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Abstract 

We suggest a method for simultaneous variable selection and outlier identification based on the 
computation of posterior model probabilities. This avoids the problem that the model you select depends 
upon the order in which variable selection and outlier identification are carried out. Our method can 
find multiple outliers and appears to be successful in identifying masked outliers. 

We also address the problem of model uncertainty via Bayesian model averaging. For problems 
where the number of models is large, we suggest a Markov chain Monte Carlo approach to approximate 
the Bayesian model average over the space of all possible variables and outliers under consideration. 
Software for implementing this approach is described. In an example, we show that model averaging via 
simultaneous variable selection and outlier identification improves predictive performance and provides 
more accurate prediction intervals as compared to any single model that might reasonably be selected. 

Keywords" Bayesian model averaging; Markov chain Monte Carlo model composition; Masking; 
Model uncertainty; Posterior model probability 

I. Introduction 

Many approaches for the selection of variables and the identification of outliers 
have been proposed. Most authors focus on these problems separately. Adams (1991 ) 
and Blettner and Sauerbrei (1993) pointed out that the model that is selected depends 
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upon the order in which variable selection and outlier identification are performed. In 
this paper we define a model as a set of variables and a set of observations identified 
as outliers. 

Another difficulty in outlier identification is masking, where multiple outliers in a 
data set conceal the presence of additional outliers. Several authors have suggested 
methods to overcome masking, including Atkinson (1986a) and Hadi (1992), but 
these methods typically involve removing the 'masking' outliers from the data set 
before the 'masked' outliers can be identified. 

We offer a simultaneous approach to variable selection and outlier identification 
based on Bayesian posterior model probabilities. "Simultaneous Bayesian variable 
selection and outlier identification" (SVO) overcomes the problem that order of 
methods influences the choice of outliers and variables. SVO includes a method 
for identifying multiple outliers which appears to be successful in the identification 
of masked outliers. 

We also consider the problem of model uncertainty in linear regression. The typ- 
ical approach to model selection involves choosing a single set of variables and 
identifying a single set of observations as outliers. Subsequent inferences ignore un- 
certainty involved in the selection of the model. A complete Bayesian solution to this 
problem involves averaging over all possible models when making inferences about 
quantities of interest. Indeed, Bayesian model averaging provides optimal predictive 
ability (Madigan and Raflery, 1994). In many applications however, this approach 
will not be practical due to the large number of models for which posteriors need 
to be computed. 

To overcome this problem we suggest a Markov chain Monte Carlo approach to 
approximate the Bayesian model average for the space of all possible variables and 
outliers under consideration. Markov chain Monte Carlo model composition ( M C  3) 
was originally proposed by Madigan and York (1995) and was adapted for linear 
regression models by Raftery et al. (1994). We show in an example that model aver- 
aging via MC 3 provides better predictive performance than any single model which 
might reasonably have been selected. Software for implementing M C  3 is described. 

In the next section we discuss various approaches to outlier identification. In Sec- 
tion 3 we outline our method for SVO including our method for the identification 
of multiple outliers. In Section 4 we provide two examples using SVO. In Section 5 
we summarize Bayesian model averaging and outline MC 3 as implemented for the 
simultaneous approach. We also discuss the assessment of predictive performance 
and provide an example comparing the predictive performance of BMA to the pre- 
dictive performance of single models that would have been chosen using standard 
techniques. Conclusions are given in Section 6. In the appendix we describe software 
for implementing MC 3. 

2. Outliers in linear regression 

Observations that do not follow the same model as the rest of the data are typically 
called outliers. There is a vast literature on methods for handling outliers including 
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at least three books (Rousseeuw and Leroy, 1987; Barnett and Lewis 1994; Hawkins, 
1980). Outliers are typically modeled by either a shift in mean (i.e., for an outlier 
yi, let yj = X/fl + ej for all j ~ i and let Yi = g i f t  q- ~ q- gi) or via a shift in variance 
(described in Section 3.1). The mean-slippage model is typically used to identify 
outliers to make them available for further study. The variance-inflation model is 
often adopted for robust techniques with the aim of  tolerating or accommodatin9 
outliers. We have adopted the variance-inflation model in this work. 

Many methods have been suggested for detecting single outliers. For a comparison 
of  many of  the available methods, see Chatterjee and Hadi (1986). Bayesian outlier 
models have also been much discussed in the literature, including Box and Tiao 
(1968), Guttman et al. (1978), Verdinelli and Wasserman (1991), and Pettit (1992). 

If  a data set has multiple outliers, then the outliers may mask one another making 
outlier identification difficult. If  masked outliers are not removed from the model as 
a group, their presence goes undetected. An obvious solution to this problem, the 
computationally intensive task of  consideration of  all subsets of observations to be 
potential outliers, is typically impossible to carry out due to the large number of  
subsets to be considered. 

Several authors have suggested algorithms for detecting multiple outliers including 
Hadi (1990), Kianifard and Swallow (1989) and Marasinghe (1985). There are also 
robust methods which produce coefficient estimates that are consistent with the ma- 
jority of  the data. These include work by Rousseeuw (1984), Heiberger and Becker 
(1991), and Bloomfield and Steiger (1983). 

The method we use to identify multiple outliers involves two steps. In a first 
exploratory step we use a robust technique to identify a set of potential outliers. 
The robust approach typically identifies a large number of  potential outliers. In the 
second step, we compute all possible posterior model probabilities or u s e  M C  3, 

considering all possible subsets of the set of  potential outliers. This two-step method 
is computationally feasible, and it allows for groups of observations to be considered 
simultaneously as potential outliers. In the examples we have considered to date, our 
method successfully identifies masked outliers. We describe the method in detail 
below. 

3. Simultaneous variable selection and outlier identification 

3.1. Bayesian framework and selection of prior distributions 

We adopt a variance-inflation model for outliers as follows: Let Y = Xfl+e where 
the observed data on the predictors are contained in the n x (p  + 1) matrix X and 
the observed data on the dependent variable are contained in the n-vector Y. We 
assume that the e's in distinct cases are independent where 

N(0 ,a  ) w.p. (1 - u )  
~3 ~'-, N(0, K2a2 ) w.p. ~. 

(1) 

Here rc is the probability of  an outlier and K 2 is the variance-inflation parameter. 
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We typically consider all models equally likely a priori and the (p  + 1) parame- 
ter vector fl and 0 -2 to be unknown. Where possible, informative prior distributions 
for fl and a 2 should be elicited and incorporated into the analysis - see Kadane 
et al. (1980) and Garthwaite and Dickey (1992). In the absence of  expert opin- 
ion we seek prior distributions which reflect uncertainty about the parameters and 
also embody reasonable a priori constraints. We use prior distributions that are 
proper but reasonably fiat over the range of  parameter values that could plausi- 
bly arise. These represent the common situation where there is some prior informa- 
tion, but rather little of it. We use the standard normal-gamma conjugate class 
of  priors, 

fl ~ N(p, a2V), 

v2 
0. 2 Z~" 

Here v, 2, the ( p +  1 )× ( p +  1 ) matrix V and the ( p +  1 )-vector/~ are hyperparameters 
to be chosen. 

For non-categorical predictor variables we assume the individual fl's to be in- 
dependent a priori. We center the distribution of  fl on zero (apart from flo) and 
choose # = ( f lo ,0 ,0 , . . . ,0)  where rio is the ordinary least-squares estimate of  flo. 
The covariance matrix V is diagonal with entries (s 2, ,h2s-2 "~2s-2 V" 1 , W  2 , ' ' ' ' (~2S;  2) where 
s 2 denotes the sample variance of  Y, s~ denotes the sample variance of X~ for 
i -- 1 , . . . ,  p, and 4> is a hyperparameter to be chosen. The prior variance of  flo is 
chosen conservatively and represents an upper bound on the reasonable variance for 
this parameter. The variances of  the remaining fl-parameters are chosen to reflect 
increasing precision about each fli as the variance of  the corresponding X, increases 
and to be invariant to scale changes in both the predictor variables and the response 
variable. For details of  our treatment of  categorical predictor variables, see Hoeting 
(1994). 

The marginal distribution of the response y based on the proper priors discussed 
above is a non-central Student's t-distribution with v degrees of freedom, mean X#, 
and variance [v/(v- 2)]2(E + XVX t) where E is a diagonal matrix with K 2 on the 
diagonal for observations identified to be outliers and l ' s  elsewhere. 

3.2. Choosin9 hyperparameter values for the prior distributions 

Below we briefly describe the rationale behind our choice of  the hyperparameters 
v, 2, q~, re, and K. 

We consider the outlier hyperparameters, 7r and K, separately from the regression 
hyperparameters, v, 2, and ~b. To choose the regression hyperparameters we define 
a number of reasonable desiderata and attempt to satisfy them. In what follows we 
assume that all the variables have been standardized to have zero mean and sample 
variance one. We would like: 

1. The prior density P(fll,...,flp) to be reasonably flat over the unit hypercube 
[ -1 ,  1] p . 
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2. p(a 2) to be reasonably flat over (a, 1] for some small a. 
3. Pr(o "e < 1) to be large. 

The order of  importance of  these desiderata is roughly the order in which they are 
listed. 

To choose an appropriate value of  a in desideratum 2 may require consideration 
of  the data. The values of  R 2 for the most likely models should not exceed (1 - a) 
by much. More generally, we may replace the interval (a, 1] in desideratum 2 by 
the interval (a, b), where b < 1 and the values of R 2 for the plausible models are 
between ( 1 - b )  and ( 1 - a ) .  This is to avoid an undue influence of  prior tail behavior 
on the result. 

Before using the variable selection/outlier identification framework described be- 
low, we recommend that R 2 be computed for the full model (with no outliers iden- 
tified). If R z is less than 0.9, then we suggest using the hyperparameter values 
v = 2.58, 2 -- 0.28, and q5 = 2.85 (hyperparameter set 1 ). If  R 2 is high (R 2 _> 0.9), 
we suggest using the hyperparameter values v = 0.2, 2 = 0.1684, and ~ = 9.20 
(hyperparameter set 2). 

The outlier hyperparameters, rc and K, have easily definable roles in the model 
with ~z defined as the proportion of  outliers and K defined as the variance-inflation 
parameter. In the examples we assume fixed values for the hyperparameters rt and K. 
An analyst may have a prior notion as to what these values should be before looking 
at the data. Increasing K will decrease the influence of  an outlying observation on the 
posterior model probability and decreasing K should have the opposite effect. Since 
a variance-inflation parameter of  7 has been found reasonable in other contexts 
(e.g. Taplin and Raftery, 1994), we have chosen to use the value K = 7 for our 
analyses. 

Increasing rt, the prior parameter for the proportion of  outliers, corresponds to 
an increase in the likelihood that an individual observation will be identified as 
an outlier. For small data sets (n < 50), we suggest setting the proportion of 
outliers, re, equal to 0.1 and for larger data sets we use zc = 0.02. While this 
choice may appear somewhat arbitrary, this setup allows the user to assume a 
priori that, on average, there is at least one outlier in a data set with more than 
10 observations. We have found some sensitivity of  the results to the values of  rc 
in that increasing the value of  rc increases the posterior probability for individual 
outliers. 

3.3. Masking 

To overcome masking, we use least median of squares (LMS) regression 
(Rousseeuw, 1984), to prescreen the data. The aim is to identify all the potential 
outliers in this initial pass. Atkinson (1986a) uses LMS regression to prescreen the 
data in a similar manner. We chose to use LMS regression because it has a very high 
breakdown point (close to 1/2) and tends to identify large numbers of  observations 
as outliers, thus minimizing the chance that an outlier will be missed at this stage. 
It should be noted that LMS regression can be locally unstable. Hettmansperger and 
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Sheather (1992) demonstrate that small changes in centrally located data can result 
in large changes in LMS estimates. The user of the technique described below is 
advised to examine the results to determine whether the set of  potential outliers is 
reasonable. 

We use the following procedure to identify potential outliers: 
1. Perform LMS regression on the full data set. We use the "lmsreg" function in 

S -PLUS.~  
2. Compute a robust scale estimate of  the residuals from step 1. We use 1.4826 

times the median absolute deviation, which is a consistent estimator of  the standard 
deviation for Gaussian data (Hoaglin et al., 1983). 

3. Compute standardized residuals by dividing the residuals by the robust scale 
estimate from step 2. 

4. All observations such that the absolute value of the standardized residual is 
greater than some threshold 6 are considered to be potential outliers. In the examples 
below we use 6 = 2. 

This prescreening procedure produces a conservative (i.e., large) list of  potential 
outliers. We consider all possible combinations of  this conservative list as potential 
outliers for SVO. In the examples we have examined to date, this method overcomes 
masking while avoiding the consideration of an impossibly large number of  groups 
of  potential outliers. 

4. Examples 

In the two examples below, we demonstrate our simultaneous approach to variable 
selection and outlier identification. 

4.1. S c o t t i s h  H i l l  R a c i n g  

The first example involves data supplied by the Scottish Hill Runners Association 
(Atkinson 1986b) 3. The purpose of the study is to investigate the relationship be- 
tween record time of 35 hill races and two predictors: distance is the total length 
of the race, measured in miles, and climb is the total elevation gained in the race, 
measured in feet. One would expect that longer races and larger climbs would be 
associated with longer record times (Fig. 1). 

Several authors have examined these data using both predictors in their analyses. 
Atkinson (1986b) and Hadi (1992) concluded that races 7 and 18 are outliers. After 
they removed observations 7 and 18, their methods indicated that observation 33 
is also an outlier. Thus, observations 7 and 18 mask observation 33. After race 
numbers 7, 18, and 33 are removed from the data, standard diagnostic checking (e.g., 
Weisberg, 1985) does not reveal any gross violations of  the assumptions underlying 
normal linear regression. 

3 All data used in this paper are available on the World Wide Web at the URL http://www, s t a r .  
colostate,  edu/,-~ j ah/index, html. 
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Distance versus Time Climb versus Time D i s t a n c e  v e r s u s  C l i m b  
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Fig. 1. Scatter plots of Scottish Hill Racing data. Numbers correspond to race numbers 7, 18, 33. 
Distance is givin in miles, time is given in minutes, climb is given in feet. 

Table 1 
Races data: models with the 10 highest poste- 
rior model probabilities. All models included 
the variables Distance and Climb 

Outliers 
race number) 

7 18 
7 18 19 
7 14 18 

67 18 
7 18 
7 11 18 
7 18 
7 15 18 
7 10 18 

6 7 18 19 

26 

33 
33 
33 
33 

33 
33 
33 
33 
33 

Posterior 
model 
prob. (%) 
56 
11 
6 
5 
4 
2 
2 
1 
1 
1 

We used the method described in Section 3.3 to identify potential outliers. The 
prescreening procedure indicated 12 races (races 6, 7, 10, 11, 14, 15, 17, 18, 19, 26, 
33, and 35) as potential outliers. 

Since R 2 > 0.9 and n < 50, we used hyperparameter set 2 and n = 0.1, K = 7. 
Using the set o f  12 potential outliers identified by the prescreening procedure, we 
calculated the posterior model probabilities for the 22 × 2 ]2 combinations o f  variables 
and outliers. 

The posterior probability that the coefficients for the predictors climb and distance 
are non-zero is close to 100%. The models with the 10 highest posterior model 
probabilities are shown in Table 1. The model with races 7, 18, and 33 as outliers 
has a posterior model probability o f  56%. 

The outlier posterior probability for each observation identified to be a potential 
outlier is given in Table 2. The outlier posterior probability for observation i is the 
sum of  the posterior probabilities o f  models in which observation i is an outlier. Race 
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Table 2 
Races data: outlier posterior probability for each potential outlier, ex- 
pressed as a percentage. The outlier posterior probability for observation i 
is the sum of the posterior probability across models in which observation 
i is identified as an outlier 

Race no. [ 6  7 10 11 14 15 17 18 19 26 33 35 
/ 

2 Outlier P'Pt 8 100 2 3 9 2 2 100 16 3 94 

number 33 was labeled an outlier in models accounting for 94% of  the outlier poste- 
rior model probability. Races 7 and 18 were labeled outliers in models accounting for 
nearly 100% of  the outlier posterior probability. These results provide strong evidence 
that races 7, 18, and 33 are aberrant in some way and should be further investigated. 

The results are somewhat sensitive to changes in the values of  the regression 
hyperparameters (v,)~, and ~b) due to the tail behavior of the prior for 0 "2. When 
hyperparameter set 1 is used, our Bayesian framework does not provide strong evi- 
dence that observation 33, which is masked by observations 7 and 18, is an outlier. 
Section 3.2 provides guidelines for choosing hyperparameters in this and similar situ- 
ations. The results are not sensitive to reasonable changes in the values of the outlier 
hyperparameters (K and re). 

The Bayesian framework we use here to identify outliers performs better than 
the methods of Hadi (1992) and Atkinson (1986a) in the sense that it identifies 
all three observations (7, 18, 33) as outlying at one time. Atkinson (1986a) used a 
similar prescreening procedure to identify potential outliers, but his method identifies 
observations 7 and 18 as outliers in a second pass over the data before a third pass 
where he identifies the masked outlier, observation 33. 

In conclusion, both race and climb are important predictors of  record time for 
Scottish Hill races. There is strong evidence that races 7, 18, and 33 are out- 
lying. With a total climb of  7500 ft, race number 7 has the largest total eleva- 
tion gain of  any race. Similarly, race number 33 has the second longest climb of 
any race and is the third longest race. In a more recent analysis of  these data, 
Atkinson (1988) reports that the time for race number 18 is incorrect. An anony- 
mous referee noted that the correct time for race 18 should be 16 min, 7 s as re- 
ported to him by Geoff Cohen of  the University of  Edinburgh. The original data 
were used here so that results could be compared with the results of  Hadi and 
Atkinson. 

4.2. Stack loss 

The stack loss data (Brownlee, 1965) consist of  21 days of  operation from a plant 
for the oxidation of  ammonia as a stage in the production of  nitric acid. The response 
is called "stack loss" which is the percent of  unconverted ammonia that escapes from 
the plant. There are three explanatory variables (Fig. 2). The following description 
of  the data is given by Atkinson (1985, p. 130): 

The air flow IX1] measures the rate of  operation of  the plant. The nitric oxides 
produced are absorbed in a counter-current absorption tower: X2 is the inlet 
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temperature of cooling water circulating through coils in this tower and X3 
is proportional to the concentration of acid in the tower. Small values of the 
response correspond to efficient absorption of the nitric oxides. 

The stack loss data have been considered by many authors including Daniel and 
Wood (1980) and Atkinson (1985). The general consensus is that predictor X3 (acid 
concentration) should be dropped from the model and that observations 1, 3, 4, and 
21 are outliers. Single deletion diagnostics for all 21 observations for the model 
with predictors X], X2, and X3 provide little evidence for the presence of outliers, 
but robust analyses typically identify these masked outliers. 

Below, we consider outlier identification and variable selection for the stack loss 
data. Transformations are not considered in our analysis; however, there is some 
evidence that inclusion of a quadratic term (x 2) or an interaction term (x]x2) will 
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Fig. 2. Scatter plots of stack loss data. 
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Table 3 
Stack loss data: models with the 10 highest 
posterior model probabilities. 

Pmdictors 
Outliers 
(obs. number) 

1 3 4 21 
4 21 
4 21 

1 3 4 13 21 
21 
21 

1 2 3 4  21 
1 3 4 21 

4 13 21 
3 4 21 

Posterior 
model 
prob. (%) 

23 
17 
9 
4 
3 
3 
3 
3 
3 
2 

lead to a better fitting model (Fig. 2). In addition, some authors have suggested that 
transformation of the response may be appropriate (e.g., Atkinson, 1985; Chambers 
and Heathcote, 1981). Daniel and Wood (1980) explore the possibility of  a temporal 
relationship in the data. We have chosen not to explore further these issues in this 
paper. 

For these data, the R 2 for the full model is 0.91. As this is a high value of R 2, 
we again used hyperparameter set 2 for this analysis. We chose n -- 0.1 and K = 7. 

We used the prescreening method described in Section 3.3 to identify potential 
outliers. This method indicated that 9 of the 21 observations (observations 1, 2, 3, 4, 
8, 13, 14, 20, 21 ) were potential outliers. Using the set of  potential outliers identified 
by the prescreening procedure, we calculated the posterior model probabilities for all 
possible combinations of  variables and outliers. 

The models with the 10 highest posterior model probabilities are shown in Table 3. 
The model with the highest posterior model probability includes predictors X~ and 
X2, and outliers 1, 3, 4, and 21. Thus, the model with the highest posterior model 
probability includes the four masked outliers. 

The posterior probability that the coefficient for each predictor does not equal 0, 
i.e. Pr(fli ¢ 01D), is obtained by summing the posterior probabilities across models 
containing each predictor. Air flow to the plant, )(1, and cooling water temperature, 
X2, both received support from the data with Pr(fli ¢ 0lO) -- 1 and 0.62, respectively, 
while acid concentration, X3, did not with Pr(fl3 ¢ 0]D) = 0.06. 

The marginal posterior distributions for the coefficients of the predictors for the 
stack loss data are shown in Fig. 3. The posterior distribution for the coefficient for 
air flow (tim) is centered away from 0. The posterior fll has two modes showing that 
there is considerable uncertainty about the value of  this coefficient. The posterior dis- 
tribution of the coefficient for water temperature (fi2) is also centered away from 0. 
This posterior distribution includes a spike at 0 corresponding to Pr(fli = 01D) = 
0.38. The coefficient for acid concentration (f13) is centered very near 0, with a large 
spike at 0 corresponding to Pr(fli = 01D) = 0.94. 
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Fig. 3. The marginal posterior density for fll,fl2, and f13 of  the stack loss data set. The posterior 
for fib pr(I~iID), is an average across all models. The spike at 0 corresponds to pr(flj = 0ID ). The 
vertical axis on the left corresponds to the posterior distribution for fli and the vertical axis on the 

right corresponds to the posterior distribution for fli equal to 0. 

5. Bayesian model averaging via simultaneous variable selection and outlier 
identification 

A typical approach to data analysis is to carry out a model selection exercise 
leading to a single "best" model and to then make inferences as if the selected model 
were the true model. However, this ignores a major component of uncertainty, namely 
uncertainty about the model itself (Leamer, 1978; Raftery, 1993; Draper, 1995). 
As a consequence, uncertainty about quantities of interest can be underestimated. 
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For striking examples of this see Regal and Hook (1991) and Kass and Raflery 
(1995). 

Below we address the problem of model uncertainty and suggest a method for ac- 
counting for this uncertainty using Bayesian model averaging. We briefly summarize 
Bayesian model averaging and describe MC 3. We also discuss several methods for 
assessing predictive performance. Finally, we provide an example that shows that 
that model averaging via SVO improves predictive performance as compared to any 
single model that might reasonably be selected. 

5.1. Accounting for model uncertainty via BMA 

The standard Bayesian solution to the problem of model uncertainty involves av- 
eraging over all possible models. If J t  = {M~,... ,ML} denotes the set of all models 
being considered and if A is the quantity of interest such as a future observation or the 
utility of a course of action, then the posterior distribution of A given the data D is 

L 

pr(A l D) = ~ p r ( A  [Me,D)pr(Me l D), (2) 
f = l  

(Leamer 1978, p.l17). This is an average of the posterior distribution under each 
model weighted by the corresponding posterior model probabilities. We call this 
"Bayesian model averaging" (BMA). For further details on BMA as applied to lin- 
ear regression models see Raftery et al. (1994). 

Implementation of BMA is difficult for two reasons. First, integrals used to com- 
pute pr(MelD ) can be difficult to solve. Second, the number of terms in (2) can be 
enormous. Our Bayesian setup described in Section 3 solves the first problem. The 
MC 3 procedure described below solves the second problem producing an estimate 
of the Bayesian model average for the entire model space. An altemative method, 
called Occam's Window, can be used to select models to include in the Bayesian 
model average (Raftery et al., 1994). 

5.2. Markov chain Monte Carlo model composition 

For some problems, the number of possible models is very large and it becomes 
too computationally intensive to compute the posterior probability for every model. 
To address this problem, we have adapted the Markov chain Monte Carlo model 
composition (MC 3) approach of Madigan and York (1995) to do BMA over the 
space of all variables and potential outliers. 

Let ~ '  denote the space of models under consideration, including all possible 
combinations of variables, and all possible combinations of potential outliers. We can 
construct a Markov chain {M(t),t = 1,2 . . . .  } with state space ~ /  and equilibrium 
distribution pr(Me [D). If we simulate this Markov chain for t = 1 . . . . .  N, then under 
certain regularity conditions, for any function g(M) defined on .M, the average 

1 ~g(M(t)) (3/ 
N t=l 
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Table 4 
Model neighborhood for outliers. The model space includes four  predictors 
(b,c,d,e) and 3 potential outliers (observations 13, 20, 40). The neighborhood of the model 
with predictors b,c and outliers 13, 20 is given below. 

Predictors Outliers 

b 13, 20 
c 13, 20 

b,c,d 13, 20 
b,c, e 13,20 
b,c 13 
b,c 20 
b,c 13, 20, 40 

converges almost surely to E ( g ( M ) )  as N ~ c~ (Smith and Roberts, 1993). To 
compute (2) in this fashion set o(M)  = pr(A ] M,D).  

For MC 3, the neighborhood for each model M E A4 is the set of  models with either 
one predictor or one outlier more or one predictor or one outlier less than the model 
M itself. For example, if the model space consists of  four predictors (b, c, d, e) and 3 
potential outliers (observation 13, 20, 40), and the algorithm is currently visiting the 
model with predictors b,e and outliers 13, 20, then the neighborhood of  this model 
includes the models shown in Table 4. 

We define a transition matrix q by setting q(M ~ M')  = 0 for all M' ~ nbd(M) 
and q(M ~ M ' )  constant for all M'  E nbd(M). If the chain is currently in state M, 
we proceed by drawing M'  from q(M --. M') .  It is then accepted with probability 

min 1, pr(M I D) 

Otherwise the chain stays in state M. 
Software for implementing the MC 3 algorithm is described in the appendix. 

5.3. Assessment o f  predictive performance 

A primary purpose of  statistical analysis is to make forecasts for the future. For 
MC 3, our specific objective is to compare the quality of  the predictions from model 
averaging with the quality of  predictions from any single model that an analyst might 
reasonably have selected. 

To measure performance we randomly split the complete data into two subsets. 
We run MC 3 using one portion of  the data. We call this the training set, D T. We used 
the remaining portion of  the data to assess performance, calling this the prediction 
set where D e = D \ D T. 

The two measures of  performance we use are based on the posterior predictive 
distribution, described below. The first measure of  predictive ability is the coverage 
for 90% prediction intervals. Predictive coverage was measured using the proportion 
of observations in the performance set that fall in the corresponding 90% posterior 
prediction interval. 
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The second measure of predictive ability is the logarithmic scoring rule of  Good 
(1952) where for each event A which occurs, a score of - l o g  {pr(A)} is assigned. 
The log predictive score is based on the posterior predictive distribution suggested 
by Geisser (1980). In this paper, we compare the log predictive score of  individual 
models to the log predictive score of  BMA via MC 3. A small log predictive score 
indicates a model predicts observations in the prediction set well. See Raftery et al. 
(1994) for details on the computation of predictive coverage and the log predictive 
score. 

We denote the posterior predictive distribution by pr(w[y), where w is an obser- 
vation in the prediction set, and y is the vector of observations from the training set. 
To accommodate the possibility that an observation in the prediction set might be 
an outlier, we adopt a mixture distribution for the posterior predictive distribution. 

pr(w l Y) = 7rpo(w l Y) + (1 - rc)pl(w [y), (4) 

where P0 is the posterior predictive distribution when w is an outlier and Pl is the 
posterior predictive distribution when w is not an outlier. 

To assess predictive performance, we incorporate information gleaned from the 
training set about the prevalence of outliers in the data. To this end, we calculate 

L an updated value of  the proportion of  outliers, r~ = ~e=l pr (Me [ D) @In T, where L 
is the number of  models, pr (ME[D)  is the posterior model probability for model 
•, qt is the number of  observations identified as outliers under model ~, and n T is 
the number of  observations in the training set. To compute the posterior predictive 
distribution in Eq. (4), we use the maximum of  the original value of  7r used for 
the training set run, and z~. This ensures the possibility of  detecting outliers in the 
prediction set even if there are no outliers in the training data. 

Experience to date indicates that for different random splits of the same data set, 
the algorithms often select different models, but that the log predictive scores for 
BMA tend to be similar across the random splits. 

In the example that follows, we explore how accounting for uncertainty in variable 
selection and outlier identification influences predictive performance. 

5.4. Example: liver suroery 

A hospital surgical unit interested in predicting survival in patients undergoing a 
particular type of  liver operation collected data on a sample of  108 patients (Neter, 
Wasserman, and Kutner 1990, henceforth referred to as NWK). Four predictors were 
extracted from records of  the preoperation evaluation of  each patient: 

Xl blood clotting score, 
X2 prognostic index, which includes the age of patient, 
X3 enzyme function test score, 
X4 liver function test score. 

The response is patient survival time. We used 54 patients for model building and 
the other 54 patients to assess predictive ability. NWK use the same split of the data 
for similar purposes. Fig. 4 shows a scatterplot matrix for the entire data. 
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Fig. 4. Scatter plots of the entire liver surgery data without outliers added. 

As in NWK we transformed the response logarithmically, so Y' = log~0 Y. Both 
forms of  the response are shown in Fig. 4. After transforming the response, standard 
diagnostic checking (e.g., Weisberg, 1985) does not reveal any gross violations of  
the assumptions underlying normal linear regression. 

To demonstrate MC 3 on a data set with known outliers, we introduced artificial 
outliers in the liver surgery data. To generate outliers we multiplied the first five 
responses in the training set and the last two responses in the prediction set by 2 be- 
fore logarithmically transforming the response. We will call these seven observations 
the "simulated outliers." While multiplying the response by 2 amounts to a shift in 
mean, we are using a variance-inflation model to accommodate outliers. However, by 
increasing the values of  these 5 observations, we are, in effect, increasing the vari- 
ance as well. The goal of  this exercise is to determine whether our method correctly 
identifies these aberrant observations. 
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Fig. 5. Residual plots of the liver surgery data for the training set (with outliers added). Observations 
1-5 are denoted by numbers and the 13 other observations in the set of potential outliers (observation 

number 9, 15, 19, 22, 27, 28, 30, 37, 38, 39, 43, 46, 54) are denoted by a x symbol. 

For the training set, diagnostic plots of  the residuals indicate that the simulated out- 
liers (observations 1-5)  are quite different from the rest of  the observations (Fig. 5). 
The absolute values of  Studentized residuals for the five simulated outliers range from 
2.4 to 3.0 while the Studentized residuals for the rest of  the data set range from - 1 . 7  
to 1.4. However, Weisberg's outlier test (1985), which is based on the Studentized 
residuals, does not indicate that these observations are outlying. So while visual in- 
spection of  the diagnostic plots might lead to the conclusion that the simulated obser- 
vations are outlying, there is some uncertainty about whether or not this is the case. 

The prescreening procedure identified 18 potential outliers in the training set. They 
are observations 1, 2, 3, 4, 5, 9, 15, 19, 22, 27, 28, 30, 37, 38, 39, 43, 46, and 54. 
These observations are denoted by the x symbol in Fig. 5. Note that the simulated 
outliers were all identified as potential outliers by the prescreening procedure. 

Since R 2 < 0.9, we used hyperparameter set 1, K -- 7, and rc = 0.02. All possible 
models (i.e., all possible combinations of  variables and outliers) were assumed to 
be equally likely a priori. In total, 184 models were visited in 20 000 iterations of  
MC 3. The models with the 10 highest posterior probabilities are shown in Table 5. 
The model with the highest posterior model probability includes the predictors XI, 
X2, X3 and the 5 simulated outliers. 

The probabilities that the coefficients for each predictor do not equal 0, Pr(fli 
01D), are 0,91, 0.91, 0.91, and 0.09, respectively. Thus, there is little support for 
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Table 5 
Liver surgery data with simulated outliers: MC 3. For the log pre- 
dictive score, ff = 0.07. Predictive coverage % is the percentage of 
observations in the performance set that fall in the 90% prediction 
interval 

Posterior Log Predictive 
Outliers model predictivel coverage 

Predictors (obs. number) prob. (%) score (%) 
M~3- 

X1X2 X3 1 2 3 4 5 
X1 X2 X3 None 
X1X2 X3 1 2 3 4 5 22 
XIX2 X3 X4 1 2 3 4 5 
X1X2X3  1 2 3 4  
X1 X2 X3 X4 None 
XI X2 X3 4 
XI X2 X3 2 
,ltrl X2 X3 1 
X I X 2 X 3  1 2  4 
MC 3 model averaging 

50 
10 
5 
4 
3 
2 
2 
2 
1 
1 

25.0 
14.0 
32.6 
24.9 
20.9 
15.1 
15.2 
14.0 
13.2 
17.8 
19.4 

80 
96 
72 
80 
85 
96 
96 
96 
96 
91 

89 

Table 6 
Liver surgery data with simulated outliers: Outlier poste- 
rior probability for each potential outlier, expressed as a 
percentage. The outlier posterior probability for observa- 
tions 15, 19, 39, 43, 46, and 54 was approximately equal 
to 0 

Observation # 
Method 1 2 3 4 5 9 22 27 28 30 37 38 

MC 3 78 78 75 79 71 1 6 1 1 1 1 1 

inclusion of the predictor liver function test score (X4) in the model. NWK also 
conclude that this is not a useful predictor. The outlier posterior probability for each 
potential outlier is given in Table 6. The simulated outliers (observations 1-5) were 
identified as outliers in over 70% of the models. 

Based on the training set, the estimated value for ~ (used in the calculation of 
prediction coverage and log predictive score for outliers) was 0.07 for M C  3. 

Predictive coverage is given in Table 5. The individual models tend to overstate 
or understate the predictive coverage. Compared to the individual models, model 
averaging produces more accurate prediction coverage. 

Log predictive scores are also given in Table 5. The log predictive score for BMA 
is smaller than the log predictive score for the model with observations 1-5 iden- 
tified as outliers (the model with the highest model probability). This indicates that 
BMA predictively out-performs the model with the highest posterior probability. The 
model with the highest posterior model probability is also the model which an ana- 
lyst would probably choose based on visual inspection of standard diagnostic plots of 
the residuals. The second model in the table has excellent performance according 
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to the log score; however, this model overstates the predictive coverage by a large 
amount. 

In this example BMA predictively outperforms the model that would be chosen 
using standard techniques. In addition, our Bayesian framework is successful at simul- 
taneously selecting predictors and identifying masked outliers. 

6. Discussion 

6.1. Related work 

In this work, we adopted a variance-inflation model for outliers. There are other 
possible formulations including the adoption of heavy-tailed error distributions such 
as the Student's t-distribution for the outlying observations. This approach to mod- 
eling outliers is used by West (1984), Lange et al. (1989), and Besag and Higdon 
(1993). 

Draper (1995) has also addressed the problem of assessing model uncertainty. 
Draper's approach is based on the idea of model expansion, i.e., starting with 
a single reasonable model chosen by a data-analytic search, expanding model space 
to include those models which are suggested by context or other considerations, 
and then averaging over this model class. Draper does not directly address the 
problem of model uncertainty in variable selection or outlier identification. Clyde 
et al. (1994) propose a method for model mixing based on a reexpression of the 
space of models in terms of an orthogonalization of the design matrix. George and 
McCulloch (1993) developed the stochastic search variable selection (SSVS) method 
which is similar in spirit to MC 3. In a more recent paper (1994), they suggest 
an extension of their approach to simultaneous variable selection and outlier 
identification. 

6.2. Conclusions 

In this paper we introduced a Bayesian approach to simultaneous variable selec- 
tion and outlier identification. SVO overcomes the problem that the model you select 
depends upon the order in which you consider variable selection and 
outlier identification. We also introduced a method for the identification of multiple 
outliers which appears to be successful in the identification of masked outliers. 
Finally, we demonstrated that the model averaging via M C  3 improves predictive 
performance. 

In addition to variable selection and outlier identification, there is also uncertainty 
involved in the choice of transformations in regression. In Hoeting et al. (1995), 
we introduce a method to select variables and transformations simultaneously. To 
broaden the flexibility of the simultaneous approach as well as to improve our abil- 
ity to account for model uncertainty, we are currently extending our simultaneous 
approach to include all three components: variable selection, outlier identification, 
and transformation selection. 
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Appendix. Software for Implementing MC 3 

BMA is a set of S-PLUS (~ functions which can be obtained free of charge via 
the World Wide Web address h t t p : / / l ± b . . q t a t ,  cmu. edu/S/bma or by sending 
an e-mail message containing the text "send BMA from S" to the Internet address 
statlib@stat, cmu. edu. 

The program MC3.REG performs Markov chain Monte Carlo model composition 
for linear regression allowing for simultaneous variable selection and outlier iden- 
tification. The set of programs fully implements the MC 3 algorithm described in 
Section 5.2. 
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