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Local Adaptive Importance Sampling for Multivariate
Densities With Strong Nonlinear Relationships

Geof H. GIVENS and Adrian E. RAFTERY

We consider adaptive importance sampling techniques that use kernel density estimates at each iteration as importance sampling
functions. These can provide more nearly constant importance weights and more precise estimates of quantities of interest than
the sampling importance resampling algorithm when the initial importance sampling function is diffuse relative to the target. We
propose a new method that adapts to the varying local structure of the target. When the target has unusual structure, such as
strong nonlinear relationships between variables, this method provides estimates with smaller mean squared error than alternative

methods.

KEY WORDS: Bayesian statistics; Density estimation; Integral evaluation; Kernel method; Monte Carlo simulation; Nonpara-

metric method.

1. INTRODUCTION

Consider the problem of finding Iy = [ g(x)t(x) dx, where
t(x) is a probability density that is intractable. The di-
rect Monte Carlo estimate of Iy is ) .., g(x;)/n, where
{x1,...,%x,} is an iid sample from ¢. The integral can be
rewritten as Iy = [ g(x)(t(x)/p(x))p(x) dx, where p(x) is
a tractable probability density that serves as an importance
sampling distribution. This suggests the Monte Carlo es-
timate Jo = .7, g(x;)(t(x:)/p(x:))/n as an estimator of
Iy, where {x,...,x,} is an iid sample from p. In many
cases of interest, frequently when ¢ is a posterior distribu-
tion from a Bayesian analysis, ¢(x) is known only up to a
constant of proportionality. In this case we want to find

I= / g(x)t* (x) dx / / (%) dx, (1)

where t*(x) = ct(x) for some positive constant ¢, and this
ratio of integrals can be estimated using a ratio of estimates
like Iy:
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where w(x;) = (t*(x:)/p(x:))/ 325, (t*(xi)/p(x:)) and
{x1,...,%x,} is an iid sample from p. X

In a general sense, the quality of the estimator I will often
be good when p is close to ¢, and this condition provides
results that are good when there are many choices of g to
be investigated, although it may not be optimal for any one
choice of g. This article is concerned with ways of obtaining
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good densities p, and hence good estimators I, when it is
not feasible to sample from ¢ itself.

Replacing the direct estimate with I recalls the sampling
importance resampling (SIR) algorithm of Rubin (1987,
1988) for obtaining an iid sample of size m from a dis-
tribution that approximates the targer distribution (x) by
sampling with replacement from an initial iid sample of size
n from the importance sampling distribution, or envelope,
p(x) with weights w(x;). Thus the integration problem may
be recast as a sampling problem. For appropriate envelopes,
I is consistent as n — co, and we show in Section 3.1 that
for any m, the SIR method is exact as n — oo.

Adaptive importance sampling (Evans 1988; Kloek and
Van Dijk 1978; Oh and Berger 1992; Smith, Skene, Shaw,
and Naylor 1978; West 1992, 1993) is an effort to improve
the final sample or estimate of I by iterating the importance
sampling approach while updating the choice of envelope
between stages based on current information about the tar-
get. Examples in this article demonstrate that the choice
of updating strategy can have an important effect on the
quality of the results.

This work was motivated by a problem that induced in-
tractable posterior distributions that had support concen-
trated on a thin, curved manifold when starting from an
extremely diffuse prior over a vast region. This problem
was an application of the “Bayesian synthesis” framework
(Givens 1993; Raftery, Givens, and Zeh 1995) developed for
combining available evidence about the inputs and outputs
of complex mechanistic models.

This article demonstrates that a general adaptive impor-
tance sampling algorithm may be specialized to better suit
certain classes of target densities that have distinctive fea-
tures. We explore one such specialization that offers some
advantages when dealing with distributions with unusual
structure, like those that may result from the Bayesian syn-
thesis approach.

2. A GENERAL IMPORTANCE
SAMPLING ALGORITHM

The adaptive importance sampling methods that we con-
sider may be thought of as an alternative to simple SIR,
where part of the sampling effort is used initially to refine
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the envelope and the remainder is then used to obtain a sam-
ple with the improved envelope. The methods proceed by
first performing a simple importance sampling step to get
an initial approximate sample from the target, then using
kernel density estimation to estimate the target. The result-
ing mixture distribution then serves as an improved enve-
lope for another stage of importance sampling. These steps
can be repeated if the current envelope is still a poor one.
The two adaptive importance sampling methods described
in this article use different methods of kernel density esti-
mation. A global method uses the same kernel for all points
in the current sample. A local method uses, for each point, a
different kernel chosen to mimic the local covariance struc-
ture of the target density in a neighborhood of that point.
The local method often provides a more effective envelope
for the next stage of importance sampling when the target
distribution lies on a complicated, nearly lower-dimensional
manifold compared to the initial envelope.

Let the target distribution be ¢(x), where x is d dimen-
sional. A general v-stage importance sampling algorithm
can be written as follows:

1. Let the initial envelope be p©(x) and set the stage
index to j = 0.

2. Draw a sample of size n; from pY) (x). Call this sam-
ple x(J) .. ,xff.).

3. Form standardized importance weights

G

=1

w = [t () pP ) <)/ (x(7)) @)

for i =1,...,n; if ¢(x) = ct*(x) and c is unknown. If ¢ is
known exactly, then use (3) with ¢ = 1.
4. If j = v, then sample xy,...,X,, with replacement

from x(” ) (’ ) with weights w(J ), .. ,wﬁf ) and use this
sample for 1nference Otherwise, go to Step 8.

5. Update the envelope using the kernel density estimator

P ) = 3w KHP (- x) / H], @

where K is the kernel, | - | is the absolute value of the
determinant, and {H(J)} (¢ =1,...,n;) are nonsingular d

x d matrices that may depend on x(J ) x,(fj).
6. Increment j and go to 2.

In this article we present one choice for the set {HY)}
where these matrices do vary with ¢. This means that for
each stage j, up to n; different covariance matrices of size
d x d must be estimated and (4) must be evaluated at ;1
points. The algorithm requires N = Z;ZO n; evaluations
of the target. When these evaluations are extremely com-
plicated, N may be the limiting factor in the procedure.
Adaptive methods may be most useful when N is limited,
because the nonadaptive SIR algorithm will eventually suf-
fice when N is sufficiently large, regardless of how diffuse
the envelope is. When N is limited, we may ask for a fixed
N whether it is preferable to devote the entire sample to
a single SIR run or to devote a portion of the sample to
adaptive refinement of the envelope. Examples in this arti-
cle demonstrate that adaptive envelope refinement is some-
times preferred.
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2.1 The SIR Algorithm

The SIR algorithm corresponds to v = 0. The effective-
ness of the SIR algorithm can be strongly influenced by the
quality of the envelope (Geweke 1989; Hesterberg 1991,
Oh and Berger 1991; Rubin 1987, 1988; Smith et al. 1987,
Smith and Gelfand 1992; Stewart 1983).

Extreme dispersion of the envelope relative to the tar-
get is exacerbated by the dimensionality of the probability
space when d is not small. In this case the SIR algorithm can
be very inefficient, because most draws from the envelope
will occur in regions where the target distribution has low
probability. The resulting importance resample will then
consist of only a few unique points repeated many times.
Such a sample will often yield poor estimates of variability
and probabilities and may not even give good estimates of
location.

2.2 Global Adaptive Importance Sarhpling

For difficult target densities, it would be helpful to use a
preliminary sample to identify the possible region of sup-
port of the target before making the final importance sam-
ple. Smith et al. (1987) and West (1992, 1993) have sug-
gested using an iterative procedure where at each stage
a new envelope is estimated using a nonparametric kernel
density estimator with the sample from the previous stage.

Ideally, the sample at each stage would first be trans-
formed in some way to improve the performance of the
density estimator, typically by making the distribution of
the transformed variables more nearly multivariate normal
(Smith et al. 1987). The transformations are problem spe-
cific and rely on the investigator’s knowledge of the target,
but often they do not remove its troublesome features. The
sample at each stage can be further transformed by covari-
ance scaling (Smith et al. 1987; West 1992). The scaling
is implicit when ng)THEj) = RIS for i = 1,...,ny,
where £ is the estimated covariance matrix of the jth
sample and h"Y) is some scale parameter.

Indeed, with j > 1 and Hg’) =HU (G =1,...,n; for
each j), the foregoing general algorithm includes methods
similar to the adaptive importance sampling method of West
(1992). West uses a multivariate ¢ distribution for K and sets
HO HO = h(n;)£0), where ) is the Monte Carlo co-
variance estimate from the weighted sample and h(n;) is
some scale parameter. West suggests that the scale parame-
ter be a slowly decreasing function of sample size. To com-
pensate for the natural overdispersion of a kernel estimate,
West shrinks the kernel locations toward the sample mean.

We call methods where HEJ ) = H such as West’s,
global adaptive importance sampling (GAIS), because the
same H) is used for each kernel contribution at each sam-
ple point, and this HU) is based on the estimated global
covariance structure of the target.

Typically, the performance of a kernel density estimator
is relatively insensitive to the choice of the kernel’s func-
tional form (Sllverman 1986). However, the choice of the
matrices H(J can be important with the adaptive impor-
tance samphng method, because small differences in the
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tails of the density estimate can have dramatic effects on
its quality as an importance sampling envelope. In other
words, for the creation of importance sampling envelopes,
it is wise to avoid density estimators that can be light in the
tails, even if such estimates are more precise overall.

If, after transformation, the target distribution has highly
nonconvex contours or there are strong nonlinear relation-
ships between variables, then the global kernel density esti-
mate may be a poor one to use as an envelope. For example,
consider the target distribution whose 95% minimum area
probability region is shown in Figure 1. The contours of a
kernel based on the global covariance estimate would re-
semble G and G*. This kernel would not attribute mass
ideally for sample points like z. A better envelope could be
constructed with an estimator that more readily recognizes
the obvious structure of this density and contributes mass
with kernels that have contours like L and L*.

2.3 Local Adaptive Importance Sampling

A density estimator that adapts to the local covariance
structure of the sample may be better able to provide an
envelope that covers the support region of an unusual tar-

get. Let ng)THEj) = h§j>z‘:§j>(A§j>), where 2§j>(A§j)) isa
covariance estimate for the [)\53 )nj] nearest neighbors of
the ith point in the jth sample (2/n; < A9 < 1) and Y
are local scale factors. We measure neighborhoods by Ma-
halanobis (1936) distance. Each point is included among

its own neighbors. We call this method local adaptive im-
portance sampling (LAIS). GAIS is a special case of this

method obtained when A) = 1 for all i and j and A does
not depend on 1.
LAIS uses a local kernel density estimator, where K re-

mains’ the same but ng ) varies with each point (4) in the
sample. Givens (1995) discussed the £; consistency of the
local kernel density estimator.

Consider the target density shown in Figure 1. The con-
tour shape for two choices of kernel are shown centered at
the point z near one tail of the target. G represents a GAIS
kernel, which reflects the global covariance of the jth sam-
ple. L, representing a LAIS kernel, contributes mass near
the point in a manner that more closely reflects the local
structure of the target density. Indeed, if z were one of few
points sampled in that region of the target, then the enve-
lope based on the global kernel estimate would have a much
lighter tail than the target in the direction where the target’s
tail has most mass. If point ¢ was drawn at the next sam-
pling stage, then GAIS would give g a very large importance
weight. The single point ¢ would play an exaggerated role

Figure 1.
Differently.

LAIS (L and L*) and GAIS (G and G*) Contribute Mass
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in representing this region of the target. We would prefer a
more diverse sample of points in this region. If points like
g were not drawn by GAIS, then an important region of the
target would not be discovered.

3. EVALUATION OF IMPORTANCE
SAMPLING STRATEGIES

3.1 Estimation and Simulation Convergence

Consider the case when interest is limited to the expected
value of a single function g. The estimator I converges al-
most surely as n — oo to I = Eg(x) if this expectation is
finite and the support of p(x) includes that of ¢(x). Hes-
terberg (1991) showed that I is also asymptotically normal
in this case, and minimization of the asymptotic variance
leads to identification of p’(x) o |g(x) — Eg(x)|¢t(x) as an
optimal envelope. However, p(x) cannot be used in prac-
tice because ¢(x) and Eg(x) are unknown, and often inves-
tigation of many choices of g is of interest. Zhang (1993)
has examined simulation convergence of one nonparametric
adaptive importance sampling method.

The adaptive methods are not meant for lengthy iteration
(large v) but instead are intended to obtain quick, drastic
envelope refinement in one or two iterations. The adequacy
of the final sample is assured through the final importance
sampling step. In this sense, then, adaptive importance sam-
pling is strategically different from alternative Monte Carlo
integration procedures such as Markov chain Monte Carlo
methods (Hastings 1970; Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller 1953). In fact, adaptive importance
sampling can be an attractive alternative to Markov chain
Monte Carlo methods, because these latter methods do not
provide an independent sample and may experience con-
vergence difficulties when the number of iterations is not
sufficiently large.

To compare SIR, GAIS, and LAIS, it is also interesting to
consider simulation consistency, by which we mean whether
these methods produce final samples from distributions that
converge to ¢ as v — oo and possibly n; — oo.

Consider first the SIR algorithm, where we sample
Yi,...,Y, iid from p, then calculate the importance
weights w; = t(Y;)/(p(Y:) 3, t(Y:)p(Y;)™t), and finally
resample X;,...,X,, with replacement from Y,...,Y,
with probabilities ws,...,w,. Let ¢ and p be multivari-
ate probability densities on R*, and let F be the distri-
bution function on R* corresponding to the target ¢. If
{x: p(x) # 0} D {x: ¢(x) # 0}, then X; converges in dis-
tribution to F' as n — oo. Using intuitive arguments, Rubin
(1988) and Gelman and Rubin (1992) have noted this con-
vergence; a direct proof is straightforward. Fix m. Suppose
that the first step of the SIR algorithm produces a weighted
sample, Y = {Y;} = {Ya1,..., Yi)} (¢ = 1,...,n), with
weights wy, ..., w,. Let F,,(x|y) be the empirical distribu-
tion function on R* corresponding to the weighted sample
Y, namely

n

Fo(xly) = Zwil(fﬂl <Y1 Tk S k)
i=1

Conditional on Y, each X; is a random variable with
discrete distribution F,(x|y). Let h be any bounded,
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continuous function on R*. Then Eph(x) exists, and
Yo wih(Y;) — Eph(x) according to the strong law
of large numbers, as noted by Geweke (1989). Because
J h(x)dF,(x|ly) — [ h(x ) for any bounded, contin-
uous h, the conditional d1str1but10n of any X;|Y, F,(x]y)
converges to that of a random variable X with target dis-
tribution F' (Billingsley 1986). Because this limiting distri-
bution does not depend on Y, the unconditional limiting
distribution of X; is also F.

Next we consider simulation convergence of the adaptive
methods. Although one might compare p¥) to p’ or ¢ as the
number of iterations increased, both GAIS and LAIS end
with a final importance sampling step. Thus one may al-
ways obtain simulation consistency with these methods by
letting n,, — oo, as long as the support of p(*)(x) includes
that of ¢(x), regardless of the convergence properties of
p¥)(x). Because p(*)(x) is a kernel density estimate, sim-
ulation consistency can be achieved by using unbounded
kernels.

3.2 Monte Carlo Evaluation

Here we consider how to examine the results of Monte
Carlo comparisons between methods. For adaptive meth-
ods, evaluation of how well a density p{/)(x) serves as an
importance sampling envelope for a target ¢(x) should oc-
cur at each stage of the procedure. In particular, envelope
monitoring is necessary to identify when the current en-
velope is not sufficiently diffuse. However, poor interstage
monitoring strategies will often manifest themselves in the
final results because of feedback between the sampling and
envelope estimation steps. A poor envelope produces a poor
sample, which in turn may produce another poor envelope.
Thus here we focus on evaluating the results given at the
final stage of a method.

We assess the quality of an importance sampling strategy
in two ways: by the bias and variance of estimates produced
with it and by the diversity of the sample that the final en-
velope provides. The first assessment is made by comparing
the mean squared errors (MSE’s) of Monte Carlo estimates
of selected quantities of interest. Sample diversity is related
to the variability of the weights and is discussed in the re-
mainder of this section.

Usually there are many quantities of interest in an analy-
sis, including means, modes, standard deviations, and prob-
ability intervals. Although each quantity of interest would
specify a different optimal sampling envelope, adequate re-
sults could be obtained for all with a single envelope. The
resulting sample should allow efficient estimation of all
quantities of interest and also allow the researcher to later
examine new quantities that may be relevant. Some quan-
tities of interest may be marginal quantiles, which cannot
be expressed directly as the expected value of some func-
tion g(x). A quantile estimate would follow easily from a
sample from the target density.

Although envelopes that differ from the target may actu-
ally be better for estimation of a single quantity of interest,
the importance sampling envelope that results in a resam-
ple exactly from the target is the target itself. Consider the
unstandardized weight function @(x) = #(x)/p(x) with cdf
F,(w), and assume for the remainder of this section that the
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support of p(x) includes that of ¢(x). Using ¢ itself as the
envelope produces constant weights, so Fy() = 1{gz>1},
where 1{,>4) is 1 if @ > b and zero otherwise. Thus p(x)
can be evaluated by assessing how much F,, differs from

F;. Define
p- [

as a measure of the distance from F,, to F;. Note that D
= var(w), which was recommended as a performance mea-
sure by Hammersley and Handscomb (1964), and D + 1
= E.w, which was suggested by Geweke (1989). Note also
that D has the desirable property that it is very sensitive to
the case where a few small regions of the envelope produce
extremely large weights. D is not equivalent to integrated
squared error (ISE), mean ISE (MISE), or the L; norm,
common measures of distance between densities.

The estimator D = n~1 Y7 | (w(x;) — 1)? is consistent
for D when x,...,x, form an iid sample from p(x) and
c is known. Slmllarly, a consistent estimator for D when ¢
is unknown is D = ny i (w(x;) — n~')2. Comparison
of competing envelopes cpn be made via the ratio of their
corresponding values of D.

The constancy of the importance weights can also be
gauged by the number of unique points in the final sam-
ple. We standardize this measure by using U = @Q/(N(1
— exp(—m/N))), where @ is the number of unique points
in the final sample and the denominator is an approxima-
tion to EQ in the desirable situation when the weights are
constant and m is the size of the final sample from the com-
plete collection of N = 3 n; candidates ever considered
(Lewontin and Prout 1956). Standardization by EQ penal-
izes the adaptive methods for sampling from only the final
n, candidates but does not penalize SIR, which samples
from the full collection of N candidates. .

Samples that arise from weights with small D and that
result in large U are desirable.

u) —1)? (5)

4. MONTE CARLO EXAMPLES

We compare Monte Carlo results from simulated exam-
ples in two and three dimensions. We also briefly exam-
ine results from a very difficult ten-dimensional application
motivated by the whale modeling work of Raftery et al.
(1995).

4.1 Simulated Examples

4.1.1 Algorithm Specifications. Multivariate Gaussian
kernels were used for all density estimation. The total num-
ber of target evaluations was N = > 7_,n;. Scale pa-
rameters were chosen relative to Terrell’s (1990) maximal
smoothing span, denoted by T'(nj,d) for a d-dimensional
sample of size n;, to help insure that constructed envelopes
erred toward diffusion. For GAIS, we set h) = s2T'(n;,d),
where s > 0 is a parameter to be chosen. For LAIS, we set

A9 — X for all i and j, and h{?) = s2T(n;,d)/ for all .
This choice for hgj ) balances increasing neighborhood size,
A, against the increased dispersion of a larger neighborhood,
as measured by ﬁgj ), Sample covariance estimates provided
$06) and 21(;' ) If, for a given point, the prespecified \ re-
sulted in a noninvertible neighborhood covariance matrix,
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then \ was gradually increased to alleviate the problem in
that instance and then reset for the next point. We did not
use West’s (1992) method of shrinking resampled points to-
ward the mean. When the target distribution has nonconvex
contours, such shrinkage can cause severe misrepresenta-
tion of the target.

4.1.2 Monte Carlo Study Design and Display of Results.
For the examples that we examined, we present results for
two levels of N and three methods: SIR, GAIS, and LAIS
with A = .5. Additional runs indicated that A = .5 typified
LAIS performance except for very small values (A < .2),
for which LAIS performance was degraded due to under-
smoothing. As ) increased toward 1, the LAIS and GAIS
strategies grew more similar. The choices of v, n;, s, m, and
N differ between examples. The targets that we examined
are each parameterized by a dispersion parameter, a, for
which we give results for values corresponding to strong
and weak target structure. A

The performance measures in each example are U, D, and
the MSE for estimation of potential quantities of interest.

We ran ten replications with each (N, \) pairing and ten
corresponding replications of a SIR run with each choice
of N. We standardized the MSE and D results by dividing
by the mean result for the SIR runs with the same N. In
the tables describing the MSE for estimating quantities of
interest, values less than 1 are favorable because they indi-
cate that a method estimated the quantity of interest with
less MSE than the corresponding SIR runs. Smaller values
are also favorable for D. The results for U are not stan-
dardized relative to SIR, so larger values of U (near to 1)
are favored, because they indicate more unique points in
the final sample.

4.2 Example 1: Two-Dimensional Structure

4.2.1 Description. The first test case was the target
density f,(z,y) such that X had a marginal uniform dis-
tribution on [—1,4] and (Y|X) ~ N(|X|,.09a?). Figure 2
shows samples drawn from this density when ¢ = .75 and
a = 3.5. For small a, f, is exactly the type of target for
which LAIS is intended, because it shows a strong non-
linear relationship between z and y (see Fig. 2). In higher

a=.75

Journal of the American Statistical Association, March 1996

dimensions, this type of density is seen in the whale mod-
eling work of Raftery et al. (1995) examined in Section 4.4.
Larger values of a produce densities with less distinct struc-
ture. The initial envelope was uniform over [—4, 7] x [—4, 8].

We fixed m = 500 and tabled results for N = 1,250
and N = 5,000. The number and size of stages were (400,
850) for N = 1,250 and (1,500, 1,000, 1,000, 1,500) for N
= 5,000. Further investigation of the choice of the num-
ber of iterations can be found in Section 4.2.3. We used
s=.7.

In addition to U and D, we also examine MSE for
estimates of EY = pu, = 1.7 and py = Pr[X
< 0] = .2. Successful runs should produce precise unbi-
ased estimates of p; and ;. When the envelopes resemble

fa, D will be small and U will be near 1.

4.2.2 Results. Table 1 shows that the adaptive meth-
ods were more successful than SIR at providing constant
importance weights and a diverse sample. For the less dis-
persed case (a = .75), LAIS avoided extreme importance
weights and provided up to three times more unique points
in the final resample than did SIR. As the target became

more dispersed, the differences between methods became
less extreme.

Table 2 shows that the best method for estimation of
py and p; depended on the degree of structure in the tar-
get. When the target was diffuse (¢ = 3.5), the additional
variability of the adaptive methods made SIR appear to
be the best method. However, with strong target structure
(a = .75), LAIS appeared to be an attractive alternative that
generally provided estimates with lower MSE than did SIR
or GAIS. GAIS performed poorly in this case, because it
sometimes generated extreme importance weights.

4.2.3 Number of Stages. To investigate the importance
of number of stages, v, and the total number of target eval-
uations, N, we ran additional trials with the target in this
example with a = .75.

We let v vary from O to 5 with n; = 1,000 for each j and
m = 1,000. Thus N varied from 1,000 to 6,000. We ran

a=35
© P
e o
v =
> QA
(@] -
DU °

Figure 2. Samples of Size 500 From f; in Example 1.
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Table 1. Sample Diversity Performance Measures for Example 1
Standardized D U
Method N a=.75 a= 35 a=.75 a=35

SIR 1,250 1.00 1.00 .24 46
GAIS 1,250 5.94 12 .56 .85
LAIS 1,250 .22 .16 77 .85
SIR 5,000 1.00 1.00 .54 .76
GAIS 5,000 .09 .20 .87 .88
LAIS 5,000 .02 .04 .87 .87

30 replications of SIR, GAIS, and LAIS. The resulting num-
bers of unique points and MSE(/i,) are shown in Figure 3.
LAIS adapts quickly; only one stage was necessary to pro-
vide any achievable improvement. LAIS performance was
consistently better than SIR, providing smaller MSE’s and
more constant importance weights with smaller V. SIR per-
formance will improve with increasing N. A SIR run with
N = >°;n; draws will eventually outperform the adap-
tive methods if their stage sampling sizes (n;) remain fixed
while the number of stages increases. About N = 27,000
points would be necessary for SIR to provide the same num-
ber of unique points achieved by LAIS with N = 2,000.

On average, GAIS also provided more unique points than
SIR but occasionally generated extreme importance weights
and hence small numbers of unique points. In these in-
stances estimation performance was degraded, as is evident
in the panel of Figure 3 for MSE(ji, ), where GAIS perfor-
mance fluctuates drastically. This example was deliberately
chosen with strong local target structure and diffuse initial
envelope to emphasize the differences between methods.
These results indicate that N is probably less closely re-
lated to performance than is the single one or two largest
values of n;.

One attractive feature of SIR is that it is noniterative. In
this example the adaptive methods also do not require much
iteration to derive a suitably refined envelope.

4.2.4 Computation Time. For this example, with N
= 1,250, the computation times for SIR and LAIS were .11
and 1.97 seconds on a Sun SPARC 20 m61. GAIS speeds
are between these, depending on coding.

SIR may be favored when target evaluations are com-
putationally inexpensive, as they are in this simple exam-
ple. However, the MSE of a SIR estimate is reduced by in-
creasing the number of target evaluations, and when these
evaluations are computationally expensive, switching to an
adaptive method such as LAIS may provide a net decrease

Table 2. Standardized MSE Performance Measures for Example 1

Std. MSE(jiy) Std. MSE(p,)

Method N a=.75 a=35 a=.75 a=356
SIR 1,250 1.00 1.00 1.00 1.00
GAIS 1,250 50.16 .29 3.36 .90
LAIS 1,250 1.34 1.01 .52 1.71
SIR 5,000 1.00 1.00 1.00 1.00
GAIS 5,000 A7 1.50 1.04 2.81
LAIS 5,000 .29 77 .38 2.36
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in computation time because the increased computation re-
quired by the importance sampling method can be offset
by a large reduction in the total number of sample points
needed to attain a desired MSE.

4.3 Example 2: Trivariate Normal Mixture

4.3.1 Description. The second example was a mixture
of two trivariate normal distributions with distribution func-
tion G, = $Fy + 2F,. Fy was a trivariate normal distri-
bution function with mean vector (a,1,a) and covariance
matrix with diagonal (a?,1/4,1/4) and zeros elsewhere. F
had mean vector (0, 0, 0) and covariance matrix with diag-
onal (1/4, 1, a?) and zeros elsewhere. Let g, be the density
corresponding to G,. Large values of a give highly struc-
tured densities; small values give diffuse densities. We table
results for a = 1 and a = 6. A pairwise scatterplot of a
sample of 500 from g, is shown in Figure 4 for ¢ = 6. The
strong structure in these data is reminiscent of the Stanford
Linear Accelerator data described by Friedman and Tukey
(1974) which was used to demonstrate the Prim-9 graph-
ics system (Stanford Linear Accelerator Center 1973). The
distribution shown in Figure 4 challenges the simple SIR
method and GAIS, because these methods are unable to
adapt to the local structure of the density. When a =1, a
scatterplot of a sample from g, does not show much struc-
ture at all. The initial envelope was a trivariate normal dis-
tribution with the same mean vector and covariance matrix
as Gg.

We tabled results for N = 2,000 and N = 9,000. The
interim sample sizes were split evenly between stages, m
was fixed at m = 800, and s was 1. We used two stages
for the low value of NV and three stages for the high value
of N.

We consider estimation of three quantities of interest,
in addition to the measures D and U. These quantities are
EZ =y, = a/3,po = Pr[X >aand Y > 1] = .0857, and
w = cor(X,Z) = .265, and .315 for a =1 and a = 6.

4.3.2  Results. Table 3 shows the results for the D and
U performance measures. For the simple target (¢ = 1), the
SIR method produced more unique points than any adaptive
method, suggesting that the envelope resembled the target
sufficiently for reliable estimation. As the target structure,
a, increased (and hence the envelope became a poorer rep-
resentation of the target), the SIR method did not provide
as many unique points as the adaptive methods in the final
sample, though its value of D improved relative to the other
methods. Generally, LAIS performed better than GAIS. All
three methods produced more nearly uniform weights as N
increased.

Table 4 shows the MSE results for this example. For the
simple target (a = 1), no method was superior for estima-
tion of all quantities of interest. In many cases, SIR worked
about as well as the adaptive methods. However, for the
very structured target (¢ = 6), the LAIS method gener-
ally had lower MSE’s than SIR, and the GAIS method had
greater MSE’s than SIR. The high MSE’s for the GAIS
method were largely caused by excess variability due to
extreme importance weights generated when GAIS failed
to adequately approximate the structure of the tails of the
target. For example, for estimation of 1,(6) = 2, when
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Figure 3. MSE(jry) and Numbers of Unique Points for Each Method
(Solid Line, SIR; Dotted Line, GAIS; Dashed Line, LAIS) With Increasing
Number of Stages, v, for Example 1 with a = .75. The total number of
target evaluations is N = 1,000(v + 1).

N = 9,000, the sample means (and standard deviations) of
the 10 replicates were 2.01 (.28) for SIR, 1.92 (.44) for
GAIS, and 1.94 (.18) for LAIS.

Generally, the results in Table 4 confirm that GAIS per-
formance is degraded when there is a strong nonlinear re-
lationship between the variables of the target density. LAIS
can adapt to this structure, providing estimates with lower
MSE than those provided by SIR or GAIS.

We consider estimation of py in further detail. Figure 5
summarizes the MSE(p;) results for this example. In this
figure we include additional results for s = .7,A = .2, N
= 4,500, and a = 3. The area of each circle is proportional

T T
-10 0 5

Figure 4. Sample of Size 500 From g, When a = 6 for Example 2.

Journal of the American Statistical Association, March 1996

Table 3. Sample Diversity Performance Measures for Example 2

Standardized D U
Method N a=1 a==~e6 a=1 a==e6
SIR 2,000 1.00 1.00 .90 .49
GAIS 2,000 .88 1.04 77 44
LAIS 2,000 27 1.39 .79 .63
SIR 9,000 1.00 1.00 .96 .76
GAIS 9,000 13 1.02 .91 .68
LAIS 9,000 a2 .96 .90 .83

to the ratio of MSE for estimating p, for each method
relative to the corresponding SIR runs. When the ratio is
less than 1, the circle is shaded, indicating that the method
yielded smaller MSE than did SIR. The dominant feature
of this figure is the poor performance of GAIS relative to
SIR and LAIS when target structure is high (a = 6). This
occurs because GAIS constructs envelopes which do not
adequately cover the tails of highly structured targets. We
also see that for low target structure and large samples, the
gain achieved by adaptive envelope refinement is more than
offset by the added variability relative to SIR. For two trials
with the smallest sample size, N, and the smallest span, s,
LAIS exhibits variability due to undersmoothing targets of
moderate or high structure. ‘

4.4 Example 3: Bayesian Analysis of Whale
Population Model

Examples 1 and 2 are simple in the sense that they are
easy to implement and the targets are low dimensional and
easy to visualize. However because of their structure, they
are challenging tests of method performance.

In this section we consider a complex, ten-dimensional
target distribution which is the result of the Bayesian anal-
ysis of a population dynamics model for bowhead whales
(Givens 1993; Raftery et al. 1995). The model projects an
age- and sex-stratified whale population through time. The
target distribution is the joint posterior distribution for the
model’s ten parameters. Like the earlier examples, the target
is highly structured in some dimensions, and nearly multi-
variate Gaussian in others. Figure 6 shows two of the pair-
wise relationships between model parameters.

The larger number of dimensions makes this example
a difficult one, especially because the envelope (prior dis-
tribution) is diffuse due to scientists’ limited knowledge of

Table 4. Standardized MSE Performance Measures for Example 2

Std. MSE(fi;)  Std. MSE(py) Std. MSE()

Method N a=1 a=6 a=1 a=6 a=1 a=6
SIR 2,000 1.00 1.00 1.00 1.00 1.00 1.00
GAIS 2,000 .62 2.29 1.86 .49 .15 1.83
LAIS 2,000 .63 .85 .93 A7 1.26 41
SIR 9,000 1.00 1.00 1.00 1.00 1.00 1.00
GAIS 9,000 .73 2.63 1.62 .28 77 1.91
LAIS 9,000 .85 47 1.10 14 .37 .28
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Figure 5. Graphical Summary of MSE(p,) Results for Example 2. Standardized MSE(p,) is proportional to the area of the circle. Shaded circles

correspond to better performance than SIR.

the bowhead species. In the first example, there is, roughly
speaking, a loss of one dimension from the envelope to the
target; but in the bowhead problem, the target lies near a
manifold that is many dimensions simpler. This means that
it is extremely difficult to hit high probability regions of the
target with a few draws from the envelope, and hence it is
difficult for the adaptive methods to obtain good estimates
of covariance structure.

We ran two trials of the LAIS, GAIS, and SIR meth-
ods for this example. With SIR, the total number of model
simulations was N = 20,000, from which we resampled
m = 1,500 for the final data. With LAIS and GAIS,
N = 20,000 total model simulations were divided by tak-
ing an initial sample of 12,000 and an intermediate sample
of 8,000. The final resamples were also m = 1,500 points.
Neighborhoods consisted of 3,500 points for LAIS. We im-
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plemented a subsampling strategy for LAIS to reduce the
number of components in the mixture distribution p{¥)(x)
by 60%. Because of the large sample sizes used, the addi-
tional Monte Carlo variability introduced in LAIS estima-
tion by this approximation should be small.

SIR provided the most unique points in each run (203 and
220), compared to GAIS (148 and 171) and LAIS (168 and
176). However, the LAIS method was able to provide ap-
proximate samples from the target that produced marginal
density estimates that were generally as good as those of
SIR and better than those of GAIS.

Figure 7 shows the marginal cumulative posterior dis-
tribution functions for bowhead whale replacement yield
for the best run of each method. Replacement yield is the
greatest number of whales that can be removed from the
population in a year without causing negative population
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Figure 6. Two Examples of Structure in the Posterior Distribution for Parameters of the Bowhead Whale Population Model for Example 3.
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growth; it is an important quantity for setting aboriginal
subsistence whaling quotas on the bowhead species. The
heavy solid line represents the result from a SIR run that
used an N ten times greater than that used for these trials.
The true marginal distribution is unknown, but we can take
the heavy line as a “gold standard” of performance. In this
figure the SIR and LAIS results are qualitatively similar to
each other and near the gold standard, but the GAIS dis-
tribution is skewed considerably toward higher values of
replacement yield. In practice, this GAIS error could lead
to overestimation of replacement yield, which in turn could
lead to overoptimistic quotas, with resulting endangerment
of the species.

Although LAIS apparently avoids the difficulties GAIS
experiences in this example, the results were not ideal. LAIS
was less successful at providing a good importance sam-
pling envelope along dimensions in the parameter space
where there was not a high degree of structure. Further
work may identify what features of the population model
application cause the most difficulty for the adaptive meth-
ods and how the methods can be improved to meet the de-
mands of such a challenging problem.

5. DISCUSSION
5.1

The LAIS method introduced in this article is intended
for a general inference problem where a sample from a

Conclusions
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Figure 7. Estimated Marginal Cumulative Distribution of Replace-
ment Yield for Each Method (Solid Line, SIR; Dotted Line, LAIS; Dashed
Line, GAIS), and the Gold Standard (Heavy Line).

Journal of the American Statistical Association, March 1996

target distribution is desired for exploring and answering
questions about numerous quantities of interest, where the
target distribution exhibits a strong nonlinear relationship
between variables and where the total number of target eval-
uations is limited. In this sense LAIS is a specialized tool,
but its performance indicates that the general approach of
adaptive importance sampling can successfully be tailored
to certain classes of problems. Modifying the envelope se-
lection strategy appears to be one promising approach to
specialization. For nonparametric envelope selection, such
specialization is essentially a density estimation problem in
which the types of errors a density estimator is prone to
make may be more important than the overall accuracy of
the estimator. Other density estimators, such as those sur-
veyed by Izenman (1991) and Silverman (1986) may pro-
vide effective envelope strategies for other classes of prob-
lems.

For the types of targets examined here, we can draw sev-
eral conclusions. When target evaluations are quick and the
available envelope is sufficiently informative or the target
is sufficiently diffuse, the ease and simplicity of SIR are
difficult to match. We ran a full set of simulations with a
standard bivariate normal target and found that the adaptive
methods generally outperformed SIR. However the differ-
ences between SIR and the adaptive methods were not as
great as with the examples in this article.

If the envelope is vast or the number of draws is lim-
ited, and if the target exhibits a strong nonlinear relation-
ship between variables, then an adaptive method such as
LAIS may be the best choice. In these cases it appears that
devoting a portion of the Monte Carlo sampling effort to
envelope refinement reduces MSE more than devoting the
entire sampling effort to SIR.

The adaptive methods described in this article estimate
envelopes and quantities of interest from only the most re-
cent sample. Oh and Berger (1992) and Zhang (1993) de-
scribed similar parametric and nonparametric methods that
use the cumulative collection of samples at every stage. Im-
plementing this cumulative strategy with LAIS could fur-
ther enhance its performance.

The reliance on kernel density estimates for envelopes
introduces several potential weaknesses into the method-
ology. The resulting mixture distributions may have thou-
sands of components, though far fewer contribute signifi-
cant probability. This complexity slows computation. The
methods of West (1992) to “collapse” complicated mixtures
to simpler mixtures are an important computational aid.
Higher-dimensional targets also present a problem. Kernel
density estimation is not entirely effective in higher dimen-
sions (Silverman 1986). Finally, we have found very similar
results with normal and Epanechnikov (1969) kernels, but
other families such as ¢ and split-normal distributions may
be useful as well.

5.2 Related Research

Kloek and Van Dijk (1978), Evans (1988), and Oh and
Berger (1992) have explored parametric adaptive impor-
tance sampling methods. The envelope is assumed to be f,
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where v € T and the best choice of v is estimated at each
step of iteration. This process is iterated until the estimates
of v meet some convergence criterion. At this point, some
or all of the samples from previous stages may be used
to estimate quantities of interest, or additional importance
sampling can be done using the estimated optimal value
of .

There has been much more extensive study of nonadap-
tive importance sampling methods for the integral prob-
lem. Discussion of importance sampling, variance reduction
techniques, efficiency, and applications have been provided
by Berger (1985), Davis and Rabinowitz (1984), Geweke
(1988, 1989), Shao (1988), Stewart (1979; 1983), and Van
Dijk and Kloek (1980, 1983).

The griddy Gibbs sampler (Ritter and Tanner 1991) and
the adaptive rejection sampling method of Gilks and Wild
(1992) are two other Monte Carlo approaches to the prob-
lem. These are not based on the SIR algorithm, but they do
attempt similar intermediate estimation of the target.

[Received October 1993. Revised April 1995.]
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