Calibrated Probabilistic M esoscale Weather Field Forecasting: The Geostatist...
Yulia Gel; Adrian E Raftery; Tilmann Gneiting; Claudia Tebaldi; et a
Journal of the American Statistical Association; Sep 2004; 99, 467; ABI/INFORM Glaobal

pg. 575

Calibrated Probabilistic Mesoscale Weather Field
Forecasting: The Geostatistical Output

Perturbation Method

Yulia GEL, Adrian E. RAFTERY, and Tilmann GNEITING

Probabilistic weather forecasting consists of finding a joint probability distribution for future weather quantities or events. It is typically done
by using a numerical weather prediction model, perturbing the inputs to the model in various ways, and running the model for each perturbed
set of inputs. The result is then viewed as an ensemble of forecasts, taken to be a sample from the joint probability distribution of the future
weather quantities of interest. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without
the vast data and computing resources of national weather centers. Instead, we propose a simpler method that breaks with much previous
practice by perturbing the outputs, or deterministic forecasts, from the model. Forecast errors are modeled using a geostatistical model,
and ensemble members are generated by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale
forecasts of temperature in the North American Pacific Northwest between 2000 and 2002. The resulting forecast intervals turn out to be
empirically well calibrated for individual meteorological quantities, to be sharper than those obtained from approximate climatology, and
to be consistent with aspects of the spatial correlation structure of the observations.
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1. INTRODUCTION

In this article, we propose a way to obtain probabilistic
mesoscale weather forecasts that are empirically calibrated,
sharp, and applicable to whole weather fields simultaneously,
rather than just to individual weather events. A probabilistic
weather forecast is a (joint) probability distribution of a set
of future weather quantities, to be distinguished from a point
or deterministic forecast, which is just a single forecast of the
quantities. Mesoscale weather forecasts are local forecasts that
have resolutions on the order of 1-12 km and typically cover
areas on the order of 500~1,000 kilometers square, compared
with global and synoptic forecasts that have resolutions typi-
cally on the order of 30-100 km and much larger, sometimes
planetary, areas of coverage. We say that a probabilistic fore-
cast is calibrated if events declared to have probability p occur
a proportion p of the time on average, and we say that it is sharp
if prediction intervals are shorter on average than intervals with
the same probability content derived from the long run marginal
distribution (sometimes called climatology).

Up to about 1955, all practical weather forecasting was done
by humans who integrated the available information subjec-
tively, using their professional experience. Bjerknes (1904) pro-
posed that weather forecasting be done by dynamically solving
a system of seven partial differential equations in seven un-
knowns that represent the state of the atmosphere. To do this
requires the specification of initial conditions and lateral bound-
ary conditions. Richardson (1922) described a vision of doing
this numerically, but it was not until 1955 that numerical solu-
tion of the systems of differential equations began to become
possible thanks to the advent of computers. The quality of nu-
merical weather predictions improved steadily, and by about
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1995 synoptic models consistently provided good point fore-
casts up to about 3 days ahead.

Up to about 1995, numerical weather forecasting was mostly
done in practice on global and synoptic scales and required
vast amounts of computing resources. As a result, it was done
mostly in a small number of national weather centers that had
considerable data and computing resources, including super-
computers. The resulting forecasts were then released for public
use. Local forecasters, such as those working for the media, avi-
ation, shipping, and the military, typically produced forecasts
for their areas of interest essentially by subjectively adjusting
the synoptic forecasts and interpolating between the grid points,
using knowledge of local terrain and weather patterns.

The past 10 years have seen a revolution in the practice
of numerical weather prediction. Increased model resolution
and improved model physics have made mesoscale numerical
weather prediction possible. The MMS5 (National Center for
Atmospheric Research-Penn State Mesoscale Model Genera-
tion 5) is the most used mesoscale model. The advent of MM5
and fast desktop computers have made local numerical weather
prediction possible, and now thousands of organizations are do-
ing it, instead of the handful of weather organizations world-
wide a decade ago. Typically, these organizations obtain the
initial conditions for MMS from global or synoptic forecasts
provided by the large weather forecasting organizations.

Probabilistic numerical weather prediction has been much
slower to develop than point forecasts. Epstein (1969) proposed
that it be carried out by specifying uncertainty in the initial and
lateral boundary conditions, and propagating these through to
the quantities being forecast. Leith (1974) proposed doing this
in practice by Monte Carlo simulation, generating an ensemble
of different initial conditions, running each of them forward us-
ing the model to obtain forecasts, and using the resulting set
of forecasts as a predictive probability distribution of the fu-
ture weather quantities being forecast. Murphy and Winkler
(1979) called for operational probabilistic temperature fore-
casts. By the 1990s, three viable methods had been developed:
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the breeding—growing modes method used by the U.S. National
Centers for Environmental Prediction (Toth and Kalnay 1993),
the singular vector method used by the European Centre for
Medium-Range Weather Forecasts (Molteni, Buizza, Palmer,
and Petroliagis 1996), and the perturbed observations method
used by the Meteorological Service of Canada (Houtekamer,
Lefaivre, Derome, Ritchie, and Mitchell 1996). Hamill, Snyder,
and Morss (2000) compared these methods in an ideal model
context and concluded that the perturbed observations method
works best.

Ehrendorfer (1997) and Palmer (2000) reviewed techniques
of probabilistic weather prediction that were in operational use
by the mid and late 1990s. However, these methods do not ap-
ply directly to probabilistic mesoscale forecasting. The initial
conditions being perturbed are typically specified by on the or-
der of 10 million numbers. The perturbed observations method,
for example, perturbs the observations on which the estimate
of the initial conditions is based and then runs a cycle of data
assimilation to turn them into initial conditions for the model.
An organization that is running MMS locally typically does not
have access either to the observations used to generate the ini-
tial conditions or to the computing resources needed to perform
the data assimilation. Also, errors in model physics are partic-
ularly important for mesoscale forecasts (Stensrud and Fritsch
1994a,b). Methods that perturb the initial conditions directly
in a simple way are questionable, because the resulting sets of
initial conditions may violate the equilibrium conditions of at-
mospheric physics, and so may give unstable results and hence
not be usable.

There have been several mesoscale probabilistic forecasting
methods developed using a range of initial conditions from
different global models, including the ETA-Regional Spectral
Model ensemble (Wandishin, Mullen, Stensrud, and Brooks
2001), the 1998 Storm and Mesoscale Ensemble Experiment
(SAMEX; Hou, Kalnay, and Droegemeier 2001), and the Uni-
versity of Washington MM35 ensemble (Grimit and Mass 2002).
Neither of the first two ensembles showed an ability to pre-
dict forecast reliability well. The third ensemble did, but the
prediction intervals produced were far too narrow (Raftery,
Balabdaoui, Gneiting, and Polakowski 2003), thereby suggest-
ing unwarranted confidence in the forecasts. Specifically, ob-
served temperatures fell much more often outside the ensemble
range than would be expected from calibrated forecasts.

We propose to develop an easy to use mesoscale probabilis-
tic forecasting method by directly perturbing the model out-
put, or point forecasts, in contrast to the traditional approach
of perturbing model inputs. If outputs (forecasts) are perturbed
independently, one meteorological quantity at a time, the prop-
erties of overall fields will not be well forecast, because, for
example, there will be no spatial correlation, while actual er-
ror fields show substantial spatial correlation. To avoid this,
we model the errors using a geostatistical model that preserves
the field’s spatial correlation structure. We generate our en-
sembles by simulating realizations from the resulting spatial
random field model. The result is a simple method that uses
only the point forecasts, does not use simulated or perturbed
observations or initial conditions, and implicitly incorporates
uncertainty due to errors in model physics. In our numerical
experiments, it turns out to be both empirically calibrated and
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sharp, and also to reproduce spatial properties of the observed
field.

In Section 2, we describe the geostatistical output perturba-
tion (GOP) method, including the basic statistical model, para-
meter estimation, geostatistical simulation method, and ways to
verify the resulting model and forecasts. In Section 3, we apply
the method to forecasting temperatures in the North American
Pacific Northwest and show the results, including in-sample
verification statistics and an out-of-sample predictive check. Fi-
nally, in Section 4, we discuss possible improvements to the
methodology.

2. THE GEOSTATISTICAL OUTPUT
PERTURBATION METHOD

We now describe the geostatistical output perturbation
method. First we outline the underlying statistical model. Then
we describe how it can be estimated from data and how real-
izations can be simulated from it efficiently. Finally, we explain
how we go about verifying probabilistic forecasts.

2.1 Statistical Model

Let ?(s, t) be the MMS3 forecast value of a meteorological
variable. Y (s, 1), at the spatial point s € %, verifying at time ¢,
at a given forecast lag. We focus on forecasting {Y (s, ) : 5 € §},
simultaneously for all s on a grid of points § in the forecast
region, but where ¢ and the forecast lag are fixed. Our goal is
to produce calibrated probabilistic forecasts of the kind of two-
dimensional images that operational forecasters look at, where
the whole image is calibrated, rather than just the individual
forecasts of which it is composed.

Let X (s,7) be a finite set of variables that correspond to lo-
cation s and time ¢, and that are thought to be related to forecast
bias. These might include functions of time of year or time of
day, and functions of space such as latitude, longitude, altitude,
distance from the ocean, and land use. Then our model is

Ys.oy=a' X(s.) + (' X(s.0)¥(s.0) +wis.r). (D)

Here a and b are parameter vectors, and w(s, t) is a mean-zero
stationary Gaussian space—time stochastic process model. Thus
a’ X(s.1) models the additive bias of the forecasts from the
numerical weather prediction mode! and b’ X (s, 1) models the
multiplicative bias.

At this stage, we are modeling only the spatial correlation
in w(s, ) and ignoring the temporal correlation, because the
spatial correlation is what counts for getting calibrated images.
For simplicity, and because it works well in the cases we have
studied, we use the exponential spatial variogram model

% Var(w(si. 1) — w(s2. 1))

=p+o’(1—exp(=lls1 —s21/r) (2)

whenever s1 # s2, where || - || is the Euclidean norm. This is
a geostatistical model, and in geostatistical terminology, p is
called the nugget effect and is usually thought of as the mea-
surement error variance of observations, p + o2 is the marginal
variance of w(s, t) and is called the sill, and r is a range pa-
rameter and is measured in kilometers (Cressie 1993; Chiles
and Delfiner 1999). The range parameter r is interpreted as fol-
lows. The error process w(s, t) can be viewed as a sum of two
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component processes: measurement error (viewed as spatially
uncorrelated) and continuous spatial variation. The spatial cor-
relation of the continuous spatial variation component process
at distance d is ¢4/, This spatial correlation declines from 1
at distance zero and reaches .05 at distance 3r.

2.2 Parameter Estimation

We estimate the parameters of the model given by (1) and (2)
using historical data on forecasts and observations. Typically
we use data for a relatively homogeneous region over a recent
time interval of length on the order of 3 months to a year, so
as to avoid difficulties due to different patterns of model bias,
changes in the numerical weather prediction model, and so on.
It is possible to estimate the model using maximum likelihood
or a fully Bayesian approach. Forecasts are on a grid and may
correspond to a grid cell, whereas observations correspond to
irregularly spaced locations, the so-called change of support
problem, and a fully Bayesian approach has the advantage of
being able to deal with this explicitly in a coherent way.

However, the datasets used for parameter estimation are typi-
cally very large, so full maximum likelihood estimation or fully
Bayesian estimation tends to be prohibitively time-consuming.
We, therefore, use a simpler and much faster three-stage estima-
tion method that approximates maximum likelihood and works
well in our implementation. First, we interpolate the forecasts,
which are on a grid, to the observation locations, which are ir-
regularly spaced, using bilinear interpolation. Then we estimate
the coefficients a and b by linear regression, and compute the
residuals w(s, ¢). Finally, we estimate the variogram parame-
ters p, o2, and r by binning the residuals (s, r) and using
weighted nonlinear least squares with weights equal to the num-
bers of observations in the bins (Cressie 1993), as implemented
in the R package geoR (Ribeiro and Diggle 2001).

2.3 Generating the Ensemble Members

The ensemble members are spatial forecasts specified on the
model grid. They are generated simply by simulating realiza-
tions of the stochastic process given by (1) and (2), given the
current forecast ¥, and using the parameters estimated from
the historical data. However, this is not as simple as it sounds,
because it involves simulating a large number of correlated val-
ues simultaneously. For example, in the Pacific Northwest re-
gion that we consider, it would typically involve simulating
10,000 values or more. Because direct simulation from the very
high-dimensional multivariate normal distribution is not feasi-
ble by standard techniques such as Cholesky decomposition of
the covariance matrix, we must seek a more efficient method.

This is essentially the problem of generating the realizations
of a stationary Gaussian random field, which has traditionally
been solved by spectral methods, the turning bands method,
moving average techniques, and a number of other approx-
imative algorithms (Chiles and Delfiner 1999). We used the
circulant embedding method of Wood and Chan (1994) and
Dietrich and Newsam (1997) as implemented in the R pack-
age RandomFields (Schlather 2001). Contrary to the afore-
mentioned techniques, the circulant embedding method of
generating stationary Gaussian random fields is both fast and
exact. Being exact means that the realizations have exactly the
required multivariate normal distribution. The method is fast
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because it exploits the speed and efficiency of the fast Fourier
transform. For simulations on a regular grid in %2 and appro-
priate orderings of the grid points, the covariance matrix of the
associated Gaussian random vector is a block Toeplitz matrix,
with each block being Toeplitz itself. It can be embedded into a
block circulant matrix, where all the blocks are circulant them-
selves and admit an eigenvalue decomposition in terms of a
standard fast Fourier transform matrix. If all the eigenvalues
of the block circulant matrix are positive, which is true for a
large class of covariance structures, a random vector with the
required multivariate distribution can be generated by the fast
Fourier transform. The computational effort for a Gaussian ran-
dom vector of size n is proportional to nlogn, which makes
the exact simulation of grids with 10,000 or more correlated
Gaussian values feasible.

2.4 Verifying and Assessing the Probabilistic Forecasts

We use two criteria to verify and assess our probabilistic fore-
casts: calibration of prediction intervals and sharpness of pre-
diction intervals. The geostatistical approach ensures that the
forecasts are consistent with key aspects of the spatial correla-
tion structure of the observations.

To form, for example, 90% prediction intervals for indi-
vidual future weather quantities, we simulate 19 realizations
from the predictive random field, and take the minimum and
the maximum as the endpoints of the 90% prediction inter-
val. Alternatively, we could simulate 99 realizations, and take
the 5th and 95th order statistics as the endpoints, or we could
use another number of simulations, depending on our computa-
tional resources. We are interested in the average coverage and
the average length of such intervals.

We also employ the rank histogram, a verification tool
for probabilistic forecasts developed by atmospheric scien-
tists (Anderson 1996; Hamill and Colucci 1997; Talagrand,
Vautard, and Strauss 1997). Consider, for instance, an ensemble
of 99 forecasts. If the ensemble is calibrated, the 99 forecasts
and the observation will be exchangeable. Hence, if we order
the combined set of 99 forecasts and 1 observed value, the rank
of the observation will be equally likely to be any number be-
tween | and 100. The verification rank histogram, or simply
rank histogram, is a histogram of these ranks. A uniform rank
histogram indicates proper coverage of the prediction intervals
at all levels. Deviations from uniformity imply a lack of cali-
bration.

An important consideration here is that a single probabilis-
tic forecast, that is, an ensemble on any given day, typically
cannot be verified. The aforementioned quantities need to be
computed as averages over many ensembles, and we do so be-
low. Section 3.4 is concerned with the in-sample verification of
the GOP ensemble. Section 3.5 provides an out-of-sample ver-
ification and predictive check, using new data on forecasts and
observations made in 2001.

3. RESULTS

We now apply the GOP method to some data on tempera-
ture in the North American Pacific Northwest and show the re-
sults. We describe the data, the model estimation process, and
the probability ensemble forecasts, and finally we give some
results on the verification of the forecasting model.
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3.1 Data

To estimate the model, we use forecast and observed temper-
atures during the period January—June 2000 in the North Amer-
ican Pacific Northwest. Temperature was measured at 0 hours
Greenwich mean time (GMT; 00Z) on each of 102 days dur-
ing this period at different observation locations. The number
of observation locations varied by day, but was typically be-
tween 500 and 600; in all, there were 56,488 observations of
temperature. Data on forecasts for about 80 days are missing,
as a result of the numerical weather prediction model being run
in research mode. The observation locations were of different
types: for example, some were regular meteorological stations,
some were sSnow monitoring stations, some were ships, and so
on. The data were measured in degrees kelvin, where x°K is
equal to (x — 273.15)°C. The observed temperatures ranged
from 250.9 to 313.2, with mean 286.1, median 284.8, and stan-
dard deviation 8.5.

Forty-eight-hour forecasts verifying at each of the 102 times
for which they are available were obtained. These forecasts
were obtained from the MMS model, initialized using the Avi-
ation model of the National Weather Service’s National Center
for Environmental Prediction (NCEP) and run by researchers in
Professor Clifford Mass’s group at the University of Washing-
ton Department of Atmospheric Sciences. The forecasts were
on a I2-km grid.

3.2 Parameter Estimation

To estimate the model, we first converted the forecasts from
the model grid to the observation locations using bilinear in-
terpolation. Because the grid is regular and fine relative to the
observations (10,300 grid points compared with on the order of
500-600 observations on a typical day), it is unlikely that more
complicated interpolation methods would lead to much better
results.

For simplicity, we considered only a simple additive bias, a,
and a simple multiplicative bias, b, in our model. The simplified
model is

Y(s.t) =a+bY(s, 1) +wis, 1) (3)

The regression estimate of the additive bias is 1.6 (standard
error .4) and that of the multiplicative bias parameter is .995
(.002). Thus the additive bias is significant, but there is al-
most no multiplicative bias. The residuals from these regres-
sions were computed and their variogram is shown in Figure 1,
together with the fitted exponential variogram function (2). The
estimated nugget is p = .51, the estimated variance of the con-
tinuous spatial variation component is o> = 7.2, and the esti-
mated range parameter is = 114 km. The fit of the parametric
variogram function is better than that often observed in geosta-
tistical applications.

3.3 Ensembles of Forecasts: An Example

We now illustrate the use of our method to produce ensem-
ble forecasts. We apply it to produce a probabilistic 48-hour
ahead forecast of temperature in the Pacific Northwest, verify-
ing on January 12, 2002 at 0 hours GMT (00Z); this forecast is
based on information available on January 10, 2002 at 00Z. The
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Figure 1. Empirical Spatial Variogram of w(s, t) With Fitted Expo-
nential Variogram Function for Temperature in the North American Pa-
cific Northwest, January—June 2000.

probabilistic forecast applies to a time point 1% years after the
period to which the data used to estimate the model pertain, so
it is truly an out-of-sample forecast.

Figure 2 shows the gridded MMS5 forecast, ¥, produced by
running MMS5 initialized with the output from the synoptic
NCEP Aviation model. This shows output on a 12-km grid. This
figure also shows the bias-adjusted predictive mean, a + bY.

Figure 3 shows four members of the forecast ensemble plot-
ted on the 12-km grid. It is interesting to note that these plots
are somewhat rougher than the point forecasts in Figure 2, re-
flecting the spatial roughness observed in actual data. The point
forecasts are smoother because they represent the evolution of a
system of partial differential equations that, over time, smooth
out roughness to some extent, and also because, at least implic-
itly, they represent a kind of mean of a forecast distribution,
which typically is smoother than an individual realization.

It is of interest to compare the forecast ensemble with the ob-
served values. This is not straightforward, because the forecasts
are on a relatively fine grid, whereas the observation locations
are irregularly spaced and much sparser. We display the obser-
vations by interpolating the values to a fine grid using kriging
(Cressie 1993; Chilés and Delfiner 1999), as implemented in
the R package fields (Nychka 2003), and plotting the result, as
shown in the top row of Figure 4. The gridded ensemble mem-
bers in Figure 3 are not directly comparable to the plot of ob-
servations in Figure 4 and a visual comparison is misleading.

To make a valid visual comparison, we plot the ensemble
members in a different way. We first estimate the ensemble
forecast values at the observation locations, using simple bilin-
ear interpolation; the grid is fine enough that other interpolation
methods would yield similar results. We then interpolate the re-
sulting forecasts by kriging to a fine grid, exactly as was done
for the observations. The results are shown in Figure 4, with the
station locations overlaid. The lower two rows show four en-
semble plots, which can be compared to the actual observations
on January 12, 2002 at O hours GMT (00Z) shown in the upper
TOow.
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Figure 2. (a) The Gridded MM5 48-Hour Ahead Forecast, Y, of Temperature in the Pacific Northwest Verifying on January 12, 2002 at 0 Hours

GMT; (b) The Bias-Adjusted Predictive Mean, a+ bY .

The forecasts seem to capture many aspects of the obser-
vations fairly well, and the observation and ensemble forecast
plots look similar in the sense that the plots seem compatible
with their having been generated by the same process. We sim-
ulated 99 realizations and formed 90% prediction intervals by
taking the 5th and 95th order statistics as endpoints. The actual
coverage on this specific date was 90.8%. and the correlation
between point forecasts and observations was .66.

Latitude

tongitude

3.4 In-Sample Verification of the Forecasts

We consider verification of the forecasts in two ways, as
described in Section 2.4: coverage of prediction intervals
and sharpness of prediction intervals. The quantities reported
are averages over 56,488 observations of temperature during
102 days in the period January—June 2000.

For coverage of prediction intervals, we considered two in-
tervals: 66.7% and 90%. The 66.7% interval contained the

Q200

=S 7 S
R

-122
Longitude

Figure 3. Ensemble of Forecasts for Temperature on January 12, 2002 Using Gridded MMS5 Output.
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Figure 4. Observations and Ensemble Plots Compared for Temperature on January 12, 2002. The ensemble plots (lower two rows) were
interpolated to the observation locations and then interpolated again to a fine grid by kriging. The observation locations are overlaid.

true value 68.1% of the time; the 90% interval contained the
true value 90.8% of the time. The verification rank histogram,
shown in Figure 5(a), is relatively close to being uniform,
thereby indicating proper coverage of the prediction intervals
at all levels.

To assess sharpness of prediction intervals, we computed the
average length of the 66.7% (90%) prediction interval, which
was 5.5 (9.4) degrees. For comparison, we computed the differ-
ence between the 16.7th (5th) and and 83.3rd (95th) percentiles
of the marginal distribution of the observations, corresponding
to the lengths of 66.7% (90%) prediction intervals based on

sample climatology, which were 17.2 (28.3) degrees. Hence,
the prediction intervals from the GOP method were consider-
ably shorter, while remaining empirically calibrated.

3.5 Predictive Check

To assess the predictive performance of the GOP method, we
applied it to gridded MM5 temperature forecasts in the period
January—June 2001. In doing so, we retained the parameter es-
timates obtained by using data for forecasts and observations in
the period from January to June 2000, as described in Sections
2.2 and 2.3. We discuss the results subsequently.
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Figure 5. Verification Rank Histograms for GOP Ensemble Predictions. Rank histogram for (a) in-sample predictions and (b) out-of-sample

predictions (June—July 2001).

The quantities reported are averages over 85,091 observa-
tions of temperature in the period January-June 2001. The
66.7% (90%) GOP prediction interval contained the true value
67.2% (88.0%) of the time. The verification rank histogram,
shown in Figure 5(b), indicates a larger number of particularly
high observations than anticipated by the ensemble. However,
the rank histogram is much more uniform than that typically
observed in conventional ensembles (Hamill and Colucci 1997)
and the deviation is moderate. The average length of the 66.7%
(90%) prediction interval was 5.5 (9.1) degrees.

4. DISCUSSION

We have proposed a method for mesoscale probabilistic
forecasting that is feasible for local users of MMS5 and other
mesoscale models. It breaks with many previous approaches
by not perturbing the inputs to the model, but perturbing the
outputs from the model—the forecasts. The spatially correlated
behavior of observed weather is reproduced using a geostatis-
tical model and the ensembles are generated by simulating re-
alizations from this model. In our numerical experiments, the
resulting method turns out to be empirically well calibrated for
individual forecast quantities, to be sharper than climatology,
and to reproduce the spatial correlation behavior of observa-
tions.

One interesting aspect of our results is that the forecast en-
semble members look rougher than the point forecasts. Meteo-
rologists often look at point forecasts like Figure 2 and at plots,
not of actual observations, but of an “analysis,” which is an
estimate of the current state of the atmosphere using the numer-
ical weather prediction model. The analysis is made by com-
bining the model’s prediction with data, so it is smoother than
data. This suggests that the adoption of calibrated probabilis-
tic mesoscale forecasting may involve something of a culture
change: forecasters must get used to looking at images like Fig-
ure 3, as well as the smoother point forecasts such as Figure 2
that they are used to. Houtekamer and Mitchell (1998, 2001)
proposed generating ensembles with different initial values by
taking an analysis, or “background field” as it is sometimes
called, perturbing it by adding errors drawn from a random
field model, and then running the numerical weather predic-
tion model forward from each resulting initialization to obtain
an ensemble of forecasts. This differs from our approach in

that we perturb the forecast field and use the resulting simula-
tions directly as an ensemble of forecasts; we run the numerical
weather prediction model only once.

There are many ways in which our method, as currently
implemented, could be improved. The most obvious is bias cor-
rection. In our implementation, we used a very simple bias cor-
rection method, although in principle the method allows for the
use of many independent variables for this purpose, such as
time of year or time of day, and functions of space such as lati-
tude, longitude, altitude, distance from the ocean. and land use.
Linear regression methods for correcting the biases of deter-
ministic meteorological prediction models are known as nodel
output statistics (Wilks 1995). A modern hierarchical Bayes ap-
proach was proposed by Nott, Dunsmuir, Kohn, and Woodcock
(2001).

Our method is designed to be based on a relatively limited
space—time window, given the effects of model changes over
time and spatial inhomogeneity. In our experiments, we used a
6-month period in the Pacific Northwest to fit the model. More
research is needed to determine the best temporal window and
to develop more systematic ways to decide what it should be.

The statistical model underlying our work is quite simple and
surprisingly effective given its simplicity. Nevertheless, various
elaborations might improve its performance. Allowing a more
general spatial covariance class. such as the Matérn class or re-
lated models (Gneiting 1999), taking account explicitly of the
different spatial scales of the observations and the forecasts, al-
lowing for non-Gaussian forecast error distributions by using
a transformation, and taking account of temporal autocorrela-
tion might all improve the results. These enhancements could
all be done by taking a fully Bayesian approach using Markov
chain Monte Carlo methods. The Bayesian model calibration
technique of Kennedy and O’Hagan (2001), for example, used
observational data to learn about model inadequacy. Such an ap-
proach is quite expensive computationally, however, and given
the vast amounts of data involved in weather forecasting and
the need for real-time forecasts, it may not be feasible for a
while yet. The gains from such elaborations seem likely to be
incremental rather than transformative.

Many applications of probabilistic weather forecasting focus
on a single weather variable. Farmers and transportation man-
agers, for instance, are often concerned about the probability
of temperatures below the freezing point. The weather risk in-
surance and weather derivatives industries typically focus on
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heating or cooling degree days, which are derived from temper-
ature. The organizers of an outdoor event might be interested
primarily in the probability of precipitation. Still, multivari-
able probabilistic weather field forecasts have important appli-
cations, such as ship and aircraft routing. Fitting vector-valued
random function models to forecast error fields and simulating
realizations thereof is methodologically challenging, but possi-
ble in principle (Daley 1991; Chan and Wood 1999). Such an
approach would generate joint probability distributions of tem-
perature and wind components, or other weather variables, that
would be a useful extension of the GOP technique.

Finally, it might be feasible to improve the GOP method
by using information from conventional mesoscale ensembles.
Typically, the individual members of a conventional mesoscale
ensemble differ from each other with respect to the source of the
initial and boundary conditions used. Grimit and Mass (2002)
showed a clear relationship between the variation among fore-
casts based on initial conditions supplied by different weather
centers and the mean absolute forecast error, the so-called
spread-skill relationship. This relationship could be exploited
to obtain a better assessment of the spread of the predictive dis-
tribution in the present context. Specifically, regression models
for the predictive mean and predictive variance in terms of the
individual predictions from the conventional ensemble could
be developed. Fitting a stationary geostatistical model to his-
torical error fields, simulating standardized realizations from
this model, and transforming locally by taking account of the
site-specific predictive mean and predictive variance might be
a way to form a statistical ensemble. Alternatively, the ideas
of Bayesian model averaging (Hoeting, Madigan, Raftery, and
Volinsky 1999; Raftery et al. 2003) could be combined with
the present framework. The resulting method would, essen-
tially, make the marginal variance of the space—time stochas-
tic process model w(s, t) in (1) vary temporally and spatially,
with variance depending on the ensemble spread between fore-
casts based on initial conditions provided by different weather
centers. Another approach to combining conventional and sta-
tistical ensembles, and thereby exploiting the spread-skill rela-
tionship, was suggested by Roulston and Smith (2002).

Hybrid methods of this type hold the promise to retain the
advantages of either kind of ensemble, while avoiding their
disadvantages. Conventional ensembiles yield a dynamic assess-
ment of uncertainty, and the associated weather field plots pro-
vide more realistic synoptic-scale features that are difficult to
achieve with statistical approaches. On the other hand, the GOP
method was empirically calibrated in our experiments, provides
a more realistic reproduction of the mesoscale variability of
weather parameters, and generates hundreds of ensemble mem-
bers in real time, all major challenges for conventional ensem-
bles. A decade or two from now, optimal operational ensembles
might well combine conventional and statistical ensembles in
sophisticated ways.

[Received March 2003. Revised January 2004. |
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Comment

Forecasting the weather presents a unique context for sta-
tistics, blending physical modeling with complicated observa-
tional data to produce information that is used at many different
levels of sophistication. We are pleased that Gel, Raftery, and
Gneiting (GRG) have brought this area to the attention of a sta-
tistical audience. In this discussion we give the reader a broader
view of the use of ensemble techniques in numerical weather
prediction (NWP). We have some comments about the use of
ensembles idea presented by GRG and also present some of our
recent analysis of the value of ensemble forecasts.

1. THE VALUE OF A FORECAST AND QUANTIFYING
FORECAST SKILL

Weather forecasts have many users and, of course, the value
and form of a forecast may depend on its intended purpose.
Perhaps the most common use of a forecast is the estimate, say
maximum surface temperature for a point location and a com-
panion measure of uncertainty (e.g., Nychka’s daughter asks
him each morning what the temperature will be in Boulder so
she can choose her outfit for school; she then asks him if he is
“sure” about the forecast). In contrast, the geostatistical output
perturbation (GOP) method goes beyond point forecasts using
representations of the spatial covariance of the forecast accu-
racy to yield an ensemble of meteorological fields. The variabil-
ity about the mean surface quantifies the uncertainty. Although
this gives a significantly richer inference concerning the fore-
cast, we also contend that it targets a sophisticated consumer.

To illustrate the distinction between point forecasts versus
ensembles of fields, consider the following example. The Col-
orado Department of Transportation must make a decision
whether to salt a highway to prevent icing. This decision is
based on whether at any point along the highway the temper-
atures will dip below freezing. Thus, in statistical language the
inference is whether the minimum of the field over a particu-
lar domain (the highway) has a high probability of being below
freezing. To our mind, GRG give an elegant solution to this
problem. For each ensemble field, the minimum temperature
along the route of the highway must be found. The result is an
empirical distribution of minimum temperatures that attempts
to incorporate the spatial dependence of errors in the field and
so may be more accurate in assessing the potential for icing.

Claudia Tebaldi is Project Scientist (E-mail: rebaldi@ucaredu) and
Doug Nychka is Senior Scientist (E-mail: nychka@ucar.edu), National Center
for Atmospheric Research, Box 3000, Boulder, CO80307.

We are not sure how a correct inference would be drawn from
just point forecasts of temperature with accompanying standard
errors, so GRG’s approach seems particularly useful in this con-
text.

It is not clear that the man on the street or the forecaster on
the evening news can interpret ensembles of fields and draw
straightforward conclusions on the confidence he or she has in
the forecast. In this respect, we question the need for a cul-
tural change in forecaster attitude toward realizations of the
GOP method. Based on the preceding example, it may be that
specific applications of the forecast will benefit from ensemble
fields, but in many cases a pointwise assessment of a best guess
plus or minus a range of uncertainty, a simple probability den-
sity function, or a number between O and 1 that characterizes
the degree of confidence in the forecast will do. Accordingly, in
the last part of this discussion we focus more on the problem of
obtaining more accurate inferences for point forecasts.

1.1 Ensemble Forecasting

A statistician can think of an ensemble as a discrete sample
whose empirical distribution approximates a continuous distri-
bution of interest. An idealized ensemble is a random sample
from the posterior distribution for the state of the atmosphere
given all past data and incorporating all known physical models
of the flow.

Let x, denote the vector of meteorological variables on a spa-
tial grid that describe the state of the atmosphere at time ¢. The
entire physical and geographic knowledge of the atmosphere’s
dynamical behavior can be subsumed by a function g, the NWP
model, such that

X1 = g(X).

One way to make a forecast is to take the best estimate of
the atmosphere’s state, say X;, and apply g. In atmospheric
science, significant intellectual and computing resources have
been aimed at constructing the closest approximation to the
actual trajectory of the atmospheric state vector (in terms of an
NWP model g) and generating the most realistic spread around
it (in terms of ensemble members). Two factors contribute to
the difficulty of this enterprise: uncertainty in initial conditions
and model error. Referring to the notation, these two factors are
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errors in X, and errors in g. Our view from a statistical perspec-
tive is that the atmospheric sciences community has devoted
the best of their statistical and numerical analyses to the prob-
lem of characterizing the uncertainty in the initial conditions
(Toth and Kalnay 1993, 1997; Molteni, Buizza, Palmer, and
Petroliagis 1996; Buizza, Miller, and Palmer 1996; Mitchell
and Houtekamer 2000). This research has produced sophisti-
cated approaches for initializing the ensemble members by “in-
teresting” or “effective” perturbations of the best guess X;. On
the other hand, the characterization of model error seldom has
been undertaken (Orrell 2002; Smith 2000; Smith, Zichmann,
and Fraedrich 1999).

In view of these daunting gaps between our understanding
of the atmospheric processes and their approximation through
NWP models, it is perhaps reasonable to target ensemble fore-
casts to a lesser, but still valuable goal: providing a rough idea
of the uncertainty around NWP’s best guess. To this end, GRG
offer an interesting perspective, which is a natural extension of
previous activity to calibrate forecasts with observations. In the
atmospheric sciences, this has had success for many years in the
form of the model output statistics (MOS) technique (Glahn and
Lowry 1972). However, to our knowledge, MOS has been car-
ried out only location by location, that is to say, independently
at each observing station, and separately for each weather vari-
able of interest.

In carrying out a MOS analysis, there is an important benefit
of ensemble methods that is not exploited in the GRG study,
but should be mentioned. The map g taking the (discretized)
atmosphere from time ¢ to t 4 1 is nonlinear and often can
amplify small features. By applying g to each member of the
ensemble, a new ensemble for time ¢ + 1 is obained and the re-
sulting spread includes the nonlinear amplification and distor-
tion that are well known for geophysical fluids. These features
are termed flow dependent because the particular transforma-
tions of g depend partly on the state x. For some states, g is
nearly linear, whereas for others it can be sensitive to small per-
turbations of x. By initializing, at time ¢, the ensemble members
in a way that accounts for the uncertainty in initial conditions,
the resulting spread among members at time 7 + 1 includes the
flow-dependent nature of the uncertainty and is a function of
the large scale weather patterns at the time of initialization. Part
of our work with the NEXTCAST system described briefly in
the next section makes use of this uncertainty that is tied to the
current state and the dynamical properties of the atmosphere.

2. ENSEMBLE SPREAD AND CONFIDENCE
IN THE FORECAST

Here we present some current work on relating the ensemble
spread to the actual error in a forecast, but for point locations.
In the past, the failure of accounting for model errors besides
those in the initial condition has hampered the production of
ensembles whose spread is representative of the actual error.
Our work is based on the observation that measures of spread
of the ensembles are more useful when the ensemble is built
by forecasts from different NWP models. This so-called poor-
man’s ensemble is readily available and is less costly than one
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derived by multiple runs of the same NWP model run under
perturbed initial conditions.

A poor-man ensemble in concert with extensive statistical
postprocessing is the heart of the NEXTCAST forecasting sys-
tem, under development by the Research Applications Pro-
gram division of the National Center for Atmospheric Research
{Mahoney 2001a,b). This system provides automatic, contin-
uously updated, timely forecasts of many weather parameters
(e.g., temperature; probability, phase and amount of precipita-
tion; fraction of cloud cover; wind speed and direction; dew-
point temperature) at thousands of sites over the coterminous
United States at lead times out to a few days.

NEXTCAST is a modular system, every module representing
a—more or less—independent forecast, thus having the char-
acteristics of a poor-man’s ensemble. Different NWP models,
statistical forecasts, climatology, and persistence are combined
to produce the NEXTCAST ensemble. The final product is a
weighted average of the single forecasts, whose weights de-
pend on the recent relative performances of the single modules.
Although spatial coherence of the final station forecasts is not
enforced directly, the derivation from spatially coherent single
forecasts suggests that some degree of spatial cohesion will be
observed. Forecasts at points in between stations are inferred
by simple bilinear interpolation of the anomalies with respect
to a 30-year climatology. This part of NEXCAST can be inter-
preted as a fairly sophisticated MOS exercise, but is nonlinear
and based on a relatively short and continuously updated time
window. To this extent, it is more complicated than the linear
bias adjustment made by GRG.

The users of these forecasts (such as engineers at the Depart-
ment of Transportation in several states that are testing a ver-
sion of NEXTCAST for road weather applications) expressed
interest in a measure of confidence to be attached to each fore-
cast at the time of issue. We exploited the property that the
NEXTCAST ensemble spread exhibits a robust relationship
with the size and distributional properties of the actual forecast
error.

We considered pairs of spread measure (mean standard devi-
ation among the NEXTCAST modules) and forecast error, col-
lected over a thinned network of sites, over many days sparsely
sampled between September 2001 and May 2002, and difter-
ent lead times ranging from 12 to 84 hours. Figure 1 shows
the quantiles of the error distribution as a function of ensem-
ble spread values for some of the meteorological variables fore-
casted. Larger values of spread, signaling disagreement among
models and usually associated with synoptic conditions harder
to forecast, are associated with error distributions that are more
diffuse and shifted toward larger values. Conversely, smaller
values of spread, indicative of agreement among models, are
usually associated with easier to forecast synoptic conditions,
thus with tighter error distributions concentrated on smaller val-
ues. It is possible to fit parametric distributions to the errors
stratified by spread values, and the gamma family gives a good
approximation when fitting errors in absolute value.

This solution is tailored to specific locations, parameters,
and seasons. It provides an answer to the question of fore-
cast accuracy, in a way that does preserve the information
of flow dependency, under the assumption that the ensemble
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quantile (-----) of the error distribution. Along the x axis are binned values of the ensemble spread.

spread is a surrogate of such information. At least in the case
of multimodel ensembles, the evidence is in favor of this claim
(Ziehmann 2000). However, compared to GRG’s GOP method,
it cannot provide a spatially coherent picture of error covari-
ance.

3. SUMMARY

The authors have applied elegant statistical methods to the
area of ensemble forecasting and, thus, have brought it into
the spotlight for the larger statistical community. Although the
GOP method could be improved through the use of the richer
physical content of real ensembles, we also believe that the in-
formation that the GOP ensemble delivers has a complementary
value, taking the traditional MOS approach one large step fur-
ther by providing a spatially coherent forecast calibration.

So we conclude with a suggestion; apply the GOP to the sin-
gle members of a multimodel ensemble or estimate the GOP
for a representative best member of a single model ensemble
(as in Roulston and Smith 2002) and then perturb the whole set

of members. This approach may embody the best of a dynam-
ical and statistical treatment of the uncertainties at the roots of
NWP’s challenge.
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Comment

INTRODUCTION

Anything that encourages the use of probability forecasts in
meteorology should be applauded. The authors’ geostatistical
output perturbation (GOP) method does this in a clever and
computationally simple way that is somewhat similar in con-
cept to model output statistics (MOS) for dynamical forecasts.
The GOP method produces bias-corrected probability forecasts,
not just bias-corrected point forecasts as MOS does, and so has
the potential to be a superior approach. The GOP method also
reinforces the notion that dynamical forecasts are not certain
and that the variability in the output is important to understand.

ENSEMBLE FORECASTS

The GOP method takes the result of a dynamic field forecast,
corrects its biases by formula, and then generates suites of fore-
cast maps to form, in essence, a probability forecast of, say, a
temperature field.

Ensemble forecasts work oppositely by perturbing the ini-
tial conditions or the parameterization of the dynamic model,
running the model for each set of initial conditions or parame-
terizations, and gathering the end results to form a suite of dy-
namic field forecasts. This suite of individual forecasts must
then be transformed to a single probability forecast by some
other means. How to do this well is an open problem and is an
area in which the authors of this article also work.

The true ensemble forecast should be a stronger forecast than
that produced by the GOP method because, if done properly, the
ensemble forecast samples from the whole of different possi-
ble future states of the atmosphere. Experience has shown that
these future states can be dramatically different from one an-
other and that the variability of the states is important for the
forecast. The best method of perturbing the initial conditions is
unsettled, and we have only begun to explore methods and the
importance of what is called stochastic parameterization.

The GOP method takes only one possible future state from
one dynamical model run and uses it to generate the forecast.
The authors suggested some possibilities for combining ensem-
ble forecasts and the GOP method, which is an area I hope they
will pursue, because it is there that the GOP method will meet
its greatest success.

William Briggs is Assistant Professor, General Internal Medicine, Weill
Medical Coflege of Cornell University, New York, NY 10021 (E-mail:
wib2004@med.cornell.edu).

USING THE OQUTPUT

The authors rightly emphasize that standard weather maps of,
say, surface temperature, are too smooth, which might lead me-
teorologists to subjectively underestimate the variability of the
field forecast. This, in turn, might cause them to issue forecasts
that are too certain. The GOP method rightly emphasizes this
uncertainty, which is necessary because, unfortunately, uncer-
tainty is only partially expressed in National Weather Service
forecasts issued to the public; many meteorologists, for exam-
ple, still give just one number for the high or low temperature
forecasts. Forecasts like those produced by ensembles and sta-
tistical models like the GOP method will bring the realization
that forecasts are certainly not certain and should be qualified
with some kind of probability information.

The maps from the GOP emphasize the choppiness of the
field, showing that spatial variability is far rougher than conven-
tional maps. The authors now have to turn this idea into some-
thing that is useful operationally. So the big question is, “How
many maps do you show the forecaster?” It is not clear that
more is better, at least for human-issued forecasts. The amount
of extra detail in the rough field is more accurate, but it may
be more confusing and harder to assimilate, and could lead to
worse forecasts. Some form of data compression will probably
be needed.

Marginal density estimates or histograms of the variables
of interest for specific locations culled from the GOP method
members could easily be built. These would, of course, lose the
spatial uncertainty inherent in the forecast, but would be easy
to understand for the location at hand.

There are some ways to keep the spatial uncertainty while
still reducing the overall complexity of the suite of maps.
Spaghetti plots are one way. These are usually built from en-
semble forecasts and are contour maps of, say, a temperature
of 0°C of each ensemble member. The spread of the contours
indicates the certainty of that contour level: tighter grouping
implies greater confidence than looser grouping. These spreads
could be used just as well with GOP method members. The
same goes for mean maps (mean of the GOP method members)
and variance maps, which are also standard ensemble picturing
tools.
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VERIFICATION

It is easy to verify, that is, assess the accuracy of, a point fore-
cast. If the forecast said that high would be 72 and it was actu-
ally 80, then it is simple to say “8 degrees off.” However, how
to verify field-point forecasts is still an open question. Field-
point forecasts are the ordinary output from dynamical models
(single numbers at each grid point). There are few quality meth-
ods or measures to do this; the anomaly correlation score is one
measure, but it is poor in the sense that it boils down the entire
model and observation field to one number, a number whose
qualities are suspect and poorly understood.

Verifying ensemble or GOP suites is more difficult still.
A tool that was developed, and used in this article is the rank-
histogram plot, which is very nice, but, of course, does not al-
low the modeler to gain insight into where and why a particular
set of forecasts succeeded or failed, especially spatially. Maybe
individual rank histograms over subgrids could be displayed on
a map to see if there are spatially varying differences in fore-
cast quality. Alternatively, perhaps contour maps of a measure
of departure from uniformity at each grid point could be dis-
played (rank histograms at each grid point would be impossible
to see clearly).

Another curiosity is how to verify points that are forecasts for
which there are no observations. The conventional approach is
to convert the irregularly-spaced observations to the same grid
as the forecast and then do verification.

I believe that models can only be ultimately evaluated at the
points of the observation and nowhere else. Model grid points
will not, of course, exactly correspond to observation location,
and some interpolation from the model grid to the observations
has to be done. This appears to be what the authors have done,

Mark S. ROULSTON
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but this results in an estimate of the model at those locations,
not the actual model value. It is important to consider the un-
certainty of these estimates in the eventual verification. It may
be small, but even small errors can grow large when you add
them across multiple ensemble members.

What should not be done, although it usually is, is to ex-
trapolate the observations to the model grid and to compare the
model and extrapolated observations on that entire grid, usually
by producing an “analysis” of observations. This is somewhat
fair in that we compare the forecast model with observations in
a modellike sense because of the analysis. However, an analy-

sis is not what the end user of a forecast sees. He or she gets
the actual atmosphere, so the fairest verification method is to

compare the actual forecast field with the actual observations.

There can be large gaps in observations, particularly for
upper-level data, and extrapolating the observations to these
gaps is not fair because the verification measure depends heav-
ily on the extrapolation method used. The example 1 have in
mind is the modeler who wants to know how far the model
placement of an upper-level low pressure center is from the
truth where there are no observations nearby the predicted cen-
ter. Extrapolating or smoothing the observations to estimate
where the low actually was is not wise because we never have
actual data to see where the low actually was or even if it ac-
tually existed. In addition, we never know how well the extrap-
olation method truly performs. Our time would be better spent
by trying to get more observations.

CONCLUSION

This is a fun and useful paper which was a pleasure to review.

Comment

The method proposed by Gel, Rattery, and Gneiting for gen-
erating probabilistic mesoscale forecasts is a relatively simple
idea, but the authors have had to confront the “curse of dimen-
sionality,” which is a common feature of atmospheric model-
ing. Tt is this high dimensionality that often prevents statistical
ideas from being applied to meteorological problems. Statisti-
cally modeling the forecast errors in two dimensions and then
perturbing the output of numerical weather prediction (NWP)
models is computationally far cheaper than the current methods
of producing dynamical ensembles by running the NWP model
multiple times. The authors suggest that the geostatistical out-
put perturbation (GOP) method might be a viable alternative to
dynamical ensemble forecasting for organizations that do not
have the resources to initialize and run an NWP more than once
per forecast cycle. I suggest, however, that GOP-type methods
should be the benchmark against which dynamical ensemble
prediction systems are evaluated. It would be interesting to see
a comparison of the GOP method with dynamical ensembles

Mark S. Roulston is Assistant Professor, Department of Meteorology,
The Pennsylvania State University, University Park, PA 16802 (E-mail:
roulston@met.psu.edu).

at both the mesoscale and on the global scale where dynamical
ensembles have become standard operational tools for forecast-
ers. Questions such as whether a high resolution model com-
bined with GOP is better than a dynamical ensemble of lower
resolution model! runs (requiring the same amount of computer
time) could be addressed. Also, if the authors improve the GOP
method by including information from conventional, dynami-
cal ensembles, as they suggest might be possible, the trade-off
between dynamical ensemble size and NWP model resolution
could be investigated.

As the authors point out, the GOP method could be extended
to include temporal correlations. A nonisotropic structure of
spatial correlations is also worth investigating because the zonal
(east—west) direction is the direction of prevailing flow and it
seems quite likely that the error structure in this direction could
differ from that in the meridional (north—south) direction. Re-
searchers in the statistical community may suggest alternative
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ways to model the space—time correlation structure of NWP
model errors. It is important to emphasize though, that in the
meteorological community, the idea that something along the
lines suggested by Gel. et al. should be done is not widely ap-
preciated.

Finally, although the GOP method is conceptually straight-
forward, the high dimensionality of the problem has required

Journal of the American Statistical Association, September 2004

the authors to use some advanced numerical techniques that will
be unfamiliar to most meteorologists and other researchers who
use mesoscale models. The authors should consider developing
a software tool that implements the GOP method and that could
be used in conjunction with the MMS5 model and its succes-
SOIS.

Rejoinder

Yulia GEL, Adrian E. RAFTERY, Tilmann GNEITING, and Veronica J. BERROCAL

The past decade has seen a culture change in the practice
of numerical weather prediction. Up to the early 1990s, nu-
merical weather forecasting was an intrinsically determinis-
tic endeavor. National and international weather centers used
sophisticated computing resources to run carefully designed
numerical weather prediction models. This is still the case to-
day; however, as Hamill, Hansen, Mullen, and Snyder (2004)
pointed out, “‘the most radical change to numerical weather pre-
diction during the last decade has been the operational imple-
mentation of ensemble forecast methods.” Ensemble forecasts
seek to assess the uncertainty of the predictions, and meth-
ods of probabilistic numerical weather forecasting are now in
vigorous development. Yet, probabilistic weather forecasting
has largely bypassed the attention of the statistical community,
with few, but notable exceptions, including Nychka (2000) and
Gustafsson (2002). We thank the editor for bringing this excit-
ing field to the attention of statisticians.

We are very grateful to the discussants for their insightful
comments, which point to important future directions for re-
search in this area. Key points raised are the connection be-
tween the geostatistical output perturbation (GOP) method and
dynamical forecast ensembles, and the possibility of combin-
ing the two approaches; visualization, that is, what we should
display and how we should do it; how to verify probabilistic
forecasts of entire fields; and specification of the spatial corre-
lation function.

1. THE GOP METHOD AND OTHER
ENSEMBLE APPROACHES

All three discussions compared the GOP method with dy-
namical ensemble methods, and suggested that a combination
of the two approaches would be fruitful. We strongly agree.
Dynamical ensemble methods generate an ensemble of initial
conditions and run the numerical weather prediction model
forward from each of them in turn, whereas the GOP method
instead perturbs the model output rather than its input. Dynam-
ical ensembles have the advantage, pointed out by Tebaldi and
Nychka, that they can capture nonlinear aspects of forecast un-
certainty, but they typically require considerable resources in
terms of data, data assimilation software, and computing power.
The GOP method, on the other hand, is much faster and does
not require any data beyond the deterministic forecast once it
has been trained using historical data. We, therefore, endorse
Roulston’s suggestion that the GOP method be used as a bench-
mark for other ensemble methods; in this view, outperforming

the relatively simple and cheap GOP method would be a min-
imal requirement for other more complex and costly ensemble
methods.

The strengths of GOP and dynamical ensembles seem com-
plementary, so combining them indeed seems like a good idea.
We have been working on one approach to this. It starts with a
Bayesian model averaging (BMA) approach to calibrating dy-
namical ensembles for forecasts at one point in space (Raftery
et al. 2003). This generates a (univariate) predictive distribution
that is a finite mixture of distributions, each one of which is
centered around one of the (bias-corrected) forecasts in the en-
semble. The mixture weights and distribution parameters are es-
timated from recent forecasts and observations. In experiments,
it gave calibrated and sharp predictive distributions, and hon-
ored the observed correlation between absolute forecast errors
and ensemble spread mentioned by Tebaldi and Nychka. In-
deed it could be viewed as a different way to implement the
idea mentioned by Tebaldi and Nychka in section 2 of their dis-
cussion. As Tebaldi and Nychka suggest, the BMA approach is
related to the dressing method of Roulston and Smith (2002).

Our approach to combining the GOP method with dynamical
ensembles starts by estimating a GOP model for each member
of the ensemble. Weights and forecast variances for each en-
semble member are then estimated using the BMA approach.
The GOP spatial covariance function for each ensemble mem-
ber is scaled using the estimated forecast variance for that mem-
ber. Finally, several realizations are simulated from the GOP
model that correspond to each of the ensemble members, with
the number of realizations proportional to the weight for the en-
semble member. We are currently implementing and evalnating
this approach, which we call Bayesian dressing.

The ensemble model output statistics (EMOS) approach of
Gneiting, Westveld, Raftery, and Goldman (2004) provides an-
other option for ensemble postprocessing. The EMOS method
fits a Gaussian predictive probability density function to en-
semble output. The EMOS predictive mean is an optimal. bias-
corrected weighted average of the ensemble member forecasts,
with weights that are constrained to be nonnegative and associ-
ated with the skill of the ensemble member. The EMOS predic-
tive variance is a linear function of the ensemble spread. In the
EMOS-GOP approach, we perturb the EMOS predictive mean
by simulated, spatially correlated error fields.
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Bayesian dressing is a more principled and more elegant ap-
proach than EMOS-GOP. Indeed, EMOS can be viewed as
a linear approximation to BMA, somewhat like Bayes linear
methods provide an approximation to fully Bayesian proce-
dures (Goldstein 1999). However, performance is an empirical
question, and it remains to be seen which method performs best
in the sense of maximizing the sharpness of the predictive dis-
tributions under the constraint of calibration.

2. VISUALIZATION

Tebaldi and Nychka give a wonderful example of a task for
which the GOP method can be useful for sophisticated users,
namely the decision whether to salt a highway to prevent freez-
ing. They also suggest that GOP may not be so useful for less
sophisticated users. We feel, however, that this is a matter of
what summary of the forecast distribution to communicate and
display, which should depend on the end use. If the right sum-
mary is chosen, it can be computed from the GOP output and
provided to the user.

They give the example of Nychka’s daughter asking him
every day what the temperature will be in Boulder and then ask-
ing him if he is sure of his forecast. On a given day, he might say
that it will be 68°F, but that he is not very sure. We suggest that a
statement that it will probably be between 63 and 73°F could be
at least as useful in helping Nychka’s daughter choose her out-
fit. It could be understood between them, for example, that this
means that there is 1 chance in 10 that the maximum tempera-
ture at her high school during the school day will be below 63°F
and 1 chance in 10 that it will be above 73°F. This kind of state-
ment is an immediate by-product of the GOP method and can
easily be derived from its output and displayed. In this way,
the GOP method can serve the needs of less sophisticated users
too, provided that the right summaries of the realizations are
displayed. Incidentally, there is some evidence that when such
statements are given in terms of natural frequencies (1 chance
in 10), users find them easier to interpret than when they are
given in probabilities (10%; Hoffrage, Lindsey, Hertwig, and
Gigerenzer 2000).

This leads to the more general question of what should be
displayed and how. Briggs has provided a very insightful dis-
cussion. Nychka’s daughter’s hypothetical question and other
similar ones can be answered by mapping summaries of uni-
variate point probabilistic forecasts. For example, one might
show maps of the median of the pointwise forecast distribution,
and of the 10th and 90th percentiles; an example of this was
given by Raftery et al. (2003). Nychka’s daughter could read
the answer to her question directly off such a map, as could
other Colorado residents with less expert fathers! It is hard to
see what direct use such users would make of statements of un-
certainty as opposed to probabilities, but one could also show a
map of a “margin of error,” such as half the difference between
the 10th and 90th percentiles, as a measure of uncertainty.

There are various ways to display and summarize the ap-
proximate posterior predictive distribution of the future weather
field provided by the GOP realizations. Briggs has suggested
spaghetti plots, and this is a very good idea, for which tak-
ing account of spatial correlation is vital. One could also show
stamp plots, that is, simultaneous displays of several realiza-
tions arranged, for example, in a square 2 x 2, 3 x 3, or
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4 x 4 array. The University of Washington MM5 ensemble
(http:/fwww.atmos.washington.edu/"ens/view_uwme.cgi) pro-
vides displays of this kind in a 3 x 3 format for a dynamical
ensemble, and they have been found useful by forecasters in
the Pacific Northwest region.

The question of which displays to provide is vital, as
Briggs points out, and one to which statisticians have not yet
given much attention. Such questions are essentially cogni-
tive questions, and we are currently working with cognitive
psychologists Earl Hunt and Susan Joslyn at the University of
Washington to carry out experiments to assess the relative ef-
fectiveness of different ways to display this kind of probabilistic
information.

3. FORECAST VERIFICATION

Briggs takes an exceptionally clear standpoint in the cur-
rent debate on forecast verification in the atmospheric sciences.
Should numerical weather prediction models be assessed by in-
terpolating gridded model output to the observation locations
or by interpolating the observations to the model grid? Briggs
dismisses the latter approach and his argument is well taken.
Interpolation from scattered observation locations to the model
grid is frequently extrapolation; hence, the verification measure
depends heavily on the extrapolation method used. We agree,
and in ongoing joint work with Eric Grimit and Clifford Mass,
we strive to quantify the effect. In contrast, interpolation from
the model grid to scattered observation locations is straightfor-
ward. All but the most obscure interpolation techniques will
yield similar results, thereby robustifying the verification ap-
proach.

4. SPATIAL CORRELATION

Roulston suggests that forecast error spatial correlations in
the zonal (east-west) direction of prevailing atmospheric flow
might differ from those in the meridional (north—south) direc-
tion. This is indeed a real possibility, and if it is the case, it
should be taken into account in the modeling. The directional
variograms in Figure 1 suggest, however, that for our data such
differences are small, if indeed they exist at all. However, it is
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Figure 1. Directional Variograms for Temperature Forecast Er-
rors in the North American Pacific Northwest, January—June, 2000:
(a) North—South; (b) East-West.
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quite possible that such differences do exist for other meteoro-
logical variables and regions, in which case a model that takes
account of them should be considered.

It is not clear how much impact such differences would have
on the performance of probabilistic forecasts. In a different me-
teorological context, Haslett and Raftery (1989) analyzed wind
speed data where there was evidence of anisotropy (Guttorp and
Sampson 1989). Nevertheless they used an istropic model, be-
cause it turned out that the anisotropic approach did not yield
better performance in terms of the main goal of their study,
namely the assessment of wind power at a new site. This sug-
gests that it would be necessary to establish not only that such
directional differences in spatial correlation exist, but that tak-
ing account of them is worth the increased effort and complica-
tion in terms of probabilistic weather forecasting performance.

5. SOFTWARE

Roulston suggests that we develop a software tool that imple-
ments the GOP method and could be used in conjunction with
MMS5. This is an excellent idea. We are currently developing
an R package (tentatively named ProbForecastGOP) to do this,
and we hope to make it publicly available soon at the Compre-
hensive R Archive Network at attp://lib.stat.cmu.edu/R/CRAN.
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