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SUMMARY.

Constructing maps of dry deposition pollution levels is vital for air quality management, and

presents statistical problems typical of many environmental and spatial applications. Ideally, such maps
would be based on a dense network of monitoring stations, but this does not exist. Instead, there are two
main sources of information for dry deposition levels in the United States: one is pollution measurements
at a sparse set of about 50 monitoring stations called CASTNet, and the other is the output of the regional
scale air quality models, called Models-3. A related problem is the evaluation of these numerical models
for air quality applications, which is crucial for control strategy selection. We develop formal methods
for combining sources of information with different spatial resolutions and for the evaluation of numerical
models. We specify a simple model for both the Models-3 output and the CASTNet observations in terms
of the unobserved ground truth, and we estimate the model in a Bayesian way. This provides improved
spatial prediction via the posterior distribution of the ground truth, allows us to validate Models-3 via the
posterior predictive distribution of the CASTNet observations, and enables us to remove the bias in the
Models-3 output. We apply our methods to data on SO, concentrations, and we obtain high-resolution SO,
distributions by combining observed data with model output. We also conclude that the numerical models

perform worse in areas closer to power plants, where the SO, values are overestimated by the models.
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1. Introduction

Emission reductions were mandated in the Clean Air Act
Amendments of 1990 with the expectation that they would
result in major reductions in the concentrations of atmospher-
ically transported pollutants. Maps of dry deposition and con-
centration levels of pollutants are useful for discovering when,
where, and to what extent the pollution load is increasing
or declining. Ideally, such maps would be based on a dense
network of monitoring stations, covering most of the United
States, at which dry deposition and concentrations of air pol-
lutants would be measured on a regular basis. Unfortunately,
such a network does not exist. Instead, there are two main
sources of information about dry deposition pollution levels
in the United States, and two resulting ways of constructing
pollution maps. The first is a sparse set of about 50 irregularly
spaced sites in the eastern United States, the Clean Air Status
and Trends Network (CASTNet), at which the Environmental
Protection Agency (EPA) regularly measures concentrations
and fluxes of different atmospheric pollutants (see Figure 1A).
It would be possible to use an interpolation method to pro-
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duce a pollution map. However, the air pollutants’ fluxes and
concentrations are functions of terrain, atmospheric turbu-
lence, vegetation, the rate of growth of the vegetation, and
other soil and surface conditions. Because these factors vary
abruptly in space and time and because the monitoring sta-
tions are too far from each other, interpolation of the CAST-
Net monitoring data is recognized to be inadequate for the
problem (Clarke and Edgerton, 1997).

The second source of information is pollution emissions
data. The point and area sources of emissions are available
from known sources of pollution such as chemical plants, gen-
erally in the form of annual totals. If the emissions data were
accurate and available at a fine time resolution, and if we had
precise information about local weather, land use and cover,
and pollution transport dynamics, we could in principle work
out pollution levels at each point in time and space quite ac-
curately. This ideal is far from being attained. However, the
available emissions data have been combined with numeri-
cal models of local weather (the Mesoscale Model version 5
[MM35]), the emissions process (the Sparse Matrix Operator
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(A) Weekly average of SO, concentrations (parts per billion; ppb) at the Clean Air Status and Trends Network

(CASTNet) sites, for the week of July 11, 1995. (B) Output of Models-3, weekly average of SO, concentrations (ppb), for the

week of July 11, 1995.

Kernel Emissions [SMOKE] model), as well as information
about land use and cover, to estimate pollution levels in space
and time (the Community Multiscale Air Quality [CMAQ)]
output) and to produce maps (Dennis et al.,, 1996). These
are not statistical models, but rather numerical deterministic
simulation models based on systems of differential equations
that attempt to represent the underlying chemistry; they take
the form of huge blocks of computer code. The combination
of these models is referred to as “Models-3” (models genera-
tion 3). The models are run by the EPA and individual U.S.
states, and they provide estimates of pollutant concentrations
and fluxes on regular grids in parts of the United States (see
Figure 1B).

The output of Models-3 generates averaged concentrations/
fluxes over regions of size 36 x 36 km. This approach may
also be unsatisfactory for two main reasons. First, the under-
lying emissions data are often not of high quality (Dolwick
et al., 2001). Second, the underlying models may be inade-
quate in various ways. It seems clear that combining the two
main approaches and sources of information, the model es-
timates and the point measurements, could lead to a better
solution. So far, efforts to do this have focused on model evalu-
ation, in which model predictions are compared with measure-
ments, and the models are revised and the outputs adjusted if
discrepancies are found (Dennis et al., 1990). The final maps
are still based on the model output alone.

The evaluation of physically based computer models for
air quality applications is crucial to assist in control strat-
egy selection. Selecting the wrong control strategy has costly
economic and social consequences. The objective comparison
of modeled concentrations with observed field data is one ap-
proach to assessment of model performance. Early evaluations
of model performance usually relied on linear least-squares
analysis of observed versus modeled values, using scatterplots
of the values.

Further development of these proposed statistical evalua-
tion procedures is needed, and we propose a Bayesian ap-
proach. Statistical assessment is tricky in this case, because
the model predictions and the observations do not refer to
the same spatial locations, and indeed are on different spa-
tial scales. The fact that they are on different spatial scales
is called the “change of support” problem. The model predic-
tions are averages over grid squares, while the observations are
at points in space; the two are thus not directly comparable.
One approach to making them comparable is to apply inter-
polation and extrapolation methods to the CASTNet point
measurements so as to produce empirical estimates of grid
square averages, and then compare those to the model pre-
dictions (Sampson and Guttorp, 1998). One difficulty with
this is that the interpolated grid square averages can be
poor because of the sparseness of the CASTNet network,
and so treating them as ground truth for model evaluation is
questionable.

A related problem is that the comparison does not take into
account the uncertainty in the interpolated values. In this arti-
cle, we develop a new approach to the model-evaluation prob-
lem, and show how it can also be used to remove the bias in
model output and to produce maps that combine model pre-
dictions with observations in a coherent way. Combining both
sources of information versus using just the sparse data field
or the unreliable model output should lead to improved maps
of air quality. We specify a simple model for both Models-3
predictions and CASTNet observations in terms of the unob-
served ground truth, and estimate it in a Bayesian way. Solu-
tions to all the problems considered here follow directly. Model
evaluation then consists of comparing the CASTNet observa-
tions with their predictive distributions given the Models-3
output. Bias removal follows from estimation of the bias pa-
rameters in the model. Maps of pollution levels and of the
uncertainty about them, taking into account all the available
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information, are based directly on the posterior distribution of
the (unobserved) ground truth. The resulting approach takes
account of and estimates the bias in the atmospheric models,
the lack of spatial stationarity in the data, the ways in which
spatial structure and dependence change with locations, the
change of support problem, and the uncertainty about these
factors. It can be viewed as an instance of the Bayesian meld-
ing framework for inference about deterministic simulation
models (Poole and Raftery, 2000), and its implementation is
quite straightforward.

A similar approach has been developed by Cowles and
Zimmerman (2002, 2003), who have used systematic sampling
and standard numeric integration techniques rather than
Monte Carlo integration to combine point and areal data.
Another relevant method was proposed by Best, Ickstadt,
and Wolpert (2000), who related different spatially varying
quantities to an underlying unobservable random field for a re-
gression analysis of health and exposure data. In our method
we also have an underlying unobserved process, but the sta-
tistical model we propose is novel. We present a new way to
relate air pollution variables to an underlying process repre-
senting the true air pollution values, as well as a new model for
nonstationarity. Wikle et al. (2001) presented an approach to
combining data from different sources to improve the predic-
tion of wind fields. Wikle et al.’s approach is a conditional one
in which all the spatial quantities are defined through a series
of statistical conditional models. In their approach, the out-
put of the numerical models is treated as a prior process. Here
we present a simultaneous representation of the data and the
output of numerical models in terms of the underlying truth.
Our method is different from that of Wikle et al., because we
do not treat the output of the numerical models as a prior
process, but rather as another source of data. Therefore, we
write the output of the models in terms of the underlying
truth, taking into account the potential bias of the numerical
models. The way we estimate these bias parameters is also
novel. To our knowledge, this is the first time that statisti-
cal methods that take into account nonstationarity, change of
support, and the uncertainty about these factors have been
used for the evaluation of the regional scale air quality nu-
merical models.

In Section 2 we describe the statistical model, and in Sec-
tion 3 we show some of our results for model evaluation and
map construction using the combined data for the air pollu-
tion problem. Section 4 presents some final remarks.

2. The Statistical Model
2.1 Statistical Models for CASTNet and Models-3 Output

We do not consider CASTNet measurements to be the
“ground truth,” because there is measurement error. Instead,
we assume that there is an underlying (unobserved) field Z(s),
where Z(s) measures the “true” concentration/flux of the pol-
lutant at location s. At station s we denote the CASTNet
observation by Z(s), and we assume that

2(s) = Z(s) + e(s), (1)

where e(s) represents the measurement error at location s
and e(-) ~ N(0, 0?) is a white noise process. The process
e(s) is independent of Z(s). In some applications, it might
be necessary to add a term B(s) in the observation equation

(1) to explain the potential measurement bias in the data.
Here we considered this bias to be negligible and ignored it,
following the recommendation of our EPA collaborators.

The true underlying process Z is assumed to follow the
model

Z(s) = pls) + €(s), )

where Z(s) has a spatial trend, p(s), that is a polynomial
function of s with coefficients 3. We assume that Z(s) has
zero-mean correlated errors €(s). The process €(s) has a pos-
sibly nonstationary covariance with parameter vector 0 that
might change with location.

We model the output of the EPA physical models as follows:

Z(s) = a(s) + b(s)Z(s) + 6(s), (3)

where the parameter function a(s) measures the additive bias
of the air quality models at location s and the parameter
function b(s) accounts for the multiplicative bias in the air
quality models. The process 6(s) explains the random devia-
tion at location s with respect to the underlying true process
Z(s), and we take it to be a white noise process, namely, 6(-) ~
N(0, 02). The process §(s) is independent of Z(s) and e(s),
which is the error term for CASTNet. Because the outputs of
Models-3 are not point measurements but areal estimations
in subregions By, ..., B, that cover the domain D, we have

Z(Bi)—/Bi a(s) ds+b/B-Z(s) ds—&-/Bi 8(s)ds  (4)

i

fori = 1,...,m. According to the EPA modelers with whom
we have communicated and to some preliminary analyses we
have done, the bias is mostly additive, and their experience
suggests treating the function b(s) as constant over space.
Therefore, we model b(s) as an unknown constant term and
the function a(s) as a polynomial in s with a vector of coeffi-
cients, ag.

For spatial prediction we simulate values of Z from its pos-
terior predictive distribution as

P(Z\|Z,Z). (5)

For model evaluation we simulate values of CASTNet given
Models-3, assuming that Models-3 output is unbiased, i.e.,
from the following posterior predictive distribution:

P(Z|Z,ay=0,b=1). (6)

For bias removal, we use values of the parameters a; and b
estimated from their posterior distribution

P(ay,b| Z,Z). (7)

2.2 Methods for Combining Data at Different

Spatial Resolutions
We first describe the change of support problem that oc-
curs when we combine data sources with different supports,
or when the supports of predictand and data are not the
same. This problem is treated in detail by Gotway and Young
(2002). Here, we have point measurements at the CASTNet
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sites, and then we observe the output of Models-3 averaged
over grid cells, Bi,..., B,. In this section we discuss algo-
rithms to calculate the covariance for areal measurements
and the posterior predictive distribution of a random pro-
cess at a point location Z(x,) given data on block averages,
Z(Bi1),...,Z(B,), where some of the blocks might be just
points. The covariance for the block averages is

cov(Z(B,), Z(B;)) = / | / Clu v ) dndv/|BBL )

where C(u, v, 8) = cov(Z(u), Z(v)), C being a possibly
nonstationary covariance spatial function. Gelfand, Zhu, and
Carlin (2001) approximated the integral in (8) using a random
sample over B;. Here, we prefer a systematic sample because
of the computational benefits of having the data on a regular
grid.

We now deduce the joint distribution of Z and Z condition-
ing on the value of the parameters in models (1) and (4). We
could in principle write this distribution as a function of the
parameters and calculate the maximum likelihood estimate
(MLE) for the parameters in models (1) and (4). Because in
practice this calculation will be hard, we present a Bayesian
approach to estimate the parameters. We have

RO N Scn) | NI
Z a+ bji Yoem X

where

a= (/B a(s)ds,...,/m a(s)ds)T,
i = </Bl,u(s)ds,...,/Bmu(s)ds>T,

In (9) $¢ is the covariance of Z (CASTNet), which is the
covariance of Z plus measurement error variance, Y, is the
covariance of Z (Models-3), and X is the crosscovariance
between the point measurements Z and the block averages Z.
We write 3 to denote the covariance matrix of (Z7,Z7)T, so
that 3 is an (n + m) x (n + m) matrix with elements {o; ;}
given by

and

Tiyig = COV(Z(S’L| )v Z(Siz))
= C(si),s:y,0) + 1{@::'2}02 for 41,4y < n,
Oniji = Sinis = cov(Z(si), Z(B;))

- b/ C(s:,v.0) dv/|B, .
B

J

fori=1,...,nand j=1,...,m, and
On+tji,ntjs = COV(Z(le)vz(sz))
/ C(u,v,0)dudv
B; JB
:b2 J1 J2 +1 s UZ‘B'|,
|B,, || Bj, | {71=42}9 6125

for j1, jo = 1,..., m, where the function 1 4 (x) is the indicator
function of the set A, taking the value 1 when x € A and 0
otherwise.

The goal is to predict the value of Z at location x, given
the data. Thus we need the conditional distribution of Z(x)
given the observations, assuming that all the parameters are
known. We use classical results of multivariate analysis to
derive the joint distribution of Z(xy), and Z = (Z*,Z™)T. We
define 7 = cov(Z(xy), Z), an (n + m)-dimensional vector with
components

7 = cov{Z(xq), Z;} = cov{Z(xy), Z(s;)}
= C(XU, S;, 0),
Tntj = COV{Z(Xg), Zn+;} = cov{Z(xy), Z(B])}

fori=1,...,n,

= b/ C(x0,v,0)dv/|Bj|, for j=1,...,m,
B;
where Z; denotes the ith component of Z. We then de-
duce that the conditional distribution of Z(x,) given {Z,Z}
is normal with mean pu(xy)+ 77X Y(Z — p), where p=
(fr,a+ b1)T, and variance o2 — 7TX 7.

When the goal is to predict Z at a location x, the Bayesian
solution is the predictive distribution of Z(x;) given the ob-
servations Z,

p(Z(x0)|Z) = /p(Z(XO) |Z,¢)p(¢|Z)d¢,  (10)

where ¢ = (02, ag, b, 02, 8, 6). A Gibbs sampling approach
is used to simulate m values from the posterior distribution
of the vector parameter ¢. The predictive distribution is ap-
proximated by the Rao-Blackwellized estimator as follows:

PZ)12) = > p(Z00)|Z,6%), (1)

where ¢® is the tth draw from the posterior distribution.

2.3 Modeling a Nonstationary Covariance
The spatial patterns shown by the air pollutant fluxes and
concentrations change with location, in the sense that the
spatial covariance is different at different locations, as shown
by Guttorp and Sampson (1994), Haas (1995), and Holland
et al. (1999), among others. Therefore, the underlying process
Zin (2) is nonstationary and the standard methods of spatial
modeling and interpolation are inadequate. In this section we
review the methodology of Fuentes (2001, 2002) and Fuentes
and Smith (2001), which we will use to model the covariance of
the process Z. We represent the process locally as a stationary
isotropic random field with some parameters that describe the
local spatial structure. These parameters are allowed to vary
across space and reflect the lack of stationarity of the process.
A broad class of stationary Gaussian processes may be rep-
resented in the form
Z(x) = / K(x —s)Zg(s)(x) ds, (12)
D
where K is a kernel function and Zg(x),x € D is a family of
(independent) stationary Gaussian processes indexed by 6.
The parameter 0 is allowed to vary across space to reflect the
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lack of stationarity of the process. The stochastic integral (12)
is defined as a limit (in mean square) of approximating sums
(e.g., Cressie, 1993, p. 107). Each stationary process Zgs)(x)
has a mean function ps that is constant, i.e., ps does not
depend on x. We propose a parametric model for the mean of
Z7

E{Z(x)} = u(x;8);

here we take p to be a polynomial function of x with coeffi-
cients 3, but other choices are possible.
The covariance of Zg( is stationary with parameter 6(s),

cov{Ze(s)(s1), Zo(s)(s2)} = Ces) (51 — s2).

We take the process Zg( to have a Matérn stationary covari-
ance (Matérn, 1960):

Cos)(x)

Os

= iy (2 belf) " K (20 02),

(13)
where K, is a modified Bessel function and 0(s) = (vs, o,
ps). The parameter p; measures how the correlation decays
with distance; generally this parameter is called the range.
The parameter o is the variance of the random field, i.e., o, =
var(Zgs (x)), usually referred to as the sill. The parameter v,
measures the degree of smoothness of the process Zg(). The
higher the value of v, the smoother Zg() would be.

The covariance of Z, C(sy, sg; 6), is a convolution of the
local covariances Cy()(s1 — s3),

C(s1,89;0) = / K(sy —s)K(s; —s)Cos)(s1 —s2)ds.  (14)

In (14) every entry requires an integration. Because each
such integration is actually an expectation with respect to
a uniform distribution, we propose Monte Carlo integration.

We draw a systematic sample of locations v;, j =1, 2,..., M
over D. Hence, we replace C(s, sp; 0) with
Ch(s1,82;0)

v (15)
=M Z K(s1 —v;)K(s2 — v;)Cov,)(s1 — 82).
Jj=1

This is a Monte Carlo integration, which can be made arbi-
trarily accurate and does not involve the data Z. The sampling
points v;, j =1, 2,..., M, determine subregions of local sta-
tionarity for the process Z. We increase the value of M until
convergence is achieved.

2.4 Algorithm for Estimation and Prediction

In our Gibbs sampling approach there are three stages. We
alternate between the parameters that measure the lack of
stationarity, (3, 8(s)) (Stage 1), the parameters that measure
the bias of Models-3 and the measurement error of CASTNet
(Stage 2), and the unobserved true values of Z at all the
CASTNet sites and at the blocks where we have the Models-3
output (Stage 3). We obtain the conditional posterior distri-
bution of the parameters that measure the lack of stationarity,
(B, 8(s)), given the values of Z that are updated in Stage 3.
The posterior distribution of (8, 6(s)) will be completely
specified once we define the priors for (3, 6(s)), because
(Z1]B, ) is Gaussian.

We use a Metropolis—Hastings step for blocks of parame-
ters, after performing partial marginalizations of the full con-
ditionals. We treat as a block 8, which are the three covariance
parameters, namely, the sill, the range, and the smoothness.
In our experience, this scheme produces a chain with better
mixing properties than that obtained by independent sam-
pling of the full conditional distributions of the sill, range,
and smoothness parameters. We use a gamma-prior distri-
bution for all the covariance parameters, except for the sill
parameter; we use a uniform prior for the logarithm of the
sill. For the B parameter, we use uniform priors.

3. Application: Air Pollution Data

We model the covariance function for the process Z, the true
SO, values, using equation (14). We estimate the covariance
parameters of the process Z, given the CASTNet data and
Models-3 output, taking into consideration the change-of-
support problem. We calculate the covariances involving block
averages by drawing a systematic sample of L locations in each
pixel, so that M is equal to L times the number of pixels. This
is an approximation that can be made arbitrarily accurate by
increasing the value of L. In this application L = 4 seemed to
be large enough to achieve a sufficiently good approximation.
We sample systematically rather than randomly because it
allows us to use the fast Fourier transform, with which the
covariance calculations are faster and easier.

We implement the nonstationary model (12) with
weight function K(u—s) = 75 Ko(%2), where Ky(u) is the
quadratic weight function

Ko(w) = 3(1-w?®) 3(1-w’) , (16)
for u = (uy, uz). The bandwidth parameter h is defined as
(1 + €) 1/2, where lis the distance between neighboring sam-
ple points vi,..., vy in (15), and € is a value between 0 and
1. For € we use a uniform prior in the interval [0, 1]. The pa-
rameter € determines the overlap between the subregions of
stationarity centered at the sampling points vy, ..., vy, and
h can be interpreted as the diameter of the subregions of sta-
tionarity. We use gamma priors for all the Matérn covariance
parameters, except for the sill parameter for which we use
p(o) o 07!, which is a uniform prior for log(s). The mean
and variance of the gamma priors are determined using pre-
vious knowledge and results from the analysis of similar data.
For the smoothness parameter the prior mean is 0.5 and the
variance 1, and for the range parameter the prior mean is 100
km and the prior standard deviation is 45 km.

In Figure 2 we plot the posterior distribution of o(x) at
some CASTNet sites x. The spatial locations at which we
examine the covariance parameters in Figure 2 have nothing
to do with the choice of the nodes vi,...,vy in equation
(15). We are assuming that the covariance parameters are
approximately constant between nodes; otherwise we increase
the number of nodes, M. Thus, the value of @ at some location
x of interest is calculated as the value of @ at the node v; that
is closest to x.

The sill parameter changes with location as illustrated by
the variation in the distributions in Figure 2. The mean and
standard deviation of the posterior distributions for the sill
parameter at six selected sites located in Maine, Illinois, North
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Figure 2.
week starting July 11, 1995, at six selected locations.

Carolina, Indiana, Florida, and Michigan, are, respectively,
0.23 (0.03), 2.89 (0.85), 0.78 (0.23), 3.40 (0.99), 0.21 (0.04),
and 0.54 (0.08). The range parameter does not change much
with location. The means and standard deviations of the pos-
terior distributions for the range parameter at the same six
sites are 97.7 (12.8), 95.7 (28.5), 119.0 (35.8), 91.9 (27.3),
114.9 (21.9), and 96.2 (15.5). The smoothing parameter does
not change much with location either, and is always close
to 1/2 (exponential). The mode of the posterior distribution
of the parameter that measures the measurement error for
CASTNet is 0.8, and for Models-3 it is 0.1.

We use a uniform prior distribution for all the additive bias
parameters, and a normal prior for the multiplicative bias
parameter b. The mode of the posterior distribution for the
parameter that measures the multiplicative bias for Models-3

Posterior distributions of the sill parameter of the Matérn covariance for the SO, concentrations of Z, for the

is 0.5 with a standard error of 0.5, and for the additive bias we
have a polynomial of degree q. We treat g as a hyperparameter
and use a reversible jump Markov Chain Monte Carlo (Green,
1995; Denison, Mallick, and Smith, 1998) algorithm for model
selection. In this application ¢ = 4 seemed to be large enough.

In Table 1 we show the modes, standard deviations, and
90% credible intervals of the posterior predictive distribution
(5) for SO, at the six selected sites. We get very high vari-
ability at the Indiana site. This site is very close to several
coal power plants, and so the SO, levels can be very high or
very low depending on wind speed, wind direction, and the
atmospheric stability. The sites in Maine and Florida have
the lowest SO, levels and variability. The agricultural site in
Illinois and the site in North Carolina have similar behavior
in terms of SO, levels. The site in North Carolina is not far

Table 1
Columns 2-5 in this table show the modes, standard deviations, and 90% credible
intervals of the posterior predictive distribution (equation [5]) for the underlying process Z
measuring the true SOy concentrations at the six selected sites. Column 6 shows the

CASTNet values (Z). Columns 7-9 show the modes and the corresponding 90% credible
intervals of the posterior predictive distribution (equation [6]) for model evaluation.

Site Mode SD  90% CI CASTNet Models-3  90% CI

Maine 0.18 0.02 0.15 0.25 0.15 0.33 0.10 0.43
Illinois 2.80 0.25 2.55 3.41 3.29 3.33 2.17 5.03
North Carolina 1.98 0.29 1.18 2.08 0.90 5.32 3.67 6.67
Indiana 0.98 1.59 0.74 5.63 3.14 9.59 4.20  20.50
Florida 0.56 0.05 0.50 0.69 0.57 0.52 0.20 0.80
Michigan 0.83 0.12 0.79 1.14 1.02 1.04 0.53 1.70
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Figure 3.
posterior distributions.

from the Tennessee power plants, and the site in Illinois is also
relatively close to some midwestern power plants. The site in
Michigan, which is very close to Lake Michigan and relatively
far from power plants also has low SO, levels.

In Table 1 we also show the CASTNet values, to judge
whether the generated data are similar to the CASTNet data.
The CASTNet values in Table 1 at the six sites represent the
5th, 91st, 1st, 68th, 14th, and 79th percentiles of the corre-
sponding posterior predictive distributions from the Bayesian
melding approach. For the North Carolina site the CASTNet
values are low relative to the posterior predictive distribution.
This is due to the higher altitude (and lower pollution levels)
of this particular site in relation to the nearby locations.

The last three columns in Table 1 are the modes and the
corresponding 90% credible intervals of the posterior predic-
tive distribution (6) for model evaluation. We can clearly ap-
preciate the bias in the numerical models by comparing these
values with CASTNet. For instance, for the site in North
Carolina, the interpolated value of Models-3 is 5.32 ppb (SE =
3.00 ppb), while the CASTNet value is only 0.90 ppb. We
can remove the bias in these interpolated Models-3 values by
taking into account the additive bias measured by a(x) (a
polynomial of degree 4 with coefficients ay) and the multi-
plicative bias. At each site we calculate the posterior means
of ay and b, using the posterior distribution (7), and we obtain
the following adjusted Models-3 values (adjusted value(s) =
((Models-3)(s) — a(s))/b) at the six selected sites: 0.12, 2.88,
1.09, 3.12, 0.44, and 1.01, where a is a fourth-degree poly-
nomial with coefficients that are the posterior means of ay,
and b is the posterior mean of b. These adjusted values are
very similar to CASTNet. Figure 3 shows a contourplot for
the additive bias of Models-3, with the bias parameters, ay,
estimated with the mean of their posterior distribution. This
bias seems to be larger in a north—south ridge covering some
of the midwestern and the southeastern parts of our domain.
The week of July 11 (1995) was very dry with a heat wave
affecting the midwest and southeast of the United States,
this probably affected the ability of the numerical models to

£9

Map of the estimated additive spatial bias of Models-3. The bias parameters are estimated by the means of their

estimate correctly the mixing heights (the depth of the un-
stable air in the boundary layer) that determines pollutant
trajectories.

Figure 4A shows the predicted values of SO, at different
locations on a regular grid, using our Bayesian melding ap-
proach for prediction to combine CASTNet and Models-3
data. The predicted values in Figure 4A are the means of
the posterior predictive distribution (equation [5]) for the
SO, data. This graph looks similar to the output of Models-3
shown in Figure 1B. However, the SO, values in Figure 4A
are between 0 and 8 ppb, while in Figure 1B the SO, values
are between 0 and 40 ppb. The range of values in Figure 4A
is more reasonable, and it is closer to the range of values
for CASTNet shown in Figure 1A. This illustrates the effec-
tiveness of the Bayesian melding approach for correcting the
bias in Models-3. Figure 4B shows the standard error of the
posterior predictive distribution at each point. There is higher
uncertainty in areas close to power plants, where there is more
variability due in part to the effect of metereological variables
such as wind.

Figure 5 is an illustration of the performance of our
Bayesian melding approach. In this figure we plot the CAST-
Net values Z; (at each site i) versus the mean of the poste-
rior predictive distribution of the truth Z at site ¢ given the
models output Z and the CASTNet values Z_;, at all sites
except at the site i that we are predicting. The dotted lines
show the 90% pointwise credible bounds for CASTNet, and
the solid line has slope 1 and intercept 0. The average length
of the 90% credible intervals for the SO, values using the
Bayesian melding approach over all CASTNet sites is 7 ppb
and the standard deviation of the length of the intervals is 8
ppb. There is quite a lot of variability in the lengths of the
intervals, mainly due to the lack of stationarity of the spatial
covariance. We compare this mean interval length to that of
the 90% credible intervals for the SO, values at all CAST-
Net sites, this time given only the Models-3 output, and not
conditional on the CASTNet values. This is only 3.5 ppb,
half of the average interval length given Models-3 and the
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SO, Concentrations (Bayesian melding)

Standard Error of Bayesian Prediction
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(B)

Predicted SO, concentrations using the Bayesian melding approach to combine CASTNet with Models-3 data:

(A) mean and (B) standard deviation of the posterior predictive distribution of the underlying process Z given CASTNet and

Models-3.

CASTNet values. These intervals are too overoptimistic,
mainly due to the fact that the output of Models-3 is smoother
than the real data. The calibration of the intervals based on
Models-3 alone is poor: for Models-3 alone, only 55% of the
90% credible intervals contain the CASTNet values. We im-
prove the calibration to 80% by including CASTNet sites (see
Figure 5).

4. Discussion

Air quality numerical models are used to examine the response
of the air pollution network to different control strategies un-
der various high-pollution scenarios. To establish their cred-
ibility, however, it is essential that they should accurately
reproduce observed measurements when applied to ground
data. Our objectives are model evaluation and bias removal

20

15

3
£
3 o
3e
z
(2]
<
o
o4 |
: .
IR
o
0 5 10 15 20
Bayesian cross-validation predictive values
Figure 5. CASTNet values of SO, versus the mean of the

predictive posterior distribution of the true SO, values given
Models-3 and CASTNet values at all sites, except for the site
at which the predictions are being made. The dotted lines
show the 90% pointwise crossvalidation predictive credible
bands for CASTNet.

for the air quality numerical models, and construction of reli-
able maps of air pollution combining the output of numerical
models with air pollution measurements at monitoring sites.
We evaluate air quality models by obtaining the posterior
predictive distribution of the measurements at the monitor-
ing sites given the numerical models output. We remove the
bias in the air quality models by obtaining the posterior dis-
tribution of the bias parameters given the measurements at
the monitoring sites and the numerical models output. We
construct maps of air pollutants simulating values from the
posterior predictive distribution of the true values (underly-
ing process) given the measurements at the monitoring sites
and the numerical models output.

The Bayesian approach provides a natural way to combine
data from different sources taking into account the different
uncertainties, and it also provides posterior distributions of
quantities of interest that can be used for scientific inference.
However, our approach could also be implemented using a geo-
statistical approach by predicting the truth with the optimal
predictor, namely, the mean of the conditional distribution
of the truth given the data and the parameters. For this, we
would use an iterative approach with two steps. In step 1, we
would obtain the predictor of the truth given the data and
some initial values of the parameters. In step 2, the predicted
values obtained in step 1 combined with the data would be
used to estimate the bias and covariance parameters, using a
likelihood approach. We would then iterate between steps 1
and 2.

Another approach to model evaluation is to use spatiotem-
poral models for monitoring data to provide estimates of aver-
age concentrations over grid cells corresponding to model pre-
diction (Dennis et al., 1990; Chu, 1996; Sampson and Guttorp,
1998; Davis, Nychka, and Barley, 2000). This approach is rea-
sonable when the monitoring data are dense enough that we
can fit an appropriate spatiotemporal model to the data. In
situations such as the one presented here, with few and sparse
data points that show a lack of stationarity, the interpolated
grid square averages would be poor because of the sparseness
of the CASTNet network, and so treating them as ground
truth for model evaluation would be questionable.
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We model the underlying process Z, with the true values
of fluxes/concentrations of air pollution, as a spatial process
with nonstationary covariance. Misspecification of the covari-
ance would lead to poor estimates of the predictive standard
deviation, and possibly also biased predictions. For instance,
suppose we assume that the sill is constant, while it is actually
changing with location. Then, we would tend to overestimate
the prediction error in areas with smaller sill than the pro-
posed fixed value, and we would probably underestimate the
prediction error in areas with larger sill than the assumed
fixed value. Here we represent the process locally as a sta-
tionary isotropic random field, but allow the parameters of
the stationary random field to vary across space. With this
model we are able to make inferences about the nonstationary
random field with only one realization of the process. We have
used a model that assumes the spatial covariance structure to
be approximately piecewise constant between nodes. An al-
ternative approach would be to model the spatial covariance
parameter 6 using splines, when we would have a continuous
function of space. However, when the number of nodes M is
large enough, our results using splines are similar to those
from the simpler approach we have presented here.

We have overcome some limitations of earlier approaches to
the evaluation of numerical models and mapping of air quality,
but other limitations remain. In our analysis we have mod-
eled the true underlying pollution process as a Gaussian field,
which seemed to be a reasonable assumption because we were
working with weekly averages of hourly values. However, for
hourly pollution levels the logarithmic transformation could
be more appropriate. Based on the experience of our EPA col-
laborators, the main problem with air quality models seems
to be the presence of additive bias. This is the reason for our
representation of the numerical models as a linear function
of the truth. In other applications, one might need to write
the output of a numerical model as a nonlinear function of
the truth. We have also ignored the potential additive bias of
the observations. Preliminary analysis showed that this bias
was negligible compared to the bias of the Models-3 output.
We assumed independence between the truth and the mea-
surement error. To our knowledge, this assumption is reason-
able for SO, concentrations. But, it is more questionable for
other air pollution variables, such as fluxes and deposition
velocities. Thus, when modeling other pollution variables, a
more complicated dependency structure might be needed.

The only monitoring network for dry deposition and con-
centrations is CASTNet, and the CASTNet monitoring sites
are all in rural areas. Because Models-3 are regional models,
the main interest is to capture regional patterns, rather than
isolated hot spots (probably located in urban areas). There-
fore, CASTNet seems to be an appropriate network for eval-
uation of these regional air quality models, despite the fact
that all sites are rural. However, we plan to use in the future
urban sites whenever they become available.

In this article we combine data by relating the spatially
varying variables to an underlying unobservable true air pol-
lution process and we predict this latent process. This is differ-
ent from the traditional geostatistical approaches of cokriging
or kriging with external drift (KED) for spatial interpolation
with auxiliary covariates, as used by Phillips et al. (1997). In
cokriging or KED the data are represented as a function of

covariates using a regression model. Therefore, if the observed
data and the output of numerical models are measured at dif-
ferent spatial resolutions, we cannot compare the observed
data directly to the output of numerical models. In this ar-
ticle we overcome that problem by relating each source of
information to the unobserved ground truth.

An alternative approach to model evaluation would use
kriging to predict the output of the numerical models at the
CASTNet locations. We compared our proposed modeling
approach with this traditional stationary kriging prediction
method that ignores the uncertainty in the covariance param-
eters. Both methods tend to give similar predicted values; the
main difference is in the prediction error, which is the criti-
cal factor for any inference done with the data. Our approach
gave larger standard errors than kriging for the Models-3-
predicted values, especially in areas close to power plants.
This reflects the difficulty in estimating the covariance pa-
rameters in these areas. The kriging approach reported the
same standard errors everywhere. For the evaluation of the
physical models, we studied where CASTNet values lay with
respect to a confidence interval for the SO, predicted values
from Models-3. Using kriging we considerably underestimated
the lengths of the prediction intervals leading to wrong con-
clusions about the performance of Models-3.
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RESUME

La construction de cartes de niveaux de pollution par dépots
secs est fondamentale pour la gestion de la qualité de 'air, et
présente des problemes statistiques typiques de nombreuses
applications spatiales et environnementales. Ces cartes de-
vraient idéalement reposer sur un réseau dense de stations
de suivi, mais ce n’est jamais le cas. Aux Etats-Unis, il existe
deux principales sources d’information sur les dépdts secs: le
réseau de stations de mesures de pollution CASTNet (réseau
lache de 50 stations environ), et les sorties d’un modele
régional de prédiction de la qualité de 'air appelé Models-
3. L’évaluation de ces modeles numériques pour leurs ap-
plications en qualité de l'air constitue un probléeme annexe
mais crucial pour le choix de stratégies de controle. Nous
développons simultanément des méthodes formelles de combi-
naison de sources d’information a différentes résolutions spa-
tiales et d’évaluation des modeéles numériques. Nous écrivons
un modele simple combinant les sorties de Models-3 et les
observations de CASTNet sous forme d’une “donnée terrain
réelle non observée,” et nous estimons le modele par une
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méthode bayésienne. Ceci permet (1) une prédiction spatiale
améliorée, (2) la validation des prédictions de Models-3 via la
distribution prédictive a posteriori des observations de CAST-
Net, et (3) I'élimination du biais dans les sorties de Models-3.
Nous appliquons notre méthode a des données de concentra-
tion de SO2, ce qui nous permet de produire des cartes de dis-
tribution & haute résolution du SO2 en combinant les données
et les prédictions du modele numérique. Nous concluons aussi
que le modele numérique se comporte moins bien a proximité
des centrales thermiques, ou il surestime les valeurs de SO2.
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