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SUMMARY

A vector of continuous proportions consists of the proportions of some total accounted for
by its constituent components. An example is the proportions of world motor vehicle
production by Japan, the USA and all other countries. We consider the situation where time
series data are available and where interest focuses on the proportions rather than the actual
amounts. Reasons for analysing such times series include estimation of the underlying trend,
estimation of the effect of covariates and interventions, and forecasting. We develop a state
space model for time series of continuous proportions. Conditionally on the unobserved
state, the observations are assumed to follow the Dirichlet distribution, often considered to
be the most natural distribution on the simplex. The state follows the Dirichlet conjugate
distribution which is introduced here. Thus the model, although based on the Dirichlet
distribution, does not have its restrictive independence properties. Covariates, trends,
seasonality and interventions may be incorporated in a natural way. The model has worked
well when applied to several examples, and we illustrate with components of world motor
vehicle production.

Keywords: BAYESIAN FORECASTING; COMPOSITIONAL DATA; DIRICHLET DISTRIBUTION;
RECURSIVE UPDATING; STATE SPACE MODEL

1. INTRODUCTION

Time series of proportions, or compositions, arise in many areas of application. Such
series are characterized by components which are positive and sum to 1 at each time.
Examples include the breakdown of household consumption by type of item in
successive household budget surveys (Aitchison, 1982), market shares in successive
time periods, proportions of time spent on different activities by individuals, groups
or animals in successive time periods, changes in species composition in lakes due to
environmental insults (Guttorp, 1990) and changes in the chemical composition of
rock samples taken from successively deeper layers, corresponding to more distant
time (Chayes, 1971). Although the data constitute a multivariate time series, standard
techniques such as multivariate autoregressive integrated moving average (ARIMA)
modelling (Tiao and Box, 1981) and Kalman filtering (Kalman, 1960) are not
applicable because of the positivity and constant sum constraints.

As a specific example, which is analysed in Section 3, consider the composition of
world motor vehicle production for 1947-87 shown in Table 1. The total has grown
very rapidly and has obscured the relative changes in the three sources (Japan, the
USA and all other countries combined), which are often of interest.

The top graph in Fig. 1 shows all the series on a single graph. At each year, the
ordinates of the points represent the proportion of production from Japan (lower

tAddress for correspondence: Department of Statistics, University of Melbourne, Parkville, Victoria 3052,
Australia.
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TABLE 1
World motor vehicle production and percentage change in US gross national product

Year Japan UsA Other G, Year Japan USA Other G,
1947 11 4796 1047 -2.8 1968 4086 10820 13670 4.1
1948 20 5221 1324 3.9 1969 4675 10206 15148 2.4
1949 29 6244 1771 0.0 1970 5289 8284 16114 -0.3
1950 32 8006 2540 8.5 1971 5811 10672 17198 2.8
1951 38 6757 2657 10.3 1972 6294 11311 18191 5.0
1952 39 5562 2719 3.9 1973 7083 12682 19395 5.2
1953 50 7349 3099 4.0 1974 6552 10072 18109 —-0.5
1954 70 6537 3618 -1.3 1975 6942 8987 17532 -1.3
1955 69 9204 4470 5.6 1976 7842 11497 19002 4.9
1956 111 6919 4622 2.1 1977 8514 12703 19729 4.7
1957 182 7220 5126 1.7 1978 9269 12900 20131 5.3
1958 188 5121 6045 -0.8 1979 9636 11480 20408 2.5
1959 263 6724 6883 5.8 1980 11043 8010 19443 -0.2
1960 482 7905 7990 2.2 1981 11180 7943 18107 1.9
1961 814 6653 7742 2.6 1982 10732 6985 18396 =25
1962 991 8197 9010 5.3 1983 11112 9205 19433 3.6
1963 1284 9109 10318 1 1984 11465 10924 19383 6.8
1964 1702 9308 11004 5.3 1985 12271 11651 20357 3.4
1965 1876 11138 11528 5.8 1986 12260 11335 21638 2.8
1966 2286 10396 12293 5.8 1987 12249 10910 22521 34
1967 3146 9024 11997 2.9

tSources, Motor Vehicle Manufacturers Association of the U.S. (1988) and US Government (1989); units are
thousands of vehicles.

point) and the cumulative proportion from Japan and the USA together (higher
point) The main feature is the striking growth of the Japanese share, from around
—% to about a third of the total. There are also bumps every 5 or so years, especially in
the last half of the series. These can be seen in Fig. 1 to be correlated with the
movement of the US economy, measured by the percentage change G, in US gross
national product (GNP) and shown in the bottom graph of Fig. 1.

For analysis, the data are best thought of as a time series of vectors, each of which
has positive components summing to 1. This sample space is called the simplex, and
for three-component proportions a graph of the series in this two-dimensional set
(Fig. 2) is often useful. Again, the trend described above is evident.

In this paper we develop a methodology for modelling, forecasting, estimating
trends and seasonal effects, deseasonalizing and assessing the effects of covariates
and interventions on time series of continuous proportions. We take a state space
approach to model the multivariate series directly in the simplex. An advantage of our
method is the direct interpretability of the results in terms of the original proportions.
The approach is fairly easily implemented and most of our results are exact. In the few
cases where approximation is necessary we obtained good results with the accurate
approximations of Tierney and Kadane (1986). One by-product of our work is the
development of two new distributions on the simplex, the Dirichlet conjugate (DC)
distribution (2.5) and the DCD distribution defined in Section 2.1. These are based on
the Dirichlet distribution, but generalize it to allow for dependence between the
components.
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Fig. 1. Proportions of world motor vehicle production and percentage change in US gross national
product
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Fig. 2. Simplex plot of the proportions of world motor vehicle production

To our knowledge, the only other works concerning time series of continuous
proportions in the multivariate setting (d > 1) are those of Smith and Brunsdon
(1986), Brunsdon (1986) and Quintana and West (1988). These approaches are all
based on the logistic normal distribution of Aitchison and Shen (1980) and Aitchison
(1982, 1986) for the analysis of compositional data. In the first case, the authors apply
multivariate ARIMA models (Box and Jenkins, 1976; Tiao and Box, 1981) to
Aitchison’s (1982) (asymmetric) log-ratios, whereas Quintana and West (1988) have
used the symmetric log-ratios with their multivariate dynamic linear models.

Other proposals have been made by Azzalini (1984) and McKenzie (1985), who
have studied time series of beta random variables, and by Wallis (1987) who has
considered the use of the logistic transformation. However, these refer only to the
univariate case.

A full comparison between these approaches and that proposed in this paper
has yet to be made. However, the present approach appears to have the advantage
of working with models that are based on the Dirichlet distribution, which
many consider to be more natural for compositions, and of yielding results that
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are easily interpretable in terms of the odds ratios among the components of the
composition.

One difficulty which arises no matter what approach is used is the problem of 0s.
This is because in the Dirichlet distribution, as in the logistic normal, an exact 0 in one
of the categories is an event of probability 0. In applications, however, we do
encounter exact 0s, and they cannot be accommodated by any of the methods
discussed here. One possible solution is to allow a singular component of the
conditional distribution on the boundary of the simplex, with density proportional to
the (non-singular) limiting conditional density at the boundary. This idea, which
appears to be a refinement of an idea of Aitchison (1982) (end of section 7.4), may be
useful more generally for the analysis of continuous proportions with Os, outside the
time series context.

In Section 2 we present the model and in Section 3 we illustrate its application to
world motor vehicle production.

2. THE MODEL

In this section we review the Dirichlet distribution which describes the
observations. We introduce and give some properties of the distribution conjugate
to it, the DC distribution, which describes the state. We then define the state space
model and show how it can incorporate covariates, trends, seasonality and inter-
ventions. Finally, we consider forecasting, estimation, model checking and model
selection.

2.1. Dirichlet Distribution and Dirichlet Conjugate Distribution
Lety = (J1, . - ., Ya+1)T be a vector of continuous proportions, namely a vector
with positive components such that y'u =1 whereu = (1,. . ., 1)Tisa (d + 1)-vector of
1s. Then y follows the Dirichlet distribution if it has the density

d+1

pG|@) =D@ '] yp. 2.1

J=1
In density 2.1), @ = (o, . . ., ag+1)" Wwhereo; > Oforj=1,...,d+1and

d+1

D(a) = T(@™) ' J] I'(ey)
j=1

is the Dirichlet function, a (d+ 1)-dimensional analogue of the beta function. We
denote this situation by y ~ Dir(a). The sample space is the d-dimensional simplex
S? = {yeR4*iylu=1}.

We write density (2.1) in exponential family form in the following way. Let
v=logy, 7=vTu/(d+ 1) and z=v —uv. We call z the vector of symmetric log-ratios,
and we write z=slr(y). Also, let 6=a/7, where 7=a"u, so that y ~ Dir(76). Then
density (2.1) becomes

p(z|0, 7) = exp{rz'0+ 77 —log D(70)}. 2.2)

The sample space is H? = {z € R9*:z2"Tu=0} and the parameter space is (@, 7) €
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S?x R, . The purpose of this reparameterization is to separate the effects of location 6
and spread 7 as far as possible.
The moments of the proportion vector y are

Ely|o, 7] = 6,
var[y|@, 7] = 007/(v+1).

Thus 0 determines the location of the distribution of y in the simplex, and 7 affects
only the dispersion. By exponential family theory the moments of z are

E[z|0,7] = ¥ — ¥YTu/(d+1), 2.3)
var[z|0, 71 = {(¥'Tu)(uu")/(d+1) + (d+1) diag(¥') — ¥'uT — u¥'T}/(d+1).
2.4)

In equations (2.3) and (2.4), ¥ =y (78) and ¥’ = y'(78), where we adopt the convention
that y(w) = W (W), . . ., ¥(War ) and ' (W) = ('(W), . . ., ¥'(Wa, )T, wbeing any
positive (d + 1)-vector, y the digamma function y(w) = d{logI'(w)}/dw and ¢’ the
trigamma function ¢'(w) = dy/(w)/dw.

A family of conjugate prior distributions for 8, conditional on 7, is

p@|o, x, 7) o exp[o {70 —log D(9)}], (.5

where k = (k, . . ., Kg+1)*. We denote this situation by § ~ DC(o, «, 7); here DC
stands for ‘Dirichlet conjugate’. The state space is 6 € S? and the parameter space is
(0,x) e R, x H’ Because 8 € S?, this is a distribution on the simplex which does not
appear to have been written down before. The mode @ of distribution (2.5) satisfies the
equation

¥(0) — (D = «. (2.6)

Using equation (2.6), 8 is readily found by Newton-Raphson iteration.

If expressions (2.2) and (2.5) hold we say that y follows the compound Dirichlet-
conjugate-Dirichlet (DCD) distribution, and we denote this by y ~ DCD(o, «, 7). This
is also a new distribution on the simplex. It follows from theorem 2 of Diaconis and
Ylvisaker (1979) that, if y ~ DCD(o, «, 7), then

Elz|o, k, 7] = &, Q.7

so that x determines the location of the DCD distribution, and ¢ and 7 affect the
dispersion in different ways. The DCD distribution is a mixture of Dirichlet
distributions; 7 is a common dispersion parameter for the individual Dirichlet
distributions being mixed, while o is a dispersion parameter for the DC mixing
distribution.

2.2. State Space Modelling
State space modelling of time series goes back at least to Kalman (1960). For
univariate normal observations, Harrison and Stevens (1976) developed a dynamic
linear modelling strategy for a time series w;, w,, . . . which, in its simplest form, is
based on the steady model

W= ¢, + ¢, (2.8a)
&=y + 6, (2.8b)
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where ¢, ~ N(0, 02), 6, ~ N(0, 0?) and all the ¢, and §, are independent.

Equation (2.8) is a special case of the general state space model to which the Kalman
filter applies and is based on the idea that w, is made up of an unobserved random
walk component ¢, and a noise component ¢,. The state ¢, may be recursively
estimated by using the Kalman filter equations, leading to an updated posterior
density for ¢,, p(¢,|w’), which is N(m,, C,), and a predictive density for ¢,.,,
D(d1| W), where w' = (wy, . . ., w,). Equation (2.8) describes a random walk with
observation error and with appropriate initialization is formally equivalent to an
ARIMA(O, 1, 1) model, but seems more directly interpretable.

Smith (1979) considered the problem of generalizing model (2.8) to non-Gaussian
situations. For the general case where (w,| ¢,) has an exponential family distribution,
analogies with the Gaussian Kalman filter led him to suggest as a non-Gaussian
analogue of model (2.8) the power steady model, namely

&|w' ~ CP(w,), (2.92)
D(Dri1| W) o p(o| WY, (2.9b)

where CP denotes the conjugate prior for the exponential family distribution of
(w,|¢,) and 0 < k < 1. He pointed out that model (2.9) satisfies the requirements that
decisions made about the state ¢, at times ¢ and 7+ 1 be the same, and that the
uncertainty associated with such decisions increases as time moves from ¢ to #+1.
Harvey and Fernandes (1989) wrote down the likelihood for model (2.9) and extended
it to include explanatory variables in the Poisson, negative binomial and multinomial
cases.

In model (2.9) the state transition distribution p(¢,,|¢;), analogous to equation
(2.8b), is not defined except in some special cases, and Key and Godolphin (1981) have
investigated some of the consequences of this. Smith and Miller (1986) and Smith
(1990) have argued that this is not a defect of the model since equations (2.9) suffice
to give the joint distribution of (wy, . . ., w,) and the predictive distribution of any
set of future observations. Indeed, the correctness of an assumed form for the
state transition distribution, such as equation (2.8b), cannot be verified from the
data.

Model (2.9) applies to univariate observations, whereas our problem is multi-
variate. When w, and ¢, are vectors, Smith (1981) proposed the symmetric multi-
variate power steady model, which remains defined by equations (2.9). However, for
the Dirichlet observation distribution (2.1), when « is the state variable, this model
has several unsatisfactory properties (Grunwald, 1987). For example, the dispersion
of the forecast distribution decreases as forecasts are made further into the future.
This is because equation (2.9b) increases the dispersion of the distribution of the state
«, thus putting more weight on larger values of a, which correspond to less dispersed
distributions of y. These difficulties result from the attempt to estimate the dispersion
at the same time as the location, a much more difficult problem that has required a
large amount of effort even in the Gaussian case. Similar remarks apply to the
generalizations of the symmetric multivariate power steady model proposed by Smith
(1981, 1988).

Our solution to the problem is to use form (2.2) of the Dirichlet observation
distribution instead of form (2.1) and to update the location 6, conditionally on the
spread 7,, which is updated separately. This appears to yield satisfactory results.
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2.3. Dirichlet Time Series Model
Consider a time series {y,:=1, . . ., T} of continuous proportions, where y, =
Diss « - s Yarr,)T =1, . . ., T). The basic assumption of the state space model is
that there is an unobserved state 6, such that

(y,lo,, Tt) ~ Dil'(’r,ot). (2.10)

Equation (2.10) is called the observation equation. The state {6, } is assumed to evolve
in time according to the steady model (2.9), namely

p©;.1|D,) o { p6;|D,)}” O<y<D). (2.11)

In expression (2.11), the observed history D, is defined recursively by D, = {I,, D,_,}
where, for ¢ > 1, I, = {y,, all other relevant information available at time ¢ but not
t—1}, and we denote by D, the values of the externally estimated parameters and all
relevant information available at time #=0. Equation (2.11) has the property that the
distribution of (6. ,|D,) has mode unchanged from that of (8,|D,) but has greater
dispersion.

Knowledge about the state 8, given data is specified by the standard recursive
updating scheme, which follows from Bayes’s theorem and yields

©|D,) ~ DC(0s|t, Ks|ts Tr) (2.12)

for s=t or s=t+1, provided that the initial distribution of (6, |D,) is also DC. The
recursion starts with p(6,|D,) and consists of two steps. The first step, called the
prediction step, consists of obtaining p(@,,,|D,) from expressions (2.11) and (2.12).
The second step, called the updating step, consists of obtaining p(6,. | D, ) by using
expression (2.10) and Bayes’s theorem.

The prediction step reduces to

Ot+1(t = YOtz (2.13)
Kevr1)t = Kejts . (2.14)
where the notation is defined by distribution (2.12). The updating step is
Ori1|t+1 = Opyq)e T 1, (2.15)
Kepjer1 = (1= 8o DKesr)e + 8ra1Zes1s (2.16)

where z,=slr(y,) as defined in Section 2.1, and g, ;=1/0,,,).+ is analogous to the
gain in the usual Kalman filter. In the absence of specific prior information, the
recursions may be initialized by setting a,o0=0 (and then «,, is ignored), which
specifies a uniform prior distribution on the simplex for 6,.

It remains to specify 7,,;. This is done by specifying the average conditional
variance of the components of z,, ;, conditional on the predicted state 6, ,, to be
constant over time. This is analogous to the Gaussian Kalman filter, in which the
variance of the observation distribution, conditional on the state, is assumed to be
constant over time. Define a new model parameter ¢ as follows. The average
conditional variance when 7,= £ and ,=wu/(d + 1) (the centre of the simplex) is, from
equation (2.4),

(df1)2¢'<df- 1>'
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Let 6, be the mode of p(@,. |D,). Then the constant variance assumption requires
that, by equations (2.4) and (2.6), 7, is the solution of the equation

V' (71bi)Ta = @+ Dy {E/(d+ 1)} 2.17)

This one-dimensional equation is readily solved by Newton-Raphson iteration.

2.4. Covariates, Trends, Seasonality and Interventions
We incorporate independent variables by changing the location of the predictive
state distribution p (8, |D,) to take account of such 1nformat10n at time 7+ 1. Let §,
be the mode of p(d,|D,). Then we define a new mode 6% , for the predictive state
distribution by

8@%) = fa6.. x,.0), (2.18)

where X, is an r-vector of independent variables at time ¢+ 1 and B is the matrix of
regression parameters. f and g are functions; g is similar to the link function in
generalized linear models (McCullagh and Nelder, 1983).

Here we consider only a subset of the class of models defined by equation (2.18).
This consists of models which work with ,, , on the symmetric log-ratio scale and
treat the covariates linearly, namely

slr@x. ) = slr@,) + Bx,,,, (2.19)

where the symmetric log-ratio is defined as in Section 2.1. The matrix B of regression
parameters is (d+ 1) x r, and each column must lie in the space H? to ensure that
Bx,,, € H? also. The recursion is still given by equations (2.13)-(2.17) with the
exception that, using equation (2.6), ;. |, is now specified by

Keer)e = V(@04 ) ~ Y, (2.20)

so that equation (2.14) is replaced by equation (2.20). There is some similarity between
this approach and the ‘guide relations’ used by West et al. (1985), though their
approach is strictly univariate.

For interpretation in terms of the original proportions, this prediction at time 7+ 1
can be written in terms of relative odds for two categories j and k as
A*

A*
6t+1|t,j 0t|t1

= eXp{(BXH. 1)1 (th+ l)k

0!+1|t,k tltk

(2.21)

As will be seen in Section 3, this gives an easily described interpretation of the effects
of independent variables.
Model (2.19) can represent trends, seasonality and interventions as well as
covariates. For a constant linear trend (on the symmetric log-ratio scale), x,=1 (¢=1,
. ., T). Seasonal effects may be represented by a set of dummy variables, one for
each season, or by a set of deterministic periodic functions such as sinusoids. Given an
estimated seasonal effect, s,, at time ¢, a time series of continuous proportions may be
deseasonalized, for example, by forming the quantities slr~'{slr(y,)—s;}. An
intervention may be represented by a dummy variable (Box and Tiao, 1975).

2.5. Forecasting, Estimation, Model Checking and Model Comparison
The predictive distribution of z,, ; given the past is
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p@s1|D,) = Sp(z,+1|o,+l)p(o,+1|D,)do,+1. 2.22)

This density is the basis for forecasting since it no longer conditions on the
unobservable state 8, ;. Although no analytical expression for the density in equation
(2.22) seems available, we have had good results with the approximation of Tierney
and Kadane (1986), section 3, which is both fast and accurate in this case. The forecast
mean is, from equation (2.7), . |,. (As an example of the accuracy of the approxima-
tions, the Tierney and Kadane approximation reproduced the theoretically calculated
forecast means to at least three significant figures in the example of Section 3.)

The external parameters, or hyperparameters, in the model are vy, £ and, if there are
independent variables, B. Given data at times =1, . . ., T, these may be estimated by
maximum likelihood. The log-likelihood is

T
L(y, &, B) = >, logp(z|D,_;; v, £, B),
t=2

and this can be maximized numerically. The log-likelihood is a smooth function of v,
£ and B provided that B is written in terms of the rd independent parameters that
it contains, since each column is constrained to sum to 0. Thus, standard arguments
and similar results for the hyperparameters of other, Gaussian, linear models (e.g.
Pagan (1980) and Los (1985)) suggest the maximum likelihood estimator to be
asymptotically normal with the usual limiting distribution. The sum beginning at 2
gives alog-likelihood conditional on the first observation, as suggested by Harvey and
Fernandes (1989) in the non-Gaussian setting. Confidence intervals for estimates of
parameters in B are obtained by using the usual large sample approximations.

To compare models involving different covariates, we prefer to use an approxima-
tion to the posterior odds as a measure of evidence. We do not use the alternative
approach of significance testing because the models are often non-nested and multiple
comparisons are involved. Suppose that we have models M; with covariates x{” of
dimensions r; (i=0, 1). Then, given that the maximum likelihood estimators of the
hyperparameters have the usual limiting distribution, the arguments of Schwarz
(1978) show that

—2log By 2 —2(L,—Lo) — d(r;—ro) log(Td),

where By, is the posterior odds for M, against M, L, is the maximized log-likelihood
for M; (i=0, 1), and £ denotes asymptotic equivalence in probability. If we are
comparing several models, we thus prefer the model for which

BIC = —2L + rdlog{(T~- 1)d}

is smallest. The rules of thumb of Jeffreys (1961) suggest that such a preference should
not be decisive unless the smallest value of BIC is exceeded by the next smallest by at
least 2 log, 100=9.2.

The model can be checked by examining the standardized residuals

R, = (z,— E[z,|D,_,])/var[z|D,_,]
= (zt—Kt|t—1)/Var[zt|Dt—1]- (2.23)
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The equality follows from equation (2.7), but a similar theoretical expression for
var[z,|D,_,] does not seem to exist. We have again used the Tierney and Kadane
(1986) approximation of this variance for standardization. Visual analysis of the
residuals is important, and the use of dynamic interactive graphics is helpful (e.g. the
spin command in S-Plus (Statistical Science, 1988), or the DataViewer (Hurley and
Buja, 1988)). We shall give an example of residual analysis in the next section.

3. EXAMPLE

We now return to the world motor vehicle data described in Section 1. The results
of fitting several of the models discussed in Section 2 to these data are shown in Table
2. For the steady model of Section 2.3, the maximum likelihood estimators are 4 = 0
with € = 122. The likelihood surface is a ridge aligned roughly along the latter curve.
In the analogous normal Kalman filter steady model (random walk with observation
error), £ is related to the limiting reciprocal forecast variance, and here this is well
estimated. The parameter 1 itself is not easily interpretable because of its relation to £
through 7,.

The standardized residuals of equation (2.23) show that the steady model does not
fit well. For instance, the residuals for the component for Japan are nearly all positive
because of the strong trend.

The model incorporating a constant time trend to account for this does better, with
the smaller BIC indicating a significant improvement. Using equation (2.21), the
quantitative information in the parameter estimates can be described in terms of the
odds as follows. The ratio of the Japanese to US shares of production has increased,
on average, by a factor of about exp(Bjapan,1 — Bus,1) = 1.129, or 12.9%, per year. A
95% confidence statement can be made by forming an interval

BJapan,l _BUS,I + 1.96 SE(BJapm,l _BUS,I)’

with the standard error found as usual from cov(B), and exponentiating these limits.
The resulting lower and upper limits for the factor increase are 1.078 and 1.181,
showing this effect to be very significant.

In addition to the underlying trend, Fig. 1 indicates that the general state of the

TABLE 2
Maximum likelihood estimates and BIC for three models

Parameter Model

Steady Trend Covariate
% 0 0.16 0.001
£ ® 1010 213000
v¢ 122 162 213
Brapan.1 +0.053 +0.052
Busa.1 -0.068 -0.067
Bother,1 +0.015 +0.015
Brapan2 -0.013
Busa.s +0.018
BOther,z —0.005
BIC —383.5 -3940 —-407.5
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US economy is also a factor in accounting for the relative components of produc-
tion. We let G, denote the percentage change in the US GNP in year ¢ (G, =
100(GNP,— GNP,_,)/GNP,_,). Plots of the standardized residuals from the trend
model against the first difference, VG, = G, — G,_,, of G, show a roughly linear
relation for all three components.

The inclusion of VG, as a covariate again gives a significant improvement in the
model. Quantitatively, a 1% increase in the growth rate from the previous year is
associated with a (significant) change in the ratio of the Japanese to US production
shares by a factor of about 0.969, with lower and upper limits of 0.955 and 0.984.

Table 3 shows factors for other ratios for the full covariate model. The trend effects

TABLE 3
Change factors for the covariate model
Ratio Factor change Lower Upper Factor change Lower Upper
per year limit limit per 1% GNP limit limit
Japan to USA 1.126 1.075 1.181 0.969 0.955 0.984
Other to USA 1.085 1.059 1.113 0.977 0.971 0.983
Japan to other 1.038 0.992 1.086 0.992 0.978 1.006
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Fig. 4. Standardized residuals for the covariate model

change only slightly compared with the previous model because the trend and
covariate terms are nearly orthogonal. The overall picture is that, on average, the
USA has lost production share to the other countries and has lost even faster to Japan
each year, but a good US economy helps the US against both.

Fig. 3 shows the prior and posterior state modes for the full model. The effect of
GNP on the predictions is obvious and usually in the correct direction. Several poor
predictions are also evident, and these can be studied on a more appropriate scale
through the standardized residuals shown in Fig. 4. The largest residuals, in 1961 and
in 1980, are not quite significant. Both Fig. 3 and Fig. 4 indicate that the model is
performing well throughout a very wide range of the simplex.

The residual plots in Fig. 4 show some remaining patterns, indicating that gains
from further modelling might be possible. Care is needed in interpreting the
standardized residuals. In particular, they sum nearly to 0 at a given time, and hence
some negative correlation is induced. Still, there is one huge correlation—at lag 0 the
correlation between the residuals for Japan and the USA is —0.8. This negative
correlation is also evident in Fig. 4. Thus, although the main competition in the trend
and covariate model components was found to be between Japan and the USA, there
is still some remaining competition in the unexplained variation. There is also a period
of overprediction of the Japanese share and underprediction of the US share during
the 1980s, due to a change in the trend effect. An extension of the present methods
might thus include a dynamic trend.
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