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Bayesian Morphology: Fast Unsupervised
Bayesian Image Analysis

Florence FORBES and Adrian E. RAFTERY

We consider the problems of image segmentation and classification, and image restoration when the true image is made up of a
small number of (unordered) colors. Our emphasis is on both performance and speed; speed has become increasingly important
for analyzing large images and muitispectral images with many bands. processing large image databases. real-time or near real-
time image analysis. and the online analysis of video. Bayesian image analysis provides an elegant solution to these problems,
but it is computationally expensive, and the solutions it provides may be sersitive to unrealistic global properties ol the models
on which it is based. The ICM algorithm is faster and based on the /ocal properties of the models underlying Bayesian image
analysis; parameter estimation is performed iteratively via pseudolikelihood. Mathematical morphology is faster again and is widely
considered to perform well, but lacks a statistical basis: method selection (analogous to parameter estimation) is done in a rather ad
hoc manner. We propose Bavesian morphology, a synthesis of these methods that attempts to combine the speed of mathematical
morphology with the principled statistical basis of ICM. The key observation is that when the original image is discrete (or if an
initial segmentation has been carried out). then, assuming a Potts model for the true scene and channel transmission noise, (1) the
ICM algorithm is equivalent to a form of mathematical morphology and (2) the segmentation is insensitive to the precise values of
the model parameters. Unlike in standard Bayesian images analysis and ICM. it is feasible to do maximum likelihood estimation
of the parameters in this setting. For gray-level or multispectral images, we propose an initial segmentation based on the EM
algorithm for a mixture model of the maurginal distribution of the pixels. The resulting algorithm is much faster than ICM. with
gains that increase for more bands and lurger images, and has good performince in experiments and for real examples.

KEY WORDS: Bayesian image restoration; Iterated conditional mode; Mathematical morphology: Potts model: Pseudolikelihood.

1. INTRODUCTION typically intractable.

Mathematical morphology was introduced to solve the
same general class of problems by Matheron (1975) (see
also Serra 1982). It consists of applying sequences of mor-
phological operators such as erosions. dilations. openings,
and closings to the image in an order determined by the
user. It is very fast and has been much used. and it has
been widely reported to perform well in practice. However,
it does not have a statistical basis, and so its inferential
foundation is uncertain. One consequence of this is that
specification of the sequence of operations to be used in
any given application tends to be somewhat ad hoc, being
based on trial and error on the part of the user.

Although Bayesian image analysis and mathematical
morphology are aimed at closely related problems, they
have largely developed in isolation from one another. Here
we introduce an approach called Bayesian morphology.
which aims to combine the power, elegance, and firm statis-
tical foundation of Bayesian image analysis with the speed
of mathematical morphology, while retaining the good per-
formance of both. Qur key observation comes from con-
sidering the situation in which the original image to be an-
alyzed consists of the same colors as the true scene, but
is a degraded version of it. This can also arise where the
original image is gray-scale or multispectral, but an initial.
lower-quality segmentation has been performed. Then, if
restoration is based on a Potts model for the true scene
and the assumption of channel transmission noise, (1) ICM
is equivalent to a form of mathematical morphology, and
(2) the restoration is the same for a range of values of the
model parameters.

Property (1) allows us to perform an ICM restoration
using the very fast computational tools of mathematical

We consider the problem of image segmentation or clas-
sification, or of image restoration when the true scene is
made up of a small number of unordered colors. Here we
consider only the generic version of this problem, where
precise knowledge of the kinds of objects sought is not
available; only a general sort of local smoothness similar to
that expected by the human eye is assumed.

We consider both performance and speed as criteria for
assessing methods. Speed has become increasingly impor-
tant as the demands on image processing systems have in-
creased over the past 15 years. It is particularly important
for analyzing large images; tor processing large databases
or archives of images; for analyzing multispectral images
with many bands, for analyzing real-time, near—real-time, or
interactive images; and for analyzing video, either online or
off line.

Bayesian image analysis was proposed as a solution to
this problem by Geman and Geman (1984), who introduced
the Gibbs sampler for finding the posterior mode of the en-
tire true scene, based on a Markov random field probability
model. This is a fully statistically grounded method. but it
is very computationally expensive. Besag (1986) proposed
the iterated conditional modes (ICM) algorithm, which is
based on the same model as the methods of Geman and
Geman (1984) but uses only the local properties of their
model and is faster. The parameters of the model are typ-
ically assigned by the user, estimated offline from training
data if these are available, or estimated iteratively using
maximum pseudolikelihood. Exact maximum likelihood is
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morphology, whereas property (2) allows us to incorporate
parameter estimation at a low computational cost. It also
allows us to do maximum likelihood estimation of the pa-
rameters, which is not feasible in standard Bayesian images
analysis and ICM. When the original image is gray-scale or
multispectral, we propose initializing the method by posit-
ing a finite mixture model for the marginal distribution of
(possibly multivariate) pixel intensities, and estimating this
using the EM algorithm. We call this marginal mixture EM
segmentation.

The resulting method is much faster than ICM, and in our
experiments with synthetically degraded and real images its
performance was comparable to that of ICM. The method
can be viewed as a special case of either ICM or math-
ematical morphology. As a morphological method. it has
the advantage in that the sequence of operators is chosen
automatically and in a statistically principled manner via
the parameter estimation in ICM, rather than in the usual
ad hoc manner. The structuring element (morphology) is
essentially equivalent to the neighborhood (ICM), which in
turn corresponds to the probability model for the true scene.
Thus the choice of structuring element can be reduced to a
standard problem of statistical model selection, and solved,
for example, using Bayesian model selection (Ji and Sey-
mour 1996; Kass and Raftery 1995).

A simple “ancestor” of our approach is to first classify
each pixel according to the maximum likelihood classificr,
postprocess this using the median filter or simple major-
ity vote local smoother, and iterate until convergence. We
call this method “blind restoration.” Besag (1986) pointed
out that this method has the clear disadvantage of losing
track of the records themselves, a criticism that also applies
to relaxation labeling methods (Hummel and Zucker 1983:
Rosenfeld, Hummel. and Zucker 1976). This is correct, and
blind restoration tended to perform relatively poorly in our
own experiments, as we report later. However. when simple
majority vote is replaced by discrete-image ICM, and naive
maximum likelihood is replaced by marginal mixture EM
segmentation, this disadvantage seems to no longer have
serious practical consequences and often may be more than
offset by the increase in speed.

In Section 2 we review the Bayesian, ICM. and mor-
phological approaches. In Section 3 we introduce Bayesian
morphology. We describe, online parameter estimation in
Section 4, using likelihood and pseudolikelihood criteria.
We present various experiments in Section 5, including ex-
tensions of Bayesian morphology to gray-scale and mul-
tispectral images via marginal mixture EM segmentation.
Finally, we discuss connections to other work and possible
extensions in Section 6.

2. BACKGROUND: BAYESIAN IMAGE ANALYSIS,
ITERATED CONDITIONAL MODES, AND
MATHEMATICAL MORPHOLOGY

2.1 Bayesian Image Restoration and the lterated
Conditional Modes Algorithm
Bayesian image analysis is based on probability models.
It includes a variety of tasks. including image restoration.
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The true but unknown scene, » = {&;.7 € S}, where S is
a set of pixels, is interpreted as a particular realization of
a random vector X. The observed image y is interpreted
as a realization of a random vector Y that can be seen
as a degraded version of X. The vector Y depends on X
through a known conditional probability density function
L{y|r). which incorporates the image formation model and
the noise mode].

To restore X is to propose an estimator X = X(Y) of
X on the basis of Y. Bayesian image restoration meth-
ods are based on the following principles. The true image
r 1s supposed to be a realization of a random field with
distribution P(.r). Then the restored image & is based on
the posterior density of x, namely P(x|y) x L(y|lv)P(x). A
standard restoration criterion consists of maximizing this
density. leading to the maximum a posteriori (MAP) esti-
mate of ..

For each pixel /, let S'{/} denote all other pixels in S.
One of the most popular modeling assumptions is to con-
sider the image . as being a realization of a Markov ran-
dom field. This means that for all pixels 7 in S. F(.r) satisfies
Plrijrs i) = Plrileny); that is, the conditional distribu-
tion of P(.') depends only on the values of pixels in a subset
N{i) of S\ {i}. called the neighborhood of pixel i. Another
usual assumption is that, given X = r, the Y, are condi-
tionally independent and have the same conditional density
function f(y,'r;) that depends only on ;. Thus L(yjr) can
be written as the product L{yle) = [],cq flyilri).

Finding the MAP estimate under these assumptions can
require heavy computation. A less computationally de-
manding method that provides a fast approximation to the
MAP is the iterated conditional modes (ICM) algorithm
(Besag 1986). The ICM algorithm is iterative. Given a cur-
rent estimate ;& of the image. a new one is computed by
visiting each pixel in turn. At pixel ¢ the current value
there is replaced by the value that maximizes the conditional
density

P{vru'v’\'_\“\{/}-!ﬂ‘ (n

given all other current pixel values ¢ ;y and the fixed
observation y. This choice is motivated by the following
equality. which holds for any pixel /:

Frrly) = Plojivs gy y)Plesy gy ly)-

When pixels are updated sequentially, choosing values that
maximize the conditional probability P(x;|vg (). y) in-
creases the posterior density P(x|y) and ensures the con-
vergence to a local maximum of P(x|y).

Under the previous modeling assumptions, maximizing
the conditional density (1) is equivalent to maximizing

flys )Pl N y). (2)

because only the dependence on . is relevant for the maxi-
mization. For unordered-color images, we focus, in Sections
3.1 and 3.2. on models simple enough to enable this max-
imization to be done explicitly. We show that for binary
images the algorithm can be formulated using a morpho-
logical terminology.
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2.2 Binary Mathematical Morphology

Mathematical morphology was first introduced as a tool
for investigating geometric structure in binary images. In
this context, binary images are usually viewed as subsets
of a two-dimensional space, usually the two-dimensional
discrete plane Z? or some finite subset S of it (the pixels)
or, equivalently, as mappings from this set of pixels to {0,
1}. Geometric information can be extracted from a binary
image by probing it with a small shape known as the struc-
turing element. This element is a subset of Z2. To make it
more similar to neighborhood structures in a Markov ran-
dom field setting, it is assumed to contain the origin (0, 0)
and to be symmetric. Note that this also simplifies some
of the following definitions. Probably the most commonly
used example of such an element is the 3 x 3 square con-
sisting of nine pixels.

Let / be an image and let B be a symmetric structuring
element. For each pixel i € S, let B(i) be the translation of
B by i.B(i) = {i+j,j € B}. The neighborhood N'(/) of a
pixel 7 is thus the translation by ¢ of a symmetric structuring
element V. A typical N would be the set of eight pixels in
a 3 x 3 square when the center of the square is not included.

The most primitive morphological operators are erosion
and dilation. They are defined as

I=B={ieSBi)CI}
and
I=B={ieS Bi)ynl=i#}

A pixel i belongs to I eroded by B if B{i) is totally con-
tained within 7, whereas for pixel i to be in the dilation
of I by B, it is enough that one pixel of B(i) belongs
to B.

Erosion and dilation are dual notions. The so-called dual-
ity principle plays an important role in mathematical mor-
phology. The dual, ©*, of a morphological operator ¥ is
defined by ¢*(I) = (¢)(1%))° for all I C Z?, where I¢ repre-
sents the complement of 7. The erosion of the background
of an image is equivalent to the dual dilation of its fore-
ground. When an operator is equal to its dual, it is said to
be self-dual. Self-dual operators treat the background and
foreground of an image identically, and thus may be desir-
able when no a priori information is available on what is
foreground and what is background.

When the intention is to remove noise from an image,
another desirable property is idempotence. An operator ¥ is
said to be idempotent when v (v:(1)) = w(I) for all I C Z2.

Erosion and dilation are not idempotent, but they can be
combined into two idempotent operators called opening and
closing. An opening is an erosion followed by a dilation,

IToB=(I2DBy2D.
Its effect is roughly to delete small isolated parts and re-
move thin filaments of an image. A closing is a dilation
followed by an erosion,

lTeB=(I5B) =B
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A closing is an opening of the image background. Open-
ing and closing are dual notions in the sense that [ ¢ B =
(I€ o B)©.

Openings and closings are the morphological operators
commonly used to clean noisy images. They are based on
erosions and dilations. The latter can be further generalized.
They are particular cases of weighted rank operators as de-
fined by Heijmans (1994). Let B be a structuring element
with m points and let I; denote the value (0 or 1) at pixel j
when the image [ is dssomated with a mapping from S to
{0, 1}; that is,

1 ifjel
1 0 otherwise.
Let W = {uq,we.. ... wy, b be the weights w; associated
with each pixel ¢ in B and let » be a threshold or rank for

Wi ..., w,. 1 € Z. The weighted rank operator. pp . 1S
defined by

€ S. Z wil; > 5. (3)

FEB(L)

pew.r) =

If the weights are positive, then such an operator is in-
creasing (with respect to set inclusion). The negative of
pB.w., is the weighted rank operator pg -~ with v/ =
ST w; + 1 — 7. It follows that pg ., is self-dual if and
only if 21 = 3> 1, + 1. In that case, pp w., is called a
weighted median operator.

If w, =1foralliand 1 <r <, then pgw ., is called
a rank operator and is simply denoted by pg.,. For any
two operators ¥y and v, let v < %, denote the situa-
tion where v (I) C (1) for every I C Z?. Then we have
PBm S pBm-1 S - < pBa. The operators pg.m and PB.1
are erosion and d11at10n by B. More generally. rank op-
erators can be decomposed as finite unions of erosions or
intersections of dilations. For instance, we have pp .(I) =
UB(,EV@(] & B()), where V; = {BO C BIB()| = 7‘}. Thus
the rank operators are morphological operators in the sense
of Matheron (1975) and Serra (1982). If m is odd and r =
(m +1)/2, then pp . is self-dual and is usually referred to
as the median operator. It has interesting cleaning capabili-
ties and is sometimes combined with openings and closings
to filter noisy images.

These rank operators are the ones that appear in the for-
mulation (10) of ICM in the next section. They appear for
different structuring elements, depending on the neighbor-
hood structure chosen in the Bayesian analysis.

3. BAYESIAN MORPHOLOGY

In this section we first specify the ICM algorithm for
some simple models. We show in Section 3.1 that for bi-
nary images, the ICM estimate of the true pixel [update
rule (2)] is equivalent to the application of a mathemati-
cal morphology rank operator. When the noise and model
parameters are known, ICM can be seen as a succession
of rank operators whose ranks depend on the known pa-
rameters; see {10). When the noise and model parameters
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are not known, a natural approach is to consider the un-
supervised version of ICM. which consists of alternating
between parameter estimation and restoration (see Sec. 4).
One advantage of such a mathematical morphology formu-
lation of the restoration step [update rule (10)] is to reveal
the existence of insensitivity conditions for the parameters.
This means that the final restoration is not sensitive to the
precise values of the noise and model parameters. This is
a key observation that we use to reduce the complexity of
the estimation step in traditional unsupervised [CM and to
save much computation time (see Theorem 2). We call the
resulting algorithm and its extension to unordered-color im-
ages (Sec. 3.2) Bavesian morphology. When performed on
unordered-color images, it is equivalent to ICM in the sense
that the final restoration or classification is the same. In this
case, it differs from ICM essentially in how the parameter
estimation step is carried out. According to the insensitivity
conditions, point estimates need not be computed.

3.1 Binary Images and Insensitivity Conditions in
Iterated Conditional Modes

In the case of binary images, r; € {0.1} and y; € {0.1}
for all pixels i. A commonly used prior distribution for the
true image X is the attractive isotropic Ising model (in fact,
the two-color Potts model),

Plr) = Z(3) Y exp(Be(a)). (4)

where

v(r) = Z(S{.rlj.;r,) (9)

i~

is the number of pairs of neighboring pixels having the
same color in . In the foregoing sum. / ~ ;j denotes the
statement that the pixels i and j are neighbors and é(x;. x,)
refers to the Kronecker delta function, equal to 1 if x;; and
x; are the same and to O otherwise. The quantity Z(3) is
the normalizing constant, or partition function,

Z{3) = Z(\Xp(dp(}l'))- (6)

R

This tunction is usually difficult 1o compute because of the
intractably large number of terms in the summation. The
conditional distributions of P(«) have the simple form

Plrilrg i) x exp(iu, (1)) (7)
where

u(ry) = Z LTS (8)

JEN(

is the number of neighbors of pixel i having color ;. The
model depends on a parameter .7 that is taken to be positive,
reflecting the assumption that neighboring pixels tend to be
of the same color.

The true images are then assumed to be degraded by a
region-dependent flip-flop, or channel transmission noise
characterized by the two parameters py, and pyo, where
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pon = Ply; = liz; = 0) and pyy = Ply; = 0[x; = 1).
We assume. without loss of generality, that py; and p,g be-
long to the open interval (0, 1/2). The y, are assumed to be
conditionally independent and the likelihood is L{z|y) =
[Tics flyila). where f(y;]1) = (1 — pio)¥ (p1o)' ™% and
Flyd0) = (po)” (1 = por ) o,

For these noise and image models, the update rule (2) in
ICM can be written explicitly. In what follows, [ ] and |
denote the floor and the ceiling functions.

Theorem 1. For an Ising model with region-dependent
flip-flop noise. the current ICM estimate of the true image
at pixel ¢ is updated by changing #; to x} according to the
rule

Uoaf w (1) — w (0) > 2uny
if (1) — 1, (0) < —2uy 9)

yi 1t = 2wy < ui(1) —u; (0) < 2wy,

rie=K 0

where w and w,; are positive integers that depend on the
noise and model parameters py;. pig, and 3. namely

wy == i log ——1 — P
. 243 Dol
= i log 1_‘—}"01
B 23 P1o A

Note that u;(1) + u,;(0) = |[N(i)] = m. so that «;(1) —
u;(0) = 2u;i1) - [N(i)] is even for every symmetric neigh-
borhood N(i), where |N (/) is the number of elements in
N (i). For binary images, we have u;(1) = Zje/\'(i) x;, and
an equivalent formulation of (9) can be given in terms of
the rank operators defined in (3):

* { [/)\7)(i”1
o=
[/);\"-7‘1 (i)]’
where g = (m,/2) + w1 and r; = (m/2) — wo and where
[z]; is the value of the image = at pixel i. A shorter way
to write (10) is &7 = [px_ (F)];. where r; = (m/2) + wy —
yi(wo + wy).

The update rule (9) depends on the parameters py;.p1o
and ;3 only through the values of wy and w;. When these
integers are known, each pixel can be updated easily by ap-
plying the rule (9) or, equivalently, the rank operators px .,
or pn. - In the general case, po;.p1o and .3 are unknown
and so are wy and w. However, we have the following re-
sult.

and

if y; =0

(10)

Theorem 2, 1f there exist integers &y and A; such that
por-Pro. and 3 satisfy

1 ]Apm) 1 (1—1110>
log < .73 < — log| ———— (11
2(ko + 1) g( o1 2kq : Poi
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then for all of these values of pg;. pg, and 3wy and u are
equal to Ay and k. These conditions can be equivalently
formulated in terms of pyy and py; = 1 — o0

koL (13)

,L'.
pora” < pr < pna

and

< < ! 1 !
) or—p- L= —.
P = “”(,M Py

(14)

Por oFT + 11— e
where a = exp(2;3).

It follows that the update rule (9) does not depend on
the exact values of pgy. p1o, and 3, but rather on how they
are related to each other. We refer to (11) and (12) [or (13)
and (14)| as the insensitivity conditions. Figure 1 shows the
sets of values of py, and p;, within which «w and w«; are
constant. Estimating wq and @ then consists of finding kg
and %, such that the insensitivity conditions hold. We can
restrict our search to values of kq in {0.1...., IN(@)|/2-1}
and Ay in {1..... IN(1)]/2}. Indeed, it wy > |[N{)]/2 + L,
then y; = () automatically implies that 7 = y,. A particular
case occurs when w) = 1 + w. For these values, py ., and
pn., are dual operators. Note that this is satisfied when
po1 = pio; that is, when foreground and background noise
are treated identically. Another particular case is wy =1 —
wy, which actually corresponds to wy = 0 and wy = 1. This
occurs when

1 1 — pm>

3> - log{ —— (15)
2 g(\ Pot

and

1 1 —

324%( ”‘i>. (16)
2 Pio

o | I / _
@4 @24 (1.4

p1t

e
o

0.0 0.2 0.4 0.6 0.8 1.0
pO1

Figure 1. Insensitivity Conditions in Terms of pg; and p;4 for an Eight-
Pixel Neighborhood With 3 = .35. The lines delimit regions where wy
and w; are constant. Their respective values are shown in parentheses.
For example, in the largest triangle region, notation (0, 1) means that for
all values of pg; and pyy lying in this region. wg = 0 and wy = 1.
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leading to the following theorem.

Theorem 3. If poi.pro.3 satisty conditions (15) and
(16), then the update rule (9) does not involve any parame-
ters. It becomes

Lot (1) > u;(0)
2T =< 0
yi 1w (1) = u;(0).

if'u,'(l)<u,~((]) (17

This corresponds to the blind restoration proposed by
Zhang, Shirazi, and Noda (1996). Other blind restorations
can be derived by assuming different values for w and w.
They may be more appropriate, depending on the true pa-
rameter values (see Sec. 5). However, update rule (17) con-
sists of applying the majority rule and may be viewed as
a reasonable first choice of blind restoration for many im-
ages. Note that this choice corresponds to the largest region
in Figure 1.

Our alternative to arbitrary blind restoration involves es-
timating w; and wy. In Section 4 we show that this turns
out to be much easier than computing point estimates for
Po1.Pio. and 3. But first, we consider similar developments
for color images.

3.2 Unordered-Color Images

A widely used model for images with ' unordered ex-
changeable colors is the Potts model defined here. Such
a model is adapted to image segmentation or classification,
where the goal is to assign to each pixel of the observed im-
age a label (or color) indicating the pixel’s class. The stan-
dard nearest-neighbor Potts model is defined by the joint
distribution

P(x) = Z(3) P exp(Fv(r)). (18)

where the expressions (5), (6), (7), and (8) remain valid,
keeping in mind that they may refer to more than two col-
ors. Note that in the infinite size limit, this model has a
phase transition at .. = log(1+ vﬁC) when there are four
neighbors (Georgii 1988).

To derive insensitivity conditions as in Section 3.1, the
key step is to formulate the update rule in ICM so that the
discrete nature of the images can be exploited in a simple
way. For that reason, we restrict attention to the following
independent noise model:

) 1 - p if Yi =
flyile) = { (19)

75 otherwise.

This corresponds to transmission with channel noise. A
good transmission is assumed to be the most probable,
which means that C'(1 — p) > 1. More general models are
possible, but they lead to more complex update rules. For
instance, a region-dependent degradation where p in (19)
would be replaced by values p,, that may depend on »;
could be considered. This would better generalize Section
3.1, but formulating it properly would require the estima-
tion of (' — 1)(3C — 2)/2 integers instead of the two, wg
and wy. in (9). Adopting the foregoing simple noise model
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leads to a formulation of ICM update rule very similar to
that in the binary image case. Let i be the current restora-
tion as in Section 3.1.

Theorem 4. For a Potts model with channel noise, ICM
works as follows. When at pixel ¢, the current value 7, is
changed to z; according to the procedure below:

» Find the color that is taken most often by the neigh-
bors of pixel ¢ in &; that is, find ¢ in {#,,j € N{(i)}
such that u;(¢) is maximized.

+ Then, update pixel i:

c
* p—
.'L',L —
Yi

where w is a positive integer that depends on the pa-

rameters,
1 (1-p)C-1)
w = "3 lob< » .

The update rule (20) depends on 4 and p only through
the value of w. This leads to the following insensitivity
conditions.

if w;{c)— ui(y;} > w
, ( (20)
otherwise,

Theorem 5. For the Potts model with channel noise, if
there exists an integer &k such that 3 and p satisfy

1< l 10g((_1__]')<~019> < k.
3 P

(21)

'

or, equivalently,

% 1Og((l *p)]gC— 1)>

<3<

1 10&((1“[))(('_1))q (22)
E—1 P

or in terms of p,

1
1+ (C - 1)~ Texp(3k)

1
< J
S PSS TTCD  exp(3ik - )

. (23)

then w is equal to &, and the ICM update rule (20) does not
depend on the exact values of 3 and p.

Estimating w then reduces to finding & such that one of
the foregoing equivalent expressions is satisfied. In Section
4 we propose a way to do so, avoiding the need for point
estimation.

4. ONLINE PARAMETER ESTIMATION

When the model and noise parameters are unknown, a
natural approach to unsupervised restoration is first to esti-
mate the parameters and then to estimate the true unknown
scene z (see Sec. 2.1) given the parameter estimates. This
is usually done iteratively by iterating between parameter
estimation and restoration, following the general procedure
proposed by Besag (1986). In most cases, estimating the
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noise parameters does not present a problem (maximum
likelihood estimators are usually available in closed form),
and the main difficulty arises in the estimation of the pa-
rameters of the model for the true scene (or “prior” model).
Maximum likelihood estimation is usually intractable, ex-
cept maybe in some cases (see Goutsias 1991), because of
the practical impossibility of computing the partition func-
tion. In practice. estimation is based on approximations such
as maximum pseudolikelihood (Besag 1975). If the Potts
model is “true,” then this may lead to inaccurate estimators,
especially when the dependency is high (Geyer 1991), but
for actual images it may yield better restorations, given the
often unrealistic global behavior of the Potts mode! (Besag
1986).

In our setting, however, maximum likelihood estimation
appears to require a reasonable amount of computation.
The idea is to take advantage of the insensitivity condi-
tions given in Sections 3.1 and 3.2. They allow one to find
the restoration based on the maximum likelihood estimate
without ever actually finding the maximum likelihood es-
timator explicitly, a fact that leads to great computational
savings.

Our algorithms are based on estimation criteria. An esti-
mation criterion is a function that measures the quality of a
parameter. We let /7 denote such a parameter and g;’ denote
the value at which such a function is maximized, assuming
that such a maximum exists. More generally. 3 may be an
estimator of a parameter of interest, and we call an esti-
mation criterion any monotone function f such that f (3)
is known (although 3 is not necessarily known) and f(:3)
is computable for any given value of 3. Typically, if £ is
a concave function with maximum at 3, then its derivative
(dF/d3) is decreasing and equal to 0 at 3. If this derivative
is computable for given values of 3, then f = (dF/d7) or
f = ~(dF/d3) can be termed an estimation criterion.

We use such functions to find wq and w; if the model
is that of Section 3.1, and to find w if the model is that
of Section 3.2. The two cases are similar, and we focus on
the model of Section 3.2. The value of w is the integer ¥
that satisfies (22), which for any increasing function f is
equivalent to

(1 ((L=p)C—1)
)

< g < oy e ).

Therefore, if 73 is an estimator of 3, then a natural estimator
of w, ), satisfies

1 10g<“-P><C‘1>)

w P

§1;’<

1 ((l-p)(C'—l))
- log .
w—1 P
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Equivalently, if [ is such that f(.Af;) is equal to a known
constant £, then « satisfies

e w>>
AT Iz )
1 (1—piC -
<)< f( 1 1( - pic “)) .4
=1 » L

If fO(1/ Ay log([(1 — p)(C" - 1) /p)) 1s known for different
integer values k. then finding ' reduces to comparing real
values, which is easier than computing 3. In earlier work
(Forbes and Raftery 1997). we considered in detail the cases
corresponding to maximum likelihood and maximum pseu-
dolikelihood estimation for the standard Potts model (18).
For maximum likelihood estimation, we showed that an
appropriate function f and the corresponding value b are
f(3) = Ese(X)) = >, vluiP(u), which depends on 3
through F. and /= £, 7(X)] = ¢(x). where 3 is the maxi-
mum likelihood estimator of 7.

The exact computation of the foregoing expectations is
intractable. However, estimates can be obtained by sam-
pling the distribution P(.) for the corresponding values
of 3 and forming empirical averages. The required sam-
ples can be generated using Markov chain Monte Carlo.
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This can be computationally demanding, but we were able
to accelerate it greatly for the Potts model using the
Swendsen-Wang algorithm (Swendsen and Wang 1987).
Our algorithm requires only a small number of samples
and evaluations. Other approaches that try to save on-
line samplings include those of Descombes, Morris, and
Zerubia (1996), Geyer (1991), and Geyer and Thompson
(1992).

Pseudolikelihood estimation appears as a natural alterna-
tive to maximum likelihood, which is usually intractable in
the standard Markov random field cases when point esti-
mation of the parameters is required. The term “‘pseudo-
likelihood” was introduced by Besag (1975) to refer to the
product of conditional probabilities,

HP(:I',‘.U\ {,}). (25)
ies
For the Potts model, P(x;|re\iy) = pilry) = Z,(3)7!
exp(Jui(ai)). where Z;(3) = 3 .cy\  cpexp(Fuile)).

In this case an appropriate function f is f(3) =
Yics By ui(X;)], and the corresponding constant b is
b = >.guilr;) = 2e(r). An advantage over maxi-
mum likelihood estimation is the possibility of computing
Y ieg By lui(X)] exactly.

£Lie8

{q)

Figure 2. Degraded Mickey Image and Different Unsupervised Restorations. (a) Original image degraded with '5% channel noise. (b) Bayesian
morphology based on a likelihood criterion. (c) Bayesian morphology based on a pseudolikelihood criterion. In (b) and (c). the initial estimate of the
noise parameter pp was .35. (d) Blind restoration using simple majority rule.
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5. EXPERIMENTS

5.1 Restoring Unordered-Color Images

We first consider pure restorations of unordered-color im-
ages. The steps of the Bayesian morphology algorithm are
not listed here; more details and other images can be found
in our earlier work (Forbes and Raftery 1997). Figure 2
shows a binary image degraded with 15% channel noise and
different restorations: Bayesian morphology using the like-
lihood and pseudolikelihood criteria (see Sec. 4) and blind
restoration using the simple majority vote (17), following
Zhang et al. (1996).

The performance of our Bayesian morphology algorithm
is the same as that of an unsupervised version of ICM. Ta-
ble 1 gives the final estimates of p and . the number of
iterations before convergence and the number of calls to
the function f used in (24). The number of times that the
estimation criterion (function f)} is evaluated is relevant to
the speed of the algorithm, especially for maximum like-
lihood, because such evaluations require online sampling
and may slow the restoration procedure considerably. To
initialize our procedure, we set the initial value of the noise
parameter p to .35.

Note that for a two-color Potts model, the term (u;(c) —
ui(y;)) in the update rule (20) is even. Therefore, an odd
value of « and the even integer following it actually lead
to the same updating. Thus. in this case the number of calls
to f can be divided by 2. Although computationally unnec-
essary, the distinction is interesting when comparing maxi-
mum likelihood and maximum pseudolikelihood estimators
of ., as a smaller value ot « corresponds to a larger value
of 3. In Table 1 the pseudolikelihood criterion results in
an estimate of w equal to 3, compared to 4 when a likeli-
hood criterion is used. For binary images, those values of w
correspond to the same updating of the current restoration,
so that for the noisy image (a), likelihood and pseudolike-
lihood criteria lead to similar restorations (b) and (c). The
restorations are different, however, because the first updat-
ing is different in each procedure. The fact that a pseudo-
likelihood criterion leads to a lower estimate of w is consis-
tent with the empirical observation of Geyer and Thompson
(1992) that maximum pseudolikelihood estimators tend to
overestimate 3. As illustrated in Figure 2, blind restoration
performs badly. Too much detail is lost, and the error rate
is higher.

The choice of estimation criterion may be important in
this setting. Theoretical studies and empirical comparison
of the maximum likelihood and maximum pseudolikelihood
estimators for Markov random fields have been carried out
by various authors. Comets and Gidas (1992) and Gidas
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(1993) showed both the maximum likelihood and maxi-
mum pseudolikelihood estimators to be consistent. This
does not necessarily say very much about their properties
when used on finite lattices. Tjelmeland (1996) presented
simulation experiments with maximum likelihood and max-
imum pseudolikelihood estimators for binary Markov ran-
dom fields on moderately sized hexagonal lattices (2.883
to 30,603 pixels). The results indicate that both estima-
tors give good results for the Ising model and for mod-
els with weak interactions between neighboring pixels. For
models with strong interactions, the maximum pseudolikeli-
hood estimator produces unsatisfactory estimates, whereas
maximum likelihood estimator still gives reliable results.
However, as Tjelmeland (1996) observed. estimated pa-
rameter values substantially different from the true values
do not necessarily mean that the visual appearance of the
corresponding realizations of the model differs from that
of the true model. This is an important point in image
analysis, where modeling per se may not be the primary
goal.

In our setting, the parameter estimation step cannot be
considered independently of the restoration step. The main
advantage in using insensitivity conditions is to avoid the
problematic computation of pointwise estimates. Therefore,
our comparison of the estimation criteria must be based on
the quality of the final restoration or segmentation. How
to evaluate this quality depends on the task at hand. Also,
when considering a visual criterion for assessing the qual-
ity of an estimator, the actual performance may be masked
by the choice of the prior model. On one hand, more accu-
rate parameter estimation (via maximum likelihood) allows
more reliable comparisons of different priors. In particu-
lar, the Potts model and, more generally, models that in-
volve only pairwise interactions (Descombes et al. 1996;
Tjelmeland and Besag 1998) can be shown to not cap-
ture well the global characteristics of images. On the other
hand, these models may perform surprisingly well in tasks
such as restoration while performing poorly for other tasks
(see Tjelmeland and Besag 1998). Descombes et al. (1996)
showed cases where the restored images using the Potts
model as a priori may still be noisy. A common trick for
obtaining better restorations is to overregularize the solu-
tion by increasing /4. In that sense. it is not surprising that a
pseudolikelihood criterion may produce good results. Ide-
ally, we recommend using accurate parameter estimation
and more realistic priors, such as the higher-order Markov
random fields described by Descombes, Mangin, Pecher-
sky, and Sigelle (1995) and Tjelmeland and Besag (1998).
But this is much more demanding in terms of computation

Table 1. Results for Figure 2 (Mickey Image With 15% Channel Noise)

Image lterations Calls to f Final k Final p Error rate
(a) 15% channel noise 14.9%
(b) Likelihood criterion (pg = .35) 7 30 4 14.4% 1.8%
(¢) Pseudo-likelihood criterion (fg = .35) 9 30 3 13.9% 1.8%
(d) Blind restoration (w = 1) 20 1 16.4% 3.2%

NOTE: f. k. and p are defined in the text
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and time. so that in practice the Potts model may still be
preferred by users.

5.2 Segmenting Gray-Scale and Multidimensional
Images

In the previous cases, the observed and unobserved im-
ages were of the same type. Often, however, the image to be
restored consists of unordered colors (classes), but the ob-
servations are usually ordered real values (measurements).
The ICM algorithm can be used for such restorations, as-
suming a different noise model (Besag, York, and Mollié
1991), but our use of the insensitivity conditions cannot be
extended efficiently for this model. We believe, however,
that they can still be used to obtain acceptable segmenta-
tions rapidly.

A natural idea when dealing with more general images
(possibly multidimensional data) is to first derive an initial
classification using simple and fast procedures, such as the
maximum likelihood classifier [4#; is chosen to maximize
fly:ri) at each pixel ¢ separately]. These procedures do
not take spatial information into account and may result
in an unacceptably large number of misclassified pixels.
Therefore, a better classification can be computed by as-
suming the initial classification to be a noisy version of the
final one according to the model in Section 3.2. The perfor-
mance of such an alternative depends on the quality of the
initial restoration. It cannot be expected to perform quite
as well as algorithms that do not lose track of the original
(e.g., continuous, gray-level) data, but in our experiments it
performs similarly and can be much faster.

The maximum likelihood classifier requires that the user
either know in advance or be prepared to specify the pa-
rameters that define f(y;|r;). Alternatively, representative
training data must be available. consisting of pixels whose
class is known. These conditions will often not be met. Here
we used a simple alternative, marginal mixture EM segmen-
tation, which yields a reasonable initial classification with-
out requiring either specialized user knowledge or training
data. The marginal distribution of gray-scale pixel inten-
sities i1s assumed to be of the form of a finite mixture of
distributions. More details of this procedure can be found
in our earlier work (Forbes and Raftery 1997).

For multispectral images, the same approach as for gray-
scale images can be used. in principle. An additional diffi-
culty arises. however—the important problem of initializing
the EM algorithm. We have found that agglomerative hier-
archical model-based clustering (Banfield and Raftery 1993;
Celeux and Govaert 1995) provides a sensible way of doing
this (see Dasgupta and Raftery 1998). This can be done us-
ing the mclust software, which is part of S-PLUS, and can
also be obtained at http://lib.stat.cimu.edu/general/melust
(Fortran version), or hup://lib.stat.cmu.edu/S/mclust (S
version).

For standard-sized images, such as 256 < 256 or 512 x 512,
this clustering can be computationally expensive, but clus-
tering on the basis of a subsumple of pixels is fast and
often works well (Banfield and Raftery 1993). The result-
ing parameter estimates for the mixture model can be used
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to initialize the EM algorithm, or to provide an initial clas-
sification directly via discriminant analysis (Banfield and
Raftery 1993; Bensmail and Celeux 1996).

Another way of getting a fast first classification via
marginal mixture EM segmentation without first subsam-
pling the pixels has been described by Posse (1998). This
method involves combining a minimum spanning tree algo-
rithm with a classification procedure so that a large number
of points (pixels) can be handled.

5.3 Example: Gray-Level Image of a Dog Lung

Figure 3(a) is a gray-level image of a dog lung. The aim
here was to distinguish the lung from the rest of the image
to measure the heterogeneity of the tissue in the region of
interest. Only pixels in this delimited area are then consid-
ered to compute a heterogeneity measure, such as a coeffi-
cient of variation. The EM algorithm was used to compute
the three-component segmentation (b), which is a good ini-
tial segmentation apart from some misclassified pixels. The
final segmentations using standard ICM and Bayesian mor-
phology are shown in (c) and (d).

Although perhaps visually more pleasing, the standard
ICM segmentation (c) is slightly too smooth for the spe-
cific purpose of the study, and the Bayesian morphology
segmentation (d) may be preferred. Note that this observa-
tion is consistent with the corresponding estimates ;3 of 3.
In the Bayesian morphology case, only bounds are available
for 7 (1.05 < 3 < 1.40). For ICM, the estimate is § =
1.44; this 1s higher than the higher bound, confirming that
the subsequent restoration may be smoother. The Bayesian
morphology segmentation represents the nonlung area in-
side the lung as an “island.” whereas the ICM segmen-
tation connects it to the area outside the lung; the re-
searchers preferred the Bayesian morphology solution in
this respect. Also, standard ICM produces a more jagged
restoration of the outside circle than Bayesian morphology,
and again in this respect our external knowledge indicates
the Bayesian morphology solution to be more faithful to re-
ality. In addition, Bayesian morphology was 3.5 times faster
than ICM.

5.4 Example: Precipitation Climatology

[nput data are data for a global precipitation climatol-
ogy produced at the Joint Institute for the Study of the
Atmosphere and Ocean (available at hzip.://www.tao.atmos.
washington.edu/legates_msu). The spatial resolution of this
climatology is 2.5 degrees in latitude and in longitude,
which leads to a set of 12 144 x 72 maps representing sta-
tions or points (pixels) at which monthly average precipi-
tation (in mm) has been recorded or extrapolated, for each
individual calendar month. Figuré 4 shows such a map for
the month of January.

Possible goals of classifying these data into a small num-
ber of components include building climatic regionaliza-
tions to show climatic variability and defining local fore-
cast zones consisting of groups of stations. each of which
would be considered a single locale for forecasting pur-
poses, thus reducing the total number of stations. Fovell
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(d)

Figure 3. A Gray-Level Image of a Dog Lung, and Different Unsupervised Segmentations. (a) Original grey-level image; (b) initial three-
component segmentation using the marginal mixture model EM method; (c) standard ICM segmentation, starting from (b); (d) Bayesian morphology
segmentation, modeling the initial segmentation (b) as being degraded by channel noise.

(1997) has provided more background and considered sim-
ilar data for the purpose of delineating climate zones of the
conterminous United States. That study used standard clus-
tering techniques that do not take into account spatial loca-
tion and dependence. These techniques have the drawback
of producing small separate entities that are not climato-
logically meaningful. Using ICM or Bayesian morphology
to classify these data has the advantage of producing more
spatially cohesive regionalizations. Small isolated regions
are removed by automatically reassigning the stations (pix-
els) located in them, reducing the spatial fragmentation of
the classifications.

We computed six-component classifications following a
suggestion of Fovell (1997). As these data are far from nor-
mally distributed, a nonlinear transform was first applied,
the power .25 of each record was taken. A fast first segmen-

tation of the 144 x 72 [2-band image was then obtained
using the technique described by Posse (1998). Figure 5
shows this classification after applying Bayesian morphol-
ogy with an initial value of ' set to 1. The Bayesian mor-
phology segmentation (1.15 < 3 < 1.53) appears too frag-
mented in some regions, whereas the ICM segmentation
(3 = 1.77) appears too smooth. In the latter, significant re-
gions are removed near the islands of Madagascar and New
Zealand, for instance. Another advantage of Bayesian mor-
phology is that for this 12-band image, it was 13 times faster
than ICM.

Note that, depending on the goal of the analysis. the data
may be preprocessed differently. If the goal is to construct
local forecast zones, then it may be judged prudent to stan-
dardize the records to eliminate level (mean) and seasonality
(variance) distinctions. In the present application. we were
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Figure 4. Monthly Average Precipitation (mm) for the Month of January. The spatial resolution is 2.5 degrees in each of latitude and longitude

and results in a 144 x 72 image.

more concerned with the construction of climatic zones for
which the level and seasonality components are useful in-
formation. Time series can be computed by averaging the
data for the members in each class of Figure 5 (see fig.
17 in Forbes and Raftery 1997). In this classification, class
1 is represented in white class 6, in black. Classes | and 2
correspond to dry regions with different seasonalities. Class
6 corresponds to wet areas with light seasonal variations.
Class 3 includes regions with high variability and dry sum-
mer climates, and class 5 includes continental interiors that
generally exhibit a wet summer/dry winter cycle. Class 4
is characterized by moderate rainfall all year round. with
a slight peak in late summer and fall. This includes much
of the industrialized world: most of Europe, eastern North
America, eastern Australia, and, arguably, Japan, as well as
large parts of southern Asia and both major oceans. This
seems to be a rather heterogeneous class, suggesting that
more than six classes may be needed.

—

6. DISCUSSION

We have introduced the Bayesian morphology approach
to image segmentation and the restoration of unordered-
color images. For gray-level and multispectral images, this
involves first segmenting the image using marginal mixture
EM segmentation, and then applying discrete-valued ICM
to the resulting segmentation. We have shown that discrete-
valued ICM is equivalent to a form of mathematical mor-
phology and that we can find the restoration corresponding
to optimal parameter estimates without actually having to
find these estimates. These two results provide considerable
computational savings.

Bayesian morphology performs similarly to standard
ICM in our experiments, but is much faster. In our gray-
level image experiments, it was three to eight times faster,
with the greater savings for the images requiring the most
CPU time. In our experiments with multispectral images,
the savings were even greater. For one 12-band image,
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Figure 5. Bayesian Morphology Segmentation of the Legates/MSU Precipitation 12-Band Image, Modeling the Initial Marginal Mixture EM
Segmentation as Being Degraded by Channel Noise. The initial value of w was set to 1.

Bayesian morphology was more than 13 times faster than
ICM. This opens the possibility of applying Bayesian image
analysis in contexts where it has not been feasible before
because of the great speed required, such as real-time and
interactive image analysis and real-time video processing.

Bayesian morphology may also contribute improvements
to the practice of mathematical morphology. This is already
very fast and performs well: however, it lacks a formal sta-
tistical foundation for inference. and the specification of the
sequence of morphological operations to be used is done in
a rather ad hoc manner. Because Bayesian morphology is
based on a statistical model, issues such as choice of a struc-
turing element and choice of the sequence of morphological
operations can be reduced to issues of statistical model se-
lection and addressed, at least in principle, with Bayesian
model selection by computing approximate Bayes factors
(Ji and Seymour 1996; Kass and Raftery 1995).

A limitation of our study is that the insensitivity con-
ditions we use seem to be limited to simple image and

noise models. It may be interesting to investigate further
whether the analysis of more complex image models can be
exactly or approximately divided into diftferent steps involv-
ing unordered-color image restorations. Performing those
restorations faster will then be relevant for a larger class
of problems. For gray-level and multispectral images, one
possible extension would be to iterate between the EM and
ICM steps of the Bayesian morphology algorithm.
Another possible extension is the use of other models for
the unobserved image. The Ising and Potts models do not
always capture the image characteristics well enough. Other
models have been proposed and studied by Descombes et
al. (1995. 1996), and Tjelmeland and Besag (1998). These
are higher-order interaction Markov random fields that in-
volve three parameters regulating the presence of noise,
edge, and line configurations. Each pixel is considered to
have a 5 x i neighborhood comprising the 24 nearest pixels.
Such a neighborhood structure induces cliques that are 3x 3
squares. For binary Markov random fields. a configuration
on a 3 x 3 clique can be classified using the symmetries
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(symmetry black—white, rotation) in one of 51 classes. A
potential function is associated with each class, and con-
straints are imposed by relation between these functions.
They involve three parameters, ¢./. and n. The parameters
e and [ can be interpreted as the edge and line energies per
unit of length. The parameter n allows one to control the
amount of noise. It is associated with noise configurarions,
typically those not involved in edge or line features. The
resulting distribution has the form

P(x) x exp(—evg(x) — vy (x) — nea ().

where vy. vy, and v, depend on the 3 x 3 configurations in
x. In particular, v5 () is the number of noise configurations
in z.

Our study can be easily extended to a one parameter ver-
sion of these models. We can restrict ourselves to a situation
where only the noise parameter n is unknown by setting
the edge and line parameters to some constants. The rea-
son for such a restriction is that insensitivity conditions still
hold for models with several parameters, but it seems that
there is no real gain from using them. Note that these mod-
els require more computation and, although they are more
flexible, users may still prefer the limited but simple Potts
model in most cases.

Other estimation criteria, such as those that take into ac-
count the observed image y, may also be worth investigat-
ing. Qian and Titterington (1992), estimated the parameters
by maximizing

[T Ewbie
=
Focusing on 3 leads to equations similar to those in Sec-
tion 4 (see Forbes and Raftery 1997), but the choice of an
appropriate function f is not straightforward.

In addition, we believe that the morphological viewpoint
can simplify the implementation of statistical algorithms
such as ICM and give better insight into their conver-
gence properties—in particular, through the properties of
iterations of morphological transformations (see Heijmans
1994). This also includes considering alternatives to the
commonly used Markov random fields priors, such as mor-
phologically constrained Markov random fields (Sivakumar
and Goutsias 1997). The latter incorporate geometric prop-
erties more clearly and may induce algorithms with clear
morphological characteristics. Note that although our study
and that of Sivakumar and Goutsias (1997) both attempt to
link Bayesian image analysis and mathematical morphol-
ogy, the goals and results are quite different. Sivakumar and
Goutsias (1997) used ideas from mathematical morphology
to try to build more complex and realistic Markov random
field models for images. Applications of such models to tex-
ture simulation have been illustrated by Carstensen (1992).
In our study, on the other hand, we have identified equiva-
lences between simple and basic versions of both method-
ologies, and have tried to use them to find ways in which
insights from each approach can yield improvements in the
other one.

|Received December 1997. Revised September 1998.]
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