampling, s must be similar to h for Cg
to have a small variance. In practice, it may be hard to find
a density s that has sufficiently thin tails in all directions
of the parameter space simultaneously, especially when the
posterior has nonelliptical contours. This is discussed fur-
ther in Section 5.

Our modified version is obtained by restricting calcula-
tions to the ellipse B and by taking s(-) = ¢(-;6, 3) in (9).
Then define the local reciprocal importance sampling esti-

mate
-1
A _ )1 5(6:)Zp(6:)
el ")

The hope is that by restricting the sum to B, we can avoid
instances where s/h is large. Note that if we make the ap-
proximation s(8)/h(8) ~ s()/h(f) over B, then Cy;, ~ C;.
To have finite variance, we need f B s?2/h < oo, which is
clearly easier to achieve than [ s*/h < oco. Thus the ad-
justed version may be more stable.

(10)

2.5 Bridge Sampling

The foregoing two methods are special cases of bridge
sampling, a class of techniques analyzed by Meng and
Wong (1993) for estimating the ratio of two normalizing
constants; the method dates back to Bennett (1976). This
technique arises from the following identity. Let s; = ¢ /c;
and s; = ty3/co be two densities where ¢; = f t;, for
i = 1,2. For our purposes, we assume that both densi-
ties have the same support. Let v be a function satisfying

905
0 < | [~(6)s1(8)s2(8)d| < co. Then we have that
c1 ftl s2(60) d6
— 11
ftz 51(0)do’ (1)
If welett; = h, g = C, ta = q, and ¢y = 1, where ¢

is the normal approximation to the posterior or any other
convenient approximation, then the identity becomes

fh a(6) dd
Q) 6’|y) o’

Now draw a sample 01, ...,0p from q. Recall that we
also have a sample 64, ..., 0,, from the posterior. Then the
Meng—Wong bridge estimator becomes

37 20 BB )
;inq (0:)7(

In terms of a mean squared error (MSE) criterion, Meng
and Wong showed that the optimal choice of  for a given
q is proportional to {mh(6)/C + Mq(#)}~!. This involves
knowing C, but they also discussed iterative methods for
finding ~y. Choosing v = ¢~ reduces the method to ordinary
importance sampling with importance sampling function g,
and choosing v = Zp/q gives local importance sampling.
Choosing v = h~! reduces the method to reciprocal impor-
tance sampling, whereas v = Zg/h gives local reciprocal
importance sampling. In our implementation here, we take
g to be the normal approximation to the posterior density.
Thus C’I of Section 2.3 becomes a suboptimal bridge sam-
pling method in the sense of Meng and Wong. (This was
pointed out to us in a personal communication from X.-L.
Meng and W. Wong.)

(12)

Cuw = (13)

2.6 Other Methods

Verdinelli and Wasserman (1995) suggested an estimator
that is useful when the two models being tested are nested.
Suppose that the model is p(y|w,) and that we wish to
test Hy: w = wp versus Hy: w # wp. If mo(¥|wo) = w1 (),
then Biz = p2(woly)/m2(wo) (the “Savage-Dickey density
ratio”), and hence estimating B2 comes down to estimating
p2(woly), which can be done by ordinary density estimation
methods. If 75 (1|wo) # 71 (¢), then Verdinelli and Wasser-
man (1995) noted that the following identity holds:

m1(¢)
7T2(w071/))) '

where the expectation is with respect to the posterior under
H, with w fixed at wg. As before, the first term can be es-
timated by density estimation techniques. The second term
can be estimated by simulation from the posterior distribu-
tion under H;; thus a second simulation may be required.
This method is very effective when the dimension of w is
not too large.

Another method for estimating C is to draw a sam-
ple 61,...,0, from the prior = and then take C =
m~1 Y, p(y|6;). But this approach is not efficient, because
the likelihood is usually very concentrated relative to the
prior, and hence most sampled points fall into regions where
the likelihood is small.

Bi2 = p2(woly) Eyjwo,y (
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As mentioned earlier, the simple identity, C =
h(6)/p(8|y) for all , suggests estimating C simply by in-
serting an estimate of p(f|y) at one point. Raftery (1995)
called the resulting estimator the “candidate’s estimator.”
One particularly simple kernel density estimator is just the
number of points in B divided by its volume, which yields
the easily implemented estimator CC = h(6)v/P. This esti-
mator is valid for any definition of 6 (not just the posterlor
mode) as long as the ellipse B is centered at 6, and it is
likely to be reasonably efficient as long as g is fairly close
to the posterior mode. Further discussion of Cc is presented
in Section 4.1.

In some cases better estimates of p(f|y) may be found,
particularly when convenient latent variables are available
(see Chib 1995). As Chib noted, p(6]y) can be estimated by
a sequence of simulations followed by a sequence of one-
dimensional (or lower-dimensional) density estimates. For
example, if we write § = (9. ..,6P), then

p(8ly) = p(6' |y)p(6*16",y)...p

The jth term p(67|6,...,6°~1 y) can be estimated
by kernel density estimation using a simulation from
p(67|6,...,67=1 y). There is a trade-off here: Choosing
each ¢ to be of low dimension makes the density estimation
easier but increases the required number of simulations. We
illustrate this method in Section 6.2.

Carlin and Chib (1995) showed how to use Gibbs sam-
pling to estimate Bayes factors. They included an indicator
function for the true model as a parameter. To obtain a well-
defined Gibbs sampler, one needs the conditional distribu-
tion of every parameter given all of the others. In particular,
one needs the conditional distribution of the parameters of
one model given that the other model is the true model.
This generally is not a well-defined object, so Carlin and
Chib created “linking densities” to produce a well-defined
Gibbs sampler.

Green (1995) has argued that the Carlin—-Chib approach
may be cumbersome and inefficient because of the ne-
cessity of creating and sampling from the linking den-
sities. Green proposed a more direct method, based on
Metropolis sampling, in which a Markov chain is used
to move around within models and between models in
such a way that the limiting proportion of visits to a
given model is the posterior probability of that model.
Suppose that model 1 has one parameter, v, and model
2 has two parameters, #; and 6,. One must construct
a Markov chain that moves around within model 1 and
within model 2 and that sometimes jumps between the
two models. For example, in jumping from (6,62) in
model 2 to model 1, we might generate a random draw
from a distribution centered at ¢ = (61 + 62)/2. Finding
sensible, efficient ways to jump between the models re-
quires some insight and must be approached on a problem-
by-problem basis.

Gelman and Meng (1994) proposed a generalization of
bridge sampling that they called path sampling. This in-
volves constructing a continuous path of densities between
p and ¢q. We do not pursue path sampling further in this arti-

(6716%,...,6P 1, y).
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cle, although we note that the method shows some promise.
Phillips and Smith (1994) used jump diffusions to estimate
normalizing constants.

Our focus in this article is slightly different than some of
the aforementioned methods in that we emphasize methods
that use the output of the simulation from a given posterior,
possibly followed by one simple extra simulation.

3. ESTIMATING THE LOCATION AND SCALE
OF THE POSTERIOR BY SIMULATION

All of the methods require some estimate of the location
and scale of the posterior. In some cases these are available
analytically or by standard numerical methods; for exam-
ple, one might use Newton—Raphson or Fisher’s method of
scoring. However, it is much simpler if the output of the
simulation from the posterior can be used directly to esti-
mate location and scale, as noted by Kass and Wasserman
(1992), Lewis and Raftery (1994), and Raftery (1995). This
is especially true in high-dimensional problems where per-
forming an optimization in addition to a simulation may
be a burden. In this section we briefly describe methods of
using simulation output to estimate the location and scale.

In practice, a simple, crude method will usually suffice. A
naive approach is to use  ~ 6 or § ~ argmax,h(6;) where
0 is the sample average of the simulated values. Similarly,
we may use $ ~ ¥, the sample covariance matrix. Our
experience is that these can be poor estimates, however.

One way of improving these estimates is to select the
points that fall in the small ellipse B around the starting
estimate of the mode. Let [(§) = logh(#). Because the
log posterior is approximately quadratic, we fit a second-
order regression to the selected points, say, l( )= bo +b'0+
0'G, where ' = (01,...,0,), b/ = (b1,...,bp), G = {gi;}
gii = bii, and g;; = g;i = (1/2)by; for i # j. Setting
the derivative equal to O gives an improved estimate of the
mode, namely —(1/2)G~'b. Similarly, an estimate of h(¢ ) is
exp{bo— (1/4)¥’G~1b}, and an estimate of 3 is —(1/2)G~".

Lewis and Raftery (1994) and Raftery (1995) suggested
estimating 6 by finding the value of ¢; that minimizes
>_; 16; — 85| or by using the componentwise median. They

also suggested estimating 3 by the minimum volume ellip-
soid method of Rousseeuw and van Zomeren (1990), which
also provides a robust estimate of location. Our experience
is that the median and median absolute deviation work well
in one dimension. We also found the componentwise me-
dian to work well as an estimator of  in higher dimensions.
The Rousseeuw and van Zomeren method works well in
higher dimensions but can be very slow. Other robust meth-
ods have been discussed by Gnanadesikan (1976, sec. 5.2.3).

4. THEORETICAL REMARKS

In this section we discuss the theory behind some of the
estimators presented in Section 2.

41 Laplace’s Method

As we remarked in Section 2.1, C' = CL(1 + O(n™")).
The local version of Cp, is essentially C}, times a
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“histogram-like” correction factor. In fact, one can esti-
mate C directly by using a local histogram around an ar-
bitrary point 6, which yields the simple “candidate’s esti-
mator,” C’c, discussed in Section 2.6. To motivate the lo-
cal Laplace estimator, we first discuss this local histogram
estimator. Let n be fixed, let m tend to infinity, and let
6 = bm be a function of m. Recall that B has volume
v = 6P7P/2|SY2| /T (p/2 + 1), so v = O(6P), because n
is fixed. The approximation Cc is based on the idea of ap-
proximating the posterior density at its mode by computing
the probability of a small set B containing the mode and
dividing by the volume of B. The approximation C’E im-
proves on this by using the fact that the posterior is nearly
normal over B.
We define Cc as follows:

_ h(®) _ vh(h) _vh(d) _ Ce
pély) PB P

Let P = P(Bjs). Recall that § and hence P are functions
of m, but for simplicity we suppress this dependence. Now
by expanding the posterior density, we have P = vp(d|y) +
v0(8?) and P — P = O({8?/m}'/?), so that P/P = 1/(1+
O((6Pm)~1/2)). Hence

. wh(®) K@
Co = 5 = P

Yol

h(6) 1
p(Bly) + 0(62) (1 + O((6Pm)=1/2))

= C(1+0(82)(1 + O((6Pm)~1/?)).

There are two sources of error: the first from approxi-
mating a function by its average over B, and the second
from Monte Carlo error. The error tends to 0 as m goes
to infinity provided that we choose a sequence 6, such
that 6,, — 0 and 65, m — oo. The best achievable error
rate is attained by taking &,, = O(m~/(4+P)  for which
Cc = C(1 + O(m=2/4+P))) In principle, this error can be
made as small as we like by making m large. The problem
of choosing a good value of § is the standard problem of
choosing window width or bandwidth in density estimation.

We seek to improve Cc by taking advantage of the fact
that the posterior becomes normal as n tends to infinity. Let
n increase, let m = m,, be a function of n, and note that 4
is also a function of n. Now

o ) 60 _ né) o(B)
¢(0) p(Bly)  ¢(6) P(B)’
and, recalling that o = ®(B), we define
Y P

By expanding C in a fourth-order series about 6, we have
that

h

—~~
~—

)) ®(B) _
5 PB) (1+0(n='6%).

@

C:

<
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If we multiply and divide by P and use the fact that P/P =
1/(1+ O((6Pm)~1/2)), we get

Ct =C-(1+0ns*)(1+ O((ms?)~1/2)).

It is apparent that the Monte Carlo errors in C¢ and C‘f:
are of the same order, so that when these are neglected, C;*
becomes more accurate than Cc when 6 = o(1). However, if
we treat this as a density estimation problem and let the size
of the ellipse shrink at rate m~=1/(4*P)_ then the modifica-
tion will improve on the Laplace rate if mn~(4tP)/2 — oo,
This simply means that the modification works if the simu-
lation size is large relative to the sample size. The modified
Laplace estimator is very similar to the semiparametric den-
sity estimator recently proposed by Hjort and Glad (1995).

There is a bias—variance trade-off in choosing a. To see
this, note that

c _ 421 —P(Bs) 12
E(c_l> PEgm A
where
4 - YOPBC
h(0)Q(Bs)

The first term goes to 0 as & — oo, and the second term
goes to 0 as 6 — 0. Hence small ellipses have small bias
and large variance, and large ellipses have large bias and
small variance.

4.2 Bartlett Adjustments

The details of the Bartlett adjustments are in the Ap-
pendix. Here we outline the main results. For simplicity,
it is convenient to derive the Bartlett-adjusted Laplace es-
timator and its local version in the one-dimensional case
p = 1. Let H(8) = logh(), H;(#) = d’H(H)/d§’, and
H; = H;(0), (j = 1,...,p); hence —H, = %~!. By in-
cluding further terms in the Taylor approximation, it can
be shown that

C = h(0)(2m)/?SY?2 {1+ k/24+ O(n~2)}
= Cu{l +K/2+0(n7?)},
where
k=SS 28R — oY)
4 123 ‘

The quantity « also arises in an asymptotic formula for
the posterior expectation of the posterior ratio statistic W =
2{H(0) — H(6)}. To error of order O(n~2), E(W|y) = 1+
k+O(n~2) and

C =y {1 + E(—ng—)_—l +O(n_2)}

CLUEW |y} + O(n~?)].

In the vector case we get
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C =0y {1 + M—W%—)_—p +O(n_2)}
= Oy {ﬁfl@}p/z +O(n—2)} )

The second approximation motivates the Bartlett-adjusted
Laplace estimator. These formulas were considered by
DiCiccio and Stern (1993). The term (1 + x/p)~! is a
Bayesian Bartlett adjustment. DiCiccio and Stern (1993)
showed that the posterior distribution of the Bartlett-
adjusted posterior ratio statistic (1 + x/p)~'W is chi-
squared to error of order O(n~2).

It is plausible that the accuracy of asymptotic approxi-
mations to C and E(W|y) could be improved in practice
by taking the interval of integration Iy, = [f — k, 6 + k] into
account explicitly. If the integrals under study are actually
restricted to that interval and at least the leading terms of
the expansions are adjusted accordingly, then much of the
error induced by the processes of first truncating the range
of integration and later enlarging it to encompass the whole
real line could be largely eliminated. The remaining errors
would, in principle, arise primarily from the Taylor approx-
imations to the integrands.

Let P, = P(I}) be the posterior probability content of
the interval I, and let &, = ®(I;). Taking the interval I
into account leads to different formulas. Let N = E{(6 —
6)251|9 € I} with 6 ~ N(6,3). Then

E(W|Ik> y) - Nk
3 — N

C=Cy i‘I)—'“~{1+ +O(n_2)}.
Py

A version of this expression is available in the vector
case as outlined in the Appendix. The final formula is
the same, except that N takes its obvious vector version
and 3 — Nj is replaced by p + 2 — N, with B = {0 €
0|(6 — 6)'S1(0 — ) < nk?}; the factor n is present to bal-
ance the introduction of ¥~!, whose elements are of order
O(n). Note that the volume of Bj is of order O(1), and
thus By generalizes the fixed-length interval I); considered
in the one-dimensional case. Note that Ny, = p(Pr{x2,, <
nk?}/ Pr{x2 < nk®}).

A key assumption in the preceding calculations is that
the regions of integration are nonshrinking; recall that £ was
understood to be constant. In calculations (A.10) and (A.12)
of the Appendix, this assumption justified replacing the in-
terval I by the whole real line to obtain the terms of order
O(n~1). The calculations remain valid even if the region
of integration is shrinking, provided that the rate of shrink-
age is sufficiently slow. In particular, the conclusions hold
if n'/2k — oo and if for such k, the probability contents
P, and ®; both tend to 1. For practical implementation,
a region Bs = {0 € ©; (0 — 0)S"1(0 — §) < 62} must be
specified, where 62 corresponds to nk?. The present asymp-
totic approach indicates choosing 6 so that o = Pr{xf, <
52} is moderately large, say between .5 and .8.

Another, although arguably less intuitive, viewpoint is to
regard 6 as fixed; that is, a probability « is chosen inde-

Journal of the American Statistical Association, September 1997

pendently of n, with the integration restricted to regions
having normal probability content «. In this framework the
quantity k that determines By, is of order O(n~1/2). When
k is of order O(n~1/2), the region of integration must also
be taken into account for calculating higher-order terms. In
the one-dimensional case, we find that

E(W|Iy,y) + Dy — Ng
3 — Ng

=0 %{1+ +0(n‘2)}’
Py

where Dy and «’ are defined in the Appendix.

The formula for C contains terms other than N, and «'.
Because of these extra terms, it appears that in the case
where 6 is fixed and k is of order O(n~'/2), the Bartlett
adjustment method for improving the local Laplace approx-
imation is not strictly valid. Curiously, and somewhat coun-
terintuitively, if & shrinks much faster than O(n~'/2), say
if k = o(n=3/*), then the remaining terms in the last ex-
pression are O(n~2), so again the Bartlett adjustment is ap-
parently valid. We do not pursue this curiosity further here.
However, it raises the interesting possibility that Bartlett
adjustments may be effective for very small «. Prelimi-
nary numerical investigations (not reported here) confirm
this phenomenon.

5. EXAMPLES BASED ON THE SKEWED-NORMAL
AND SKEWED-T DISTRIBUTIONS

It is well known that importance sampling can be ineffi-
cient when the importance sampling function ¢ has thin tails
relative to h (see, e.g., Geweke 1989). Reciprocal impor-
tance sampling turns out to be inefficient when # is skewed
and thin-tailed. To see this, suppose that h is skewed and s
is a normal density. Then there might be regions where h
is small relative to s, causing Cg to blow up. Similar prob-
lems occur in multiparameter problems when the posterior
has banana-shaped contours. This is not at all a pathological
phenomenon; indeed, it occurs often in practice.

To permit closer examination of the methods in light of
this observation, we consider examples where the underly-
ing density is skewed. A convenient family of densities for
this purpose is the skewed ¢ distribution, which includes
the skewed normal (Azzalini 1985; O’Hagan and Leonard
1976). A random variable V has a (standard) skewed nor-
mal distribution, denoted by V' ~ SN()), if it has density
f(z]A) = 2¢(2)@(\z). Here ¢ is the standard normal den-
sity, ® is the standard normal cdf and A is the skewness pa-
rameter. It is simple to see (although we have not seen this
mentioned before), that V has the following latent variable
interpretation: draw W ~ N(0, 1); with probability ®(AW),
set V = W, and with probability 1 — ®(AW), set V = -W.
Thus a skewed normal random variable is just a standard
normal random variable with a random sign change. This
latent variable structure makes it simple to simulate from
a skewed normal distribution. If we let W have a ¢ distri-
bution with v degrees of freedom instead of a normal, then
we say that V has a skewed ¢, distribution and write V' ~
ST(\,v). Of course, a ST(), 0o0) distribution is equivalent
to a SN(A) distribution. Denote the skewed-t density by

f(z|A\v).
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Figure 1. The Skewed Normal (Solid Lines) and Skewed Cauchy
(Dashed Lines) for A = 0 (a), 10 (b), 50 (c), and 100 (d). When X\ =
100, the densities are so extremely skewed that they are close to being
a half-normal and half-Cauchy.

We let h(z) = f(z|A,v), so that C = 1, and we examined
two cases: A = 100 and v = oo, and A = 100 and v = 1. As
shown in Figure 1, these densities are very highly skewed—
much more skewed, in fact, than likely would be found in
practice.

For these two densities we computed the Laplace, Bartlett
correction, importance sampling, and reciprocal importance
sampling estimators and their modifications. We also com-
puted the Meng—Wong bridge estimator. Recall that for the
bridge estimator estimator, one must choose the function ~,
defined in Section 2.5. The optimal choice derived by Meng
and Wong involves the constant C. We computed two ver-
sions for the bridge estimator: the optimal version (with C
set to the true value in the formula for v) and a “Laplace
bridge estimator” with C set to C‘L. We used m = 10,000,
m = 100,000, a = .05, and « = .50. For bridge sampling,
we took each of the two simulations to be of size m. We
repeated the experiment 100 times for both distributions
and computed (1/100) >, |log C;| for each of the methods.
(This is approximately the geometric mean relative error.)
The results are reported in Table 1. We also carried out a
simulation using the product of five densities (so that p = 5)
for each of the two types of skewed ¢ distributions described
previously for Table 1. The five-dimensional results are not
reported here, although these results are qualitatively simi-
lar to those for the one-dimensional case.
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Several findings are apparent. First, given that the dis-
tributions are extremely skewed and that only rough ac-
curacy is necessary for Bayes factor calculations (an error
of magnitude .5 on the log, scale would be quite tolerable
in practice), all methods appear to be reasonably accurate.
Second, in nearly all cases, the modifications substantially
improved the first four methods. Restricting to neighbor-
hoods of the mode can be very beneficial for importance
sampling and reciprocal importance sampling. Third, the
modified Laplace estimator C‘fj is generally more accurate
for « = .05 than for o = .5 (as predicted by the theory
discussed in Sec. 4). Fourth, C’fj is generally quite accurate,
but is sometimes a little less accurate than the modified
Bartlett correction estimator ég, and can be quite a bit less
accurate than C’ﬁ and, especially, C’f*. Fifth, optimal bridge
sampling based on the normal approximation to the poste-
rior is very effective, increasing accuracy by a factor of 10
or more in some cases. This procedure may be motivated
by the good results produced by C‘I* together with the ob-
servation (made in Sec. 2.5) that C’{ is a bridge sampler, but
it is suboptimal. Finally, and quite interestingly, the Laplace
bridge sampling estimator is, for practical purposes, just as
accurate as optimal bridge sampling.

We also investigated the relative mean squared error
RMSE = E(C/C; —1)? as a function of o. Plots of this
quantity by « (not included) reveal the following behav-
ior. Except when the skewness is extreme, RMSE is a re-
markably stable function of o. When extreme skewness is
present, & = .05 is optimal or near optimal for m between
1,000 and 100,000. Generally, the penalty for choosing «
too small is greater than the penalty for choosing « too
large. The results suggest that & = .05 is a reasonable de-
fault value.

6. FURTHER EXAMPLES

In this section we consider two nonlinear regression ex-
amples. The first is two-dimensional but has an extremely
nonnormal posterior. The second is 10-dimensional and is
included to explore the feasibility of the methods in higher
dimensions.

6.1 A Two-Dimensional Nonlinear Regression

We consider data on biochemical oxygen demand (BOD)
collected by D. Marske at the University of Wisconsin-
Madison and described by Bates and Watts (1988, p. 270).
The model used by Bates and Watts is

Y, = 91(1 — 6_92)(1) + &4,

where the ¢;’s are independent N(0,0?) errors, Y; is BOD
(mg/L), and X; is time (days). As shown by Bates and Watts
(1988, p. 202), the likelihood contours are highly nonellipti-
cal. The example thus provides an interesting testing ground
for the various methods.

We take p(0) o< o' and integrate out o. This leaves 6,
and 6. For the sake of illustration, we take 6; ~ U(0, 60)
and 6, ~ U(0, 6). The log-normalizing constant for the pos-
terior was found by numerical integration to be logC' =
—16.205. We then used the four methods and their modified
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Table 1. Comparison of the Methods: The mean absolute value of log ¢

ST (100, o) Density

Laplace Bartlett Reciprocal Importance Laplace bridge Optimal bridge

a = .05, m = 10,000

Original .060 .047 124 .007 .004 .004
Modified .037 .037 .037 .037 NA NA
a = .50, m = 10,000

Original .060 .046 124 .006 .005 .005
Modified .059 .024 .008 .007 NA NA
o = .05, m = 100,000

Original .060 .053 120 .002 .001 .001
Modified .012 .018 .012 .012 NA NA
a = .50, m = 100,000

Original .060 .046 123 .002 .001 .001
Modified .060 .023 .002 .002 NA NA

ST (100, 1) Density

a = .05, m = 10,000

Original 144 .366 .189 110 .006 .005
Modified .038 .056 .038 .038 NA NA
a = .50, m = 10,000

Original : 144 .367 .189 120 .006 .006
Modified 144 .106 .010 .010 NA NA
a = .05, m = 100,000

Original 143 .368 .183 .106 .002 .002
Modified .013 .040 .013 .013 NA NA
a = .50, m = 100,000

Original 144 .367 .185 113 .003 .003
Modified 144 107 .003 .003 NA NA

NOTE: The true value of log C is 0.

versions based on a Metropolis sampling scheme (Tierney
1994) with 10,000 iterations. We repeated this process 10
times. The relative error of each method (averaged over the
10 independent replications) is shown in Table 2.

All of the methods, except the reciprocal importance sam-
pling, were improved by using the modified version. How-
ever, the modified version of reciprocal importance sam-
pling still does reasonably well. Localization tends to im-
prove reciprocal importance sampling when the posterior is
thin-tailed. In this example the likelihood tends to die off
slowly in some directions. The modified Laplace method
does reasonably well. As in the simulations, the Laplace
bridge estimator does best, producing an estimate with less
than 10% error.

Table 2. Relative Error |C — C|/C in Estimating the
Normalizing Constant in the BOD Example

Laplace
Laplace  Bartlett  Reciprocal  Importance bridge
Original 181 415 .064 .227 .070
(.013) (.027) (.012) (.008) (.020)
Modified 126 232 137 .138 NA
(.022) (.043) (.025) (.020) NA

NOTE: The error is averaged over 10 replications. The estimates for each replication are based
on a Metropolis sampling chain of length 10,000. The numbers in parentheses are the standard
errors of the estimates of errors, based on the 10 replications.

6.2 A 10-Dimensional Example

Next, we consider a 10-dimensional nonlinear regression
example. The data, from Bates and Watt (1988, p. 275), are
on the kinematic viscosity of a lubricant as a function of
temperature, x;, and pressure, z2. The proposed model is

0
E(Y|6) = —1331 + 0525 + 0422 + Osad

02 +

2 _ T
+ (0 + 0725) 22 exp { 5T 6ar2 }

with N(0,02) errors. The tenth parameter is 619 = logo.
(See Bates and Watts 1988, p. 89, for an analysis of these
data.) For the purpose of illustration only, we adopt inde-
pendent normal priors centered at the maximum likelihood
estimators. We take the prior standard deviation for a pa-
rameter to be n'/2 times the standard error of the maximum
likelihood estimate of that parameter. This makes the prior
have approximately the amount of information contained in
one observation; Kass and Wasserman (1995) discussed pri-
ors based on one unit of information in testing problems.
We emphasize that we are not necessarily recommending
this prior for a substantive analysis of this problem.

We obtained our results using Markov chain Monte
Carlo. The chains were run for 120,000 iterations, and the
first 20,000 were discarded. At the suggestion of a referee,
we also included a version of Chib’s estimator. Specifically,
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Table 3. Relative Error |C — C|/C in Estimating the Normalizing Constant in the Lubricant Example
Laplace Bartlett Reciprocal Importance Laplace bridge Bridge (5) Chib
Original 613 .637 .588 .095 486 .469 427
(.107) (.052) (.125) (.021) (.142) (.145) (.108)
Modified .592 .586 572 .504 NA NA NA
(.121) (.114) (.132) (.131) NA NA NA

NOTE: The error is averaged over five replications The reported estimates have been divided by 10%. The estimates for each replication are based on a Metropolis sampling chain of length
100,000. The numbers in parentheses are the standard errors of the estimates of errors, based on 5 replications.

we take C = h(8)/p(6]y), where

p(0ly) = p(011y)p(P2ly,01) ... p(610ly, b1, - - -, b9).
Each term in the foregoing equation was estimated with a
separate simulation. Thus we required 10 simulations. Ker-
nel density estimation was then used to estimate each den-
sity.

We repeated the analysis five times. In addition, Alan
Genz of Washington State University kindly applied four
different numerical methods to this integration problem,
including subregion-adaptive Monte Carlo and subregion-
adaptive quadrature (Genz and Kass 1997), modified Gauss—
Hermite (Genz and Keister 1996), and spherical-radial in-
tegration rules (Monahan and Genz 1996, 1997). All four
methods produced results of C' = 2.85-10%° with an appar-
ent error less than .01. Using this estimate as the true value
C, Table 3 shows the relative absolute error |C — C|/C
(averaged over the five runs) for each of our posterior
simulation-based estimators. In the table, “bridge (5)” refers
to the bridge estimator after five iterations. All of the meth-
ods produce reasonable estimates, though postimportance
sampling does better than the others. This suggests that the
posterior is approximately normal, a hypothesis consistent
with results from Genz’s analysis.

It is instructive to summarize the amount of work in-
volved in each method. Let p represent the dimension of
the parameter space and let m represent the number sam-
ples in a simulation (100,000 in the example). Table 4 shows
the number of function evaluations and number of simula-
tions required for each method. In our example, the Laplace
method requires one simulation (of size m = 100,000) and
a single function evaluation. The bridge sampler requires
two simulations (each of size 100,000) and 200,000 func-
tion evaluations. The Chib estimator requires 10 simulations
(each of size 100,000) and then 10 function evaluations. The
Laplace method requires the least effort. Deciding which
of the other methods requires the least effort is problem-
dependent. If running the simulations is simple, then the
Chib method might be the quickest. If the simulations are
difficult and require much fine tuning, then bridge sam-
pling might be better. On the other hand, if function evalua-

tions are costly, bridge sampling can be time-consuming. It
should be noted that the number of simulations required for
the Chib method can sometimes be reduced if the param-
eters are blocked together appropriately. In the foregoing
example, it would make sense to estimate p(63, 04, 05, Og|y),
because the complete conditional for these parameters is
Gaussian. This would reduce the number of simulations to
seven.

7. CONCLUSION

In this article we have evaluated generic ways of com-
puting Bayes factors via posterior simulation. The meth-
ods that we compared are all easily programmed without
reference to the particulars of the problem at hand. Thus,
for instance, it is possible to write computer programs for
these approximations that require only the simulated val-
ues of the posterior together with a function that evaluates
the product of the likelihood with the prior density. The
most important findings from our study are (a) all modified
methods are reasonably accurate, and (b) bridge sampling,
using the normal approximation to the posterior, often pro-
vides substantial improvement; furthermore, Laplace bridge
sampling is nearly as accurate as optimal bridge sampling.
An important point is that the volume-corrected Laplace
approximation C’fj requires only a single evaluation of the
posterior density, in contrast to the others, which require
thousands of such evaluations. This suggests the use of C}
whenever evaluation of the posterior density is difficult or
expensive.

Our limited study is by no means definitive, but it does
suggest specific guidelines. It leads us to recommend the
following:

1. If it is likely that the posterior densities in (1) each
has a dominant peak in the interior of the parameter space,
then the methods in this article should be applicable. The
volume-corrected Laplace estimator C; should be com-
puted, using o = .05 and m = 100,000; if posterior sim-
ulation takes so long that m = 100,000 is impractical, m
should be as large as possible.

a. If the posterior density is costly, then the relative dif-
ference (C, — Cf)/CY should be examined. If it is

Table 4. Comparison of Methods

Laplace Bartlett Reciprocal Importance Bridge Chib
Simulations 1 1 1 2 2 p
Function evaluations 1 m m m 2m p

NOTE: Here, p is the dimension of the parameter space, and m is the simulation sample size per run.
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small, then C} is likely to be accurate. Otherwise,
other methods should be attempted.

b. If posterior density evaluations are easy to obtain, then
the Laplace bridge estimator based on the normal ap-
proximation to the posterior should be used. Again,
the result may be compared to CL to roughly assess
accuracy, keeping in mind that the bridge estimator
may be as much as 10 times more accurate. If accu-
racy remains dubious, then other methods (see item 2)
may be used as a check.

2. If either posterior is likely to be strongly multimodal,
or to have a mode on the boundary of the parameter space,
then the methods of this are unlikely to be helpful. Alter-
natives described by Carlin and Chib (1995), Chib (1994),
and Green (1995) may be effective, however.

We should add that if very large sample sizes are used
for the Monte Carlo, then it may be necessary to let « be
a function of m in the modified methods. We also point
out that for nested hypotheses, the Savage-Dickey method
discussed by Verdinelli and Wasserman (1995) is effective
and easily implemented if the parameter being tested is a
scalar. Further work is needed to assess this method when
the difference in the dimensions of the two models is larger
than one.

Markov chain Monte Carlo and other posterior simula-
tion methods often involve the simulation of a large number
of parameters, of which many are “latent data” or “random
effects” introduced to simplify the algorithm. A direct ap-
plication of our methods is unlikely to work well with such
high-dimensional parameters, as the posterior density will
tend to be flat in the direction of the random effects and so
not have a dominant mode.

But our methods may still work if attention is restricted
to the “fixed effects” or consistently estimable parameters
and the simulated values of the random effects are simply
discarded. It then remains to evaluate the likelihood, which
is now an integrated likelihood for the fixed effects, with the
random effects integrated out. In the broad class of condi-
tionally independent hierarchical models (Kass and Steffey
1989), the integrals involved are of low dimension and can
be evaluated fairly easily, at least approximately (see Lewis
and Raftery 1994 and Raftery 1995).

APPENDIX: THEORETICAL DETAILS
OF THE BARTLETT ADJUSTMENT

Let ¢ be scalar. Let H(9)
and Hj = Hj(()), (] =1,...,
order O(n=3/?),

C{(B)) ! (2m) /2812

— logh(9), H,(6) = & H(6)/de",
p); hence —H, = £71. To error of

= (2r)2gm/2 / exp{H(0) — H(§)} do
[C]

o+k
= (2m) /25712 / exp{H(0) — H(0)} db

-k

k
= (m)““i—‘“/ exp {% vV H, + % b Hs + 2i4 b“m} db
—k
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k
(2#)_1/22_1/2/ exp {— % bzﬁ)_l}
—k

X exp {6 BH, + — b4H4} db

feo)
(271')_1/22_1/2/ exp{ B8 }

« {1+—b3H3+ bH4+—b6H3} db

= 1t S+ 2 AESY (A1)
where k is an arbitrary positive constant and b = 6 — 6. In car-
rying out this calculation, essentially three approximations are
made: The range of integration is restricted from the entire pa-
rameter space © to an interval [§ — k, 6 + k] of fixed length;
the integrand is approximated by a Taylor expansion over the
interval; and the domain of integration is enlarged from the in-
terval to the entire real line to facilitate evaluation of the inte-
gral. The final integration uses the fact that if § ~ N (6,%), then
E{(6 - 6)"7} = (25)!%7 /{2 (§)!}.

By including further terms in the Taylor approximation, it can
be shown that the error in (A.1) is actually of order O(n~?). Thus

C = h@)2m) S {1+ Kk/2+0(n"%)}

= C{l1+K/2+0(n7%)}, (A2)
where 1 5
K = Z H422 —+ E H§23 = O(n_l .
Let W = 2{H(6) — H(6)}. To error of order O(n~3/?),
E(Wly)

= o 'h(d) / 2{H(6) — H(6)} expl{H(6) — H(B)} do

0+ k
= C7'h(f) 2{H(0) — H(6)} exp{H(6) — H(0)} do
0—k
. [k 1 o
- C—lh(e)/ exp{— 1 b22_1}
k 2
1osg 1 4pn 1 06 Az}
x{1+6bH3+24bH4+72bH3
X {bZS-I Ll - Lyg } db
ERS TR
[ 1 oa
= C—lh(e)/ exp{— 5 bZE_l}
X {bzﬁ)_l “Lym s lyme o Lya,
3 6 12

- 1—8 CAS 4 o b6H 51 +7—2 b8H32_1} db

(b)) 25 {1+ g S+ g

1?13?23}
5 3
=1+ s,

4 12
because, by (A.1),

ot = (@) em e {1 - .

(A.3)

52 — % H323}
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Again, if higher-order terms are taken into account, then it can

be shown that the error in (A.3) is order O(n~?). Hence
E(Wly) =1+ r+0(n™%), (A4)
and combining (A.2) and (A.4) shows that
Cc = Cr {1 + —Eil%yl_—l +O(n_2)}
= GL{EW[y)}'* +0(n™?)). (A.5)
Similar calculations apply in the vector case. For p > 1,
C=C{l+r/2+0(mn %)} (A.6)
and
E(Wly) =p+r+0(n~") =p(l+x/p)+0(n™?), (A7)
with
K= i TabcaS® 2 + = 2 HabcHdefEadeczef
+ % }—A{abclf[defi)adi)bei)cf = O(n_l), (A8)
where H(0) = logh(0), Hav(0) = 82 H(6 )/80“60” Hape(0) =

O H(0)/060°00°96°, Hap = Hap(0), Have = Have(9), (a,b,c =
1,...,p), and so on, and 3 = (£%) = (—H,)"". The general
version of (A.5) that emerges from (A.6) and (A.7) is

= (L {1+ % +O(n2)}

p/2
e {M} +0(n"?) (A.9)

p

Now let P, = P(Ix) be the posterior probability content of
the interval I, = [0 — k,0 + k| and let &, = &(I;). Taking the
interval I into account in calculation (A.1) yields

P.C{h(6)} ' (2m) " /21 /2

0+k
= (2w)—1/22—‘/2/ exp{H(0) — H(H)}do
[

—k

k
= (277)_1/22_1/2/ exp{— lbzifl}
& 2
X {1+1b3ﬁ3+ib“ﬁ4+ibﬁﬁ§}db
6 2% 7
k
= (271')71/2271/2 (/ exp{— % bQXA)*l} db
—k
* 1 2A—1}{i 4 7 ieAz}
—I—/_ooexp{ S0 og V' Ha+ = W H | b

5

= &+ = S H422 + 94 HIS®
= & + 5/2. (A.IO)
The error in (A.10) is of order O(n?), so that
c=c 2 {”E“)( )}. (A11)
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Furthermore, to error of order O(n~?), the conditional posterior

expectation of W, given 0 € I, is

E(W|Ik,y)

C7 P h(6) / 2{H(6) — H(0)} exp{H (§) — H(6)} do

CPh/exp{ }

X {1+—b3Hg+—b4H4+——b6H3}

2 72
{ﬁz—
R k
C P h(B) (/ exp{—
—k
LT exp{— 1 b22—1} {— LopE - L b6H3
. 2 12
)

o7 B @) @) 5 [+ D ALsE 4 D)

b3H3 - b4H4} db

—1} (55} db

+—b°‘H4z + b8H3

— oo, 2 { 3_'”~}
= 0TG5\ Nkt og (A.12)
where Ny = E{(0 — )*S7|0 € I} with 6 ~ N(§,3).
Now, (A.11) yields
oot B {1 5o +Oln )},
and substituting this formula into (A.12) produces
E(W|Ik,y) = Ng + —— 2(1) —— (3= Np)+0(n7%). (A.13)

Hence E(W|Iey) — N
K _ k)Y) — k —2
5~ s-nN o)
and, by (A.11),
EWl,y) = N —|-O(n_2)}. (A.14)
3 — N

A By
C=0C B {1 +
In the vector case, let By = {0 € ©|(0—0)'S7(0 —0) < nk*}.
Under the distribution 6 ~ N (0, %), let Ny = E{(6 — 6)'S7 (0 —
6)|6 € By}. By arguments similar to those used for calculating
the integrals in (A.10) and (A.12), the general versions of (A.11)
and (A.13) are found to be

C= C‘LF{HEJFO( )}

and

E(W|Ix,y) = Nk+—{p+2—Nk}+O( 3,

where « is given by (A.8). Hence

coéy {1+ E(W|Ix,y) = N
Py

—2
P+ 2— Ny +O(n )}

This expression for C' motivates (5), the local version of the
Bartlett-adjusted Laplace estimator. Note that Ny, = p(Pr{x2,s <
nk?}/ Pr{x; < nk’}).
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In the case where 6 is fixed, we get

P.C{h(6)} ' (2m) /252

= @n)2s (/Zexp{— svs )
k 1 sa1 1 4n 1 670
+/_kexp{—§b2 } ﬁbH4+7—2bH3}db)
_ @k{1+%ﬁ4i)2+%ﬁ§i)3} |
— exp{-K*57!/2}(2m) 72872
x {1514 (% KPS+ i kf)z)

1 5 ses 5 o«
i (— 54+ 2 52 4 > k23)},
MR AT T 12

with error of order O(n~?). Rearrangement of (A.15) gives

(A.15)

!
c=C %{1+i+0(n—2)}, (A.16)
k

2

where

X exp{—k*$1 /2}(2m) /2512
AN Az)
x {H4(6k2+2k2

g2 (1 5 5 302 5 A3)}
+H3(18k2+18k2 +2157) )
Similarly, the appropriate version of (A.12) is

E(W|I,y)

k
— c'Ph(d) (/ exp{— % bzé—‘}{lfi—l}db
—k

F 1 1 1
- = bzi)_l} {— — v'A, - — a2
+ /_keXp{ 2 T R

1 64 o1 ism*q} )
o PHST 4 S P EIST ) db

A @ 3 ey 15 npes
:CICLF:[N;C+§H422+§H3223—<I>,CI

x exp{—k’S7!/2}(2m) 1281/

(L ogs L se §“2)
x{H4(12k+4k2+4k2

g (1 .7 1 58, 5 300 5 *3)}]
+H3(36k + 35 KPS+ 5 K5+ kS
!
=Cc'C % {Nk + 5;— — & exp{—K*£7"/2}(27) "1/
k

x 57172 (% HE + 31—6 H§k7>} (A.17)

with error of order O(n~?). Note that in this case

Ny, =1 —2k®; " exp{—K*S7" /2}(2m) /2871 /2,
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It follows from (A.16) and (A.17) that

E(Wllkay)

s
= Nk+% (3— Ni) — &3
x exp{—k*’S7'/2}(2n) 128712
X (i B+ L ﬁg;ﬁ) +0(n?)
12 36

!
= Ni+ % (3 — Ni) — k®; ! (2m) 12571/

h@+k) +h(@—k) ret
X [ @) 2exp{—k°% /2}]

+0(n72).
Hence
k' _ E(W|lky) + D — Nk
2 3 — Ng

+0(n™?),
where

Dy = k&' (2m) /2812

[h(é +k)+ h(6 —k)

) —2exp{—k"X~ /2}] (A.18)

and, by (A.14),

ooy [y BV £ De=Ne o) ) 1)
Py 3 — Ng
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