Bayesian Variable and Transformation
Selection in Linear Regression

Jennifer A. HOETING, Adrian E. RAFTERY, and David MADIGAN

This article suggests a method for variable and transformation selection based on pos-
terior probabilities. Our approach allows for consideration of all possible combinations
of untransformed and transformed predictors along with transformed and untransformed
versions of the response. To transform the predictors in the model, we use a change-point
model, or “change-point transformation,” which can yield more interpretable models and
transformations than the standard Box-Tidwell approach. We also address the problem of
model uncertainty in the selection of models. By averaging over models, we account for
the uncertainty inherent in inference based on a single model chosen from the set of mod-
€ls under consideration. We use a Markov chain Monte Carlo model composition (MC?
method which allows us to average over linear regression models when the space of models
under consideration is very large. This considers the selection of variables and transforma-
tions at the same time. In an example, we show that model averaging improves predictive
performance as compared with any single model that might reasonably be selected, both
in terms of overall predictive score and of the coverage of prediction intervals. Software to
apply the proposed methodology is available via StatLib.

Key Words: Bayesian model averaging; Change-point transformation; Markov chain
Monte Carlo model composition; Model uncertainty; Posterior model probability.

1. INTRODUCTION

Variable and transformation selection are basic components of linear regression model
building. Variable selection and transformation selection are typically performed in a spe-
cific order with only a subset of the possible models being considered. In the methodology
described in this article, we select a set of transformations based on the full model, but then
we consider all possible subsets of untransformed and transformed predictors. In addition,
we also allow for selection of transformations for the response.
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Our approach to transformations of the predictors involves “change-point” transfor-
mations which produce interpretable transformations of the predictors. A change-point
transformation is a piecewise linear transformation of the original predictor, where there
is no change in the expected value of the response above (or below) a certain value of the
predictor. Change-point transformations can be more interpretable than the standard power
transformations of Box and Tidwell (1962). This article shows how easy model and predic-
tor interpretation can be when change-point transformations are included. For mathematical
simplicity we use the Box—Cox class of transformations for the response.

We also consider the problem of model uncertainty in the selection of models. For
linear regression models, Raftery, Madigan, and Hoeting (1997) showed the usefulness
of averaging across sets of predictors, as opposed to conditioning on a single model or
set of predictors; accounting for this component of model uncertainty provides improved
out-of-sample predictive performance. Here we expand that work by incorporating the
usually ignored component of model uncertainty due to transformations. The inclusion of
transformations typically yields further improvements in predictive performance.

The next section describes the class of transformations we consider for the response and
the predictors. Section 3 describes Bayesian variable and transformation selection and model
averaging. Section 4 introduces an example using our methodology. Section 5 assesses
predictive performance and shows that model averaging improves predictive performance
as compared with any individual model that might reasonably have been selected using
standard techniques.

2. TRANSFORMATIONS

When the response is transformed, a Jacobian term enters into the likelihood for the
untransformed response. The class of power transformations of Box and Cox (1964) leads
to an easily computed Jacobian. We used the Box—Cox class of power transformations for
the response.

For transformation of the predictors, however, no new distributional assumptions are
necessary, and there are other, more interpretable approaches to transformations than the
standard Box—Tidwell power transformations (Box and Tidwell 1962). For these reasons,
we adopted a different method for transforming the predictors, consisting of an initial
exploratory use of ACE, Breiman and Freidman’s (1985) algorithm for regression model
linearization, followed by change-point transformations if needed.

2.1 TRANSFORMATION OF THE RESPONSE viA POWER TRANSFORMATIONS

The Box—Cox class of power transformations changes the problem of selecting a
transformation into one of estimating a parameter, The model is Y?) = X3 + ¢ where
¢ ~ N(0,027) and

y"—1
() — p p#0

@.1)
log(y) p=0.
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While the class of power transformations is mathematically appealing, power transforma-
tions are typically not easily interpretable unless they are limited to a few possible values
of p. We have therefore limited p to the values (—1, 0, .5, 1), so that the transformed pre-
dictors can roughly be interpreted as the reciprocal, the logarithm, the square root, and the
untransformed response.

2.2 TRANSFORMATION OF PREDICTORS VIA CHANGE-POINT TRANSFORMATIONS

The standard class of transformations of the independent variables to achieve linearity
15 also the class of power transformations, as proposed by Box and Tidwell (1962). An
alternative is the class of “change-point transformations.” Change-point transformations
produce simplified versions of the predictors where there is no change in the expected value
of the response above (or below) a certain value of the predictor. Change-point transfor-
mations have been applied in other contexts by Raftery, Lewis, and Aghajanian (1995);
Raftery, Lewis, Aghajanian, and Kahn (1996); and Raftery and Richardson (1996).

We use a two-step process to identify a change-point transformation for a predictor. First
we run the alternating conditional expectation (ACE) algorithm (Breiman and Friedman
1985) using the untransformed response and predictors as input. We use the output from
ACE to suggest the form of the transformation. In the second, confirmatory stage, we use
Bayes factors to choose the location of the change point.

The ACE algorithm selects nonlinear transformations for both the response and the
predictors to produce an additive model. For the model,

P
g¥)=0+) f;(X;)+e
i=1
ACE chooses nonlinear functions g and fi, . .., f,, to maximize the correlation between the
transformed response, g(Y), and the sum of the transformed predictors, § + Z?:, fi (X;),
where ¢ is an unknown constant. In the ACE algorithm, transformations are found iteratively
using a nonparametric smoother until this correlation fails to increase.

We do not directly use the transformations provided by ACE. Rather, we use ACE
to suggest parametric transformations of the predictors and response. The transformations
suggested by ACE for individual predictors often have roughly the form of a change point,
with no change in the expected value of the response above (or below) a certain value of the
predictor. This type of transformation is often more interpretable than the commonly used
power transformations discussed earlier. To choose the change point and to determine the
evidence for the change point, we use an approximate Bayes factor which is described in
the following.

2.3  ApPPROXIMATE BAYES FACTOR FOR CHANGE-POINT TRANSFORMATIONS

Raftery (1994) suggested a simple Bayesian approach to estimating and testing for
a change point. Consider the case where f(x) is a monotonic ACE transformation for a
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predictor, z, in a linear regression model. Suppose that a plot of = versus f(x) shows the
assumption of a single change point to be reasonable. For example, visual inspection of the
plots in Figure 1 indicates that the assumption of a single change point is reasonable for
predictors X1, X2, and X 3. We call these plots “ACE diagnostic plots.” (This figure will
be described further below).
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Figure 1. ACE transformations for highway data versus untransformed data. Numbers correspond to the number
of observations at those coordinates.
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Figure 2. Threshold and saturation transformations.

A change-point model can be rewritten as the linear regression model
M, (T) : f(.l?j =G0+ Bz + 16211’:2(?‘} + €, (2.2)

where x is the untransformed predictor, e RN (0. 02), and 7 is the change point where
0 if =<7
Zalr) = { . - (2.3)

The no-change-point model is then M : 3> = 0.

We call the transformation described in Equation (2.3) a “threshold” transformation
where the transformed predictor equals 0 until some threshold at 7. We adopt a threshold
transformation if the ACE diagnostic plot has the form of the threshold plot shown in
Figure 2. If the ACE diagnostic plot has the form of the saturation plot shown in Figure 2,
we use a “‘saturation” transformation of the form:

) fe=w) if a<7s
Bl = { 0 if z>7. e

So for a saturation transformation, the transformed predictor equals 0 after some saturation
point at T.

For a given predictor we choose the form of the change-point transformation based on
ACE diagnostic plots (saturation or threshold transformation). The next step in the process
is to estimate 7, the change-point location. Raftery (1994) showed that if we consider T
possible values of a change pointat r; (i = 1,...,T), then an approximate Bayes factor,
By, for comparing the no-change-point model M, to the change-point model M, (7), is

T
B~ T Y {1 - R(r)} " pr(m), (2.5)
i=1
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where d is the number of degrees of freedom involved in the model comparison, Rz['r?-,) is
the multiple coefficient of determination when the change point equals 7;, and pr(7;) is the
prior probability of a change point at 7;. We typically consider change points T equal to
the predictor values (excluding the minimum and maximum), so 73 = x; fori = 1,...,T
where T < n — 2.

Following Jeffreys (1961), we adopt the convention that 2log(By) > 5 indicates
strong evidence for a change point. The most likely observation for the change point to
have occurred corresponds to 7; such that Rz{'rj) = max;<;<7 Rl('ri). For predictors such
that 2 log (Bp) > 5, we include the transformed predictor corresponding to x(7) as one of
the predictors for consideration in potential models.

3. BAYESIAN MODEL SELECTION AND MODEL AVERAGING

3.1 BAYESIAN FRAMEWORK AND SELECTION OF PRIOR DISTRIBUTIONS

Our definition of a model includes the response (with the transformation identified) and
the predictors. The predictors may include the untransformed predictors and the change-
point transformations of the predictors. This set-up allows a predictor to be included in the
model in both its original and transformed forms.

Each model we consider is of the form:

'y
Y=08+> BiX;+e=Xp+e 3.1

j=1

where the observed data on the predictors are contained in the n» x (p + 1) matrix X and the
observed data on the dependent variable are contained in the n-vector Y. The quantities Y
and X in (3.1) may be transformed as described earlier, and p satisfies 0 < p < 2k, where
k is the original number of untransformed predictors. We assign to ¢ a normal distribution
with mean 0 and variance o and assume that the €’s in distinct cases are independent. We
consider the (p + 1) parameter vector 3 and o2 to be unknown.

Where possible, informative prior distributions for /3 and a2 should be elicited and in-
corporated into the analysis—see Kadane et al. (1980) and Garthwaite and Dickey (1992).
In the absence of expert opinion we seek to chose prior distributions which reflect uncer-
tainty about the parameters and also embody reasonable a priori constraints. We use prior
distributions that are proper but reasonably flat over the range of parameter values that
could plausibly arise. These represent the common situation where there is some prior in-
formation, but rather little of it, and put us in the “stable estimation” case where results are
relatively insensitive to changes in the prior distribution (Edwards, Lindman, and Savage
1963). We use the standard normal-gamma conjugate class of priors,

B~ N(p,a?V),

VA

2
a? "
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Here v, A, the (p+ 1) x (p-+ 1) matrix V and the (p 4 1)-vector s are hyperparameters to
be chosen.

For noncategorical predictor variables we take the individual 3°s to be independent a
priori. This assumption simplifies the selection of hyperparameters and reduces the problem
to one of specifying the diagonal elements of /. We center the distribution of 3 on zero (apart
from (%) and choose 1 = (,0,0,...,0) where /3 is the ordinary least squares estimate
of 3. The covariance matrix V is diagonal with entries (s3., qﬁzsl_z, (;5232_2, . 2352)
where s{ denotes the sample variance of Y, s? denotes the sample variance of X; for
= 1....,p, and ¢ is a hyperparameter to be chosen. While using prior distributions which
depend on the actual data may at first seem contrary to the idea of a prior, our goal was to
use priors that lead to posterior distributions that are similar to those of a person with little
prior information. Examples considered to date using similar set-ups (e.g., Hoeting 1994,
Hoeting, Raftery, and Madigan 1996; Raftery 1996; and Raftery et al. 1997) suggest that
we achieved this objective. Hoeting, Madigan, Raftery, and Volinsky (1999, pp. 412-413)
provided an overview of this and other options for prior parameters in this context.

We use the hyperparameter values ¥ = 2.58, A = 0.28, and ¢ = 2.85. These hyper-
parameters were chosen to meet the objective of maximizing Pr(c:r2 < 1), while keeping
Pr(f,...,3,) reasonably flat over the unit hypercube [~ 1, 1]” and Pr(o?) reasonably flat
over (a, 1) for some small a. For more details on the Bayesian framework we have adopted
here, including details on our treatment of categorical predictor variables and on our choice
of hyperparameter values, see Raftery et al. (1997). Fernandez, Ley, and Steel (1997, 1998)
offered an alternative prior structure.

The integrated likelihood of the response Y based on the proper priors discussed earlier
is a noncentral Student’s ¢ distribution with i degrees of freedom, mean X y, and variance
[v/(v—2)]A (I + XV X"). See Raiffa and Schlaiffer (1961) and Hoeting (1994) for details.

Variable and transformation selection is based upon the comparison of posterior model
probabilities. The posterior model probability for model M. is given by

pr(D | My )pr(My)
S pr(D | My)pr(M;)’

where pr(D | My) is the marginal likelihood of model M}, and pr( A4} is the prior proba-
bility for model M. We assume that all models are equally likely a priori.

pr(Mj | D) =

3.2 ACCOUNTING FOR MODEL UNCERTAINTY

A typical approach to data analysis is to carry out a model selection exercise leading
to a single “best” model and to then make inferences as if the selected model were the true
model. However, this ignores a major component of uncertainty, namely uncertainty about
the model itself (Leamer 1978; Draper 1995; Raftery 1996). As a consequence, uncertainty
about quantities of interest can be underestimated. For striking examples of this see Regal
and Hook (1991), Raftery (1996), and Kass and Raftefy (1995).

The standard Bayesian solution to the problem of model uncertainty involves averaging
over all models under consideration. If M = {M|, ..., M } denotes the set of all models
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being considered and if A is the quantity of interest such as a future observable or the utility
of a course of action, then the posterior distribution of A given the data D is

=

pr(A | D) = "pr(A| My, D)pr(My | D) (3.2)
k=1
(Leamer 1978, p. 117). This is an average of the posterior distribution under each model,
weighted by the corresponding posterior model probabilities. We call this “Bayesian model
averaging” (BMA).

BMA can be difficult for two reasons. First, pr(Mp|D) involves integrals that can be
hard to compute. This problem is resolved analytically in the Bayesian framework described
in Section 3.1. Second, the number of terms in (3.2) can be enormous. We overcome this
problem using the sampling approach described below. Hoeting et al. (1999) provided an
overview of BMA for several classes of models.

In this article we account for the uncertainty in choosing subsets of the predictors and
in choosing transformations of the response. We consider the model space M to be the
set of all possible combinations of untransformed and change-point transformed predictors
along with untransformed and Box—Cox transformed versions of the response. We chose
not to account for the uncertainty involved in choosing the locations for the change points.
However, this uncertainty could be accounted for by integrating over all possible change-
point locations (or by using the discrete approximation to this by averaging over the change
points that are considered).

3.3  Markov CHAIN MONTE CARLO MoODEL ComposiTioN (MC?)

For small problems, it is possible to compute all of the posterior model probabilities
for inclusion in the BMA. For large problems the number of possible models can be enor-
mous and it is not feasible to compute the posterior probability of each model. To address
this problem, we have adapted the Markov chain Monte Carlo model composition (MC?)
approach of Madigan and York (1995) to do BMA over the space of all variables and
transformations,

Let M denote the space of models under consideration, including all possible combi-
nations of untransformed and transformed predictors along with untransformed and trans-
formed versions of the response. For each model M € M in model space, we define a
neighborhood as the set of models with either one predictor more or one predictor less
than the model M itself, or a different response transformation from a set of Box—Cox
transformations. For example, consider a model space with four predictors (1, 2, 3, T3),
where T3 is the change-point transformation of predictor 3, and with four possible trans-
formations of the response corresponding to p = (—1,0,.5,1) in (2.1). If the algorithm
is currently visiting the model with response equal to Y (!/2) and predictors 1 and 2, then
the neighborhood of this model includes the models shown in Table 1. Other neighborhood
constructions are possible, but in our experience this type of approach is easy to program
and leads to satisfactory exploration of the model space (Hoeting et al. 1996; Raftery et al.
1997).
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Table 1. Model Neighborhood for Transformations. The model space includes four predictors (1, 2, 3,
T3) and 4 transformations of the response correspondingto p = (—1, 0, .5, 1) in (2.1). The
neighborhood of the model with predictors 1 and 2 and with response equal to Y12 is given
below.

Predictors  Response
1 yiiz)

o Y{uz}
12,8 yi1/2)
2, T3 y1/2)

1,2 Y1
1,2 Y0
1,2 Y

Once we have defined a neighborhood nbd( M) for each model M € M, we define a
transition matrix ¢ by setting g(M — M’) = 0 for all M’ ¢ nbd(M) and (M — M')
constant for all M’ € nbd(M). If the chain is currently in state M, we proceed by drawing
M’ from g(M — M'"). The new state is then accepted with probability

; pr(M’' | D)
{1 56710 |

Otherwise the chain stays in state M.

Under this set-up, we can construct a Markov chain {M(t),¢ = 1,2,...} with state
space M and equilibrium distribution pr(M; | D). We simulate this Markov chain to obtain
observations M (1), ..., M (N). Under certain regularity conditions, for any function h( ;)

defined on M, the average

| N
= > h(M(t)) (3.3)
=1

converges almost surely to E(h(M)) as N — oo (Smith and Roberts 1993). To compute
(3.2) in this fashion set h(M) = pr(A | M, D).

3.4 STRATEGY

Our strategy for Bayesian transformation and variable selection or model averaging is

as follows:

1. Run ACE allowing for nonmonotonic transformation of the response and all con-
tinuous predictors. Determine from plots of the ACE transformations versus the
untransformed values whether monotonic transformations are reasonable.

2. Run ACE again, with monotonic constraints for all variables except those for which
strongly non-monotonic relationships were identified in Step 1. Plot the ACE trans-
formations against the untransformed values. For the ACE diagnostic plots that show
an approximately linear relationship, no transformation is indicated.

3. If the relationship between the ACE transformed response and the untransformed
response is nonlinear, then there is evidence that the response should be transformed.
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Table 2. Predictors of Highway Accident Rate

length of the segment in miles

average daily traffic count in thousands

truck volume as a percent of the total volume

speed limit (in 1873, before the 55 mph limits)

lane width in feet

width in feet of outer shoulder on the roadway

number of freeway-type interchanges per mile in the segment
number of signalized interchanges per mile in the segment
number of access points per mile in the segment

10 total number of lanes of traffic in both directions

11 1if federal aid interstate highway, 0 otherwise

12 1if principal arterial highway, 0 otherwise

13 1if major arterial highway, 0 otherwise

14 1 if major collector highway, 0 otherwise

OO~ U ~Wh =

In this case use the MC’ algorithm described in Section 3.3 with four possible
transformations of the response corresponding to p = (—1,0,.5, 1). If the ACE
diagnostic plot for the response is roughly linear, transformation of the response is
considered to be unnecessary.

4. For an individual predictor, if the relationship between the ACE transformed pre-
dictor and the untransformed predictor is nonlinear, then we consider transforming
it. For such a predictor, first determine if a threshold transformation or a saturation
transformation is appropriate by comparing the ACE diagnostic plot to Figure 2.
Then use the approximation to the Bayes factor described in Section 2.3 to choose
the change-point value. Finally, include the transformed and untransformed predic-
tors as potential predictors in a model selection procedure or a model averaging
procedure.

4. HIGHWAY ACCIDENTS

We consider the highway accident data from Weisberg (1985, Table 8.1). The dependent
variable is the automobile accident rate on 39 highway sections, and there are 14 potential
predictor variables (Table 2).

Weisberg (1985) hypothesized that the categorical variables for type of hi ghway (pre-
dictors 11-14) might be important predictors of accident rate because the type of highway
is defined by the source of financial support used by the Highway Department to main-
tain the roads. Weisberg allowed only three of the dummy variables in the model to avoid
having linearly dependent columns in the predictor matrix. He included or excluded the
first three dummy variables (predictors 11-13) as a group. In contrast, we used all four
possible dummy variables for type of highway as inputs in MC?, but allow a maximum of
three of them to be in any one model. Our approach is more flexible than Weisberg’s (1985)
method of considering only models with either all three dummy variables included or all
three dummy variables excluded, because it allows for consideration of any subset of the
dummy variables. This could potentially lead to models that are easier to interpret if, say,
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Table 3. Transformed Predictors of Highway Accident Rate. A “T” in front of a number indicates that
the predictor has been transtormed. 2 log (B4g) is the overall Bayes factor for a change point
versus no change point (over the range of that predictor).

Predictor Change point+ 2 log (Bjg)
T1 length of the segment in miles 12.91 148
T2 average daily traffic count in thousands 4.00 89
T3  truck volume as a percent of the total volume 11.00 21
T7  # freeway-type interchanges per mile 0.20 85
T8  # signalized interchanges per mile 0.70 60
T9 # access points per mile 10.30 57

only one of the dummy variables enters into the model.

Unlike Weisberg (1985), we did not force the length of the segment in miles (predictor
1) into all models. He contended that this variable would be important because it should
be negatively correlated with accident rate. That is, if you increase the length of a segment
by one mile, it is unlikely that any accidents would have occurred in a short segment as
accidents are rare, however, the rate of accidents would be lowered because of the increase
of the length of segment. We have chosen not to force this variable into all models and
instead to allow the data themselves to determine whether it should be included.

4.1 HIGHWAY DATA: CHANGE-POINT TRANSFORMATIONS

To choose transformations for the highway data, we first ran ACE in S-Plus© without
monotonicity constraints. Plots of the transformed variables from the ACE output against the
original variables indicate that monotonic transformations are reasonable for the response
and the continuous predictors. Next we ran ACE with all transformations constrained to be
monotonic. The ACE diagnostic plots are shown in Figure 1. The ACE diagnostic plots for
the response, and predictors 4, 6, and 10 exhibit an approximately linear trend, suggesting
that no transformation is necessary. The ACE diagnostic plot for predictor 5 is not linear.
However, there are only two observations that deviate from a linear relationship, so we
chose to consider this relationship to be linear.

For predictors 1, 2, 3, 7, 8, and 9, we concluded that the assumption of a single change
point, as described in equation (2.2), is reasonable. As suggested by Figure 1, we modeled
predictors 1, 2, 3, and 8 using a saturation effect and predictors 7 and 9 using a threshold
effect. To choose a change point for each transformation we used the Bayes factor approach
of Section 2.3. For each predictor we considered each value of the predictor (excluding the
maximum and minimum values) to be a potential change point. We assumed that all change
point locations were equally likely a priori. The overall Bayes factor for a change point
versus no change point indicated strong evidence for a transformation for all six predictors
(Table 3).

As an example, we show the values of R?(7) for length of the segment in Figure 3. The
change point indicated for this predictor, which corresponds to the maximum R? value, is
12.9 miles. The change-point values corresponding to the maximum R? are given in Table 3.
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Figure 3. R? for change-point model for lengih of segment in miles { predictor 1 ).

These change points are shown in the context of the ACE diagnostic plots in Figure 4. All
of the change points indicated by the Bayes factor approach appear to be reasonable, with
the possible exception of the threshold for predictor 9.

For predictor 9 we would have anticipated a change point at 15.2, indicated by the
dotted line in Figure 4. The R? values were quite similar for these two change points
with R?(10.3) = 0.84 and R*(15.2) = 0.82. In fact the R? values for predictor 9 were
quite similar across the entire range of the data. This lack of distinction between the 12
values is probably due to the nonlinear pattern exhibited to the right of the dotted line
in Figure 4. Nonetheless, we used 10.3 which is the value indicated by the Bayes factor
approach (2log(B1o)) so that our method for choosing a change point would be uniform for
all predictors. We will discuss this issue further in Section 7.

Some of the change-point transformations (see Table 3) have practical interpretations.
For example, in Figure 4 the predictor for truck volume as a percent of total volume (3)
exhibits a saturation effect with a change point at 11%. This can be interpreted to mean that
after truck volume increases over 11% of the total traffic volume, accident rate is constant
as a function of truck volume. Predictor 7 exhibits a threshold effect, with accident rate
constant until the number of freeway-type interchanges per mile reaches 0.18. Above 0.18
there is a linear relationship between predictor 7 and accident rate. The other transformations
can be interpreted similarly,

4.2 HiGHWAY DATA: TRANSFORMATION AND VARIABLE SELECTION

Weisberg’s highway data includes 14 candidate predictors of accident rate. In addition
to the 14 candidate predictors, we also included the six transformed predictors T1, T2, T3,
T7, T8, and T9. Thus, we used 20 potential predictors as inputs in MC?, Standard diagnostic



BAYESIAN VARIABLE AND TRANSFORMATION SELECTION 497

checking (e.g., Weisberg 1985) for the full model, including transformed and untransformed
predictors, did not reveal any gross violations of the assumptions underlying normal linear
regression.

For MC?, 3156 different models were visited in 20,000 iterations. The models with the
ten largest posterior model probabilities for MC? are given in Table 4. The posterior model

- .
' -
o
=3 N
B
<+ . ™
z2 : 321 &
E . g
B ' By
Eo . E
el £
H . ¥ )
E= {-dEar
we : s
o 4}
T . =
] b -
% b g
" an 1
A = . o RLITLIN
=1 - -
10 20 30 a0 ] 20 40
X1. length of esgmant in milas %2 avesage dally tratfic count in thousands
o
ol 4 Po) [ —
= .
.
4 o, %
= 3
b -3
ge 10 5w *
= 52
H ¥ "
2 E
3 T
s 5 .
i i ‘
o]
& £
8- w o
=i 5 Q
7 3 <
3 1 1 -
& 8 ¢,
5 =
g ] 10 12 14 0.0 05 1.0 15
HE truck wolumé (o of 1okal wolume) X7 # of froewiny-type inlerchanges per mils
. . e - B .
L
=1
@
=3 L.
. -
] "
g° g
=
&
: o
ES . E )
E g o *
] w @
g0 e .
o
=1
17 e
; a - ———ee s d
e =3

[eki} 0.5

10 15

X8: # of signalized interchanges per mile

20

25

20 a0 40

¥ % of access points g mile

50
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Table 4. Highway Data, Full Dataset: Models with the ten highest MC3 posterior model probabilities.

Number Fosterior
of R? Model

Predictor Predictors (%) Prob. (%)
4 12 T T8 T9 5 82 4
4 9 12 T1 T8 5 83 4
8 12 T T8 4 79 2
4 12 T T8 4 79 2
4 12 T1 T2 T8 T9 6 84 2
4 8 12 T T8 T9 6 83 1
4 g 12 T T8 T9 6 83 1
4 8 12 T1 T2 T8 T9 7 85 1
4 g 12 T T2 T8 6 84 1
6 9 12 T T8 5 77 1

probabilities for MC? were relatively small indicating a great deal of model uncertainty for
this dataset.

The total posterior probability that the coefficient for each predictor does not equal
0 for MC? is given in Table 5. Pr(3; # 0|D) is the sum of the posterior model prob-
ability across models with predictor 7. For a predictor i, the probability that the coeffi-
cient for the transformed predictor 7 or the untransformed predictor Ti is not equal to 0,
Pr(3; # 0 U Bp; # 0|D), is given in the last column in Table 5. For the untransformed
predictors, speed limit (4) and the indicator variable for principal arterial (12) received
strong support from the data. For the transformed predictors, length of segment (T1) and
the number of signalized interchanges (T8) had high Pr(3; # 0|D). Predictors 1, 8, and 9
appeared in models with high posterior probabilities either as transformed or untransformed
predictors. These results indicate that predictors T1, 4, T8, 9 or T9, and 12 are important

Table 5. Highway Data, Full Dataset: Pr(; # 0| D), expressed as a percentage for MC3. Pr(3; + 0| D)
is the sum of the posterior model probability across models for predictor /. The last column
gives the probability of the coefficient that the coefficient for transformed and/or untransformed
predictor is not equal to 0, Pr(i8; # 0 U 87 £ 0| D).

Predictor Untrans-  Trans-  Trans. or
number Predictor formed  formed  unirans.
1 length of segment 5 100 100
2 average daily traffic 5 29 33
3 truck volume 13 15 26
4 speed limit 62 - 62
5 lane width 3 — 3
6 shoulder width 26 26
7 # interchanges 6 6 11
8 # signalized interchanges 27 91 93
9 # access points 46 59 92
10 # lanes 4 — 4
11 interstate highway 8 — 8
12 principal arterial 75 - 75
13 major arterial 9 — 9

14 major collector 7 — 7
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Table 6. Highway Data, Full Dataset: Mean and Standard Deviation of the BMA Marginal Posterior
Distribution for the Regression Coefficients. The results given here are based on standardized
data (columns have means equal to 0 and variances equal to 1).

Predictor Mean S0
number Predictor 3| D 3| D

i length of segment

untransformed —0.0004 0.03

transformed —-0.3759 0.09
2 average daily traffic

untransformed —0.0033 0.03

transformed —0.0489 0.09
3 truck volume

untranstormed —-0.0154 0.08

transformed —0.0207 0.07
4 speed limit —0.1737 0.16
5 lane width —0.0017 0.02
6 shoulder width —0.0535 0.1
7 # interchanges

untransformed 0.0010 0.07

transformed -0.0064 0.08
8 # signalized interchanges

untransformed —0.0736 0.17

transformed 0.3583 0.19
g # access points

untransformed 0.1217 0.24

transformed 0.2154 0.25
10 # lanes —0.0032 0.03
11 interstate highway 0.0064 0.05
12 principal arterial —0.2225 0.16
i3 major arterial —0.0033 0.05
14 major collector 0.0064 0.03

predictors of highway accident rate. Indeed, these predictors typically appear in the mod-
els with the highest posterior model probabilities (Table 4). It is interesting to note that
individually, there is not strong support for nonzero coefficients for predictors 9 and T9,
untransformed and transformed values for the number of access points in a segment. How-
ever, there is indeed support for the inclusion of the number of access points in some form
as Pr(3s # 0 U Bry # UED)ZO.':}Q.

The mean and standard deviation of the BMA marginal posterior distribution for each
of the coefficients is given in Table 6. Each posterior distribution is a mixture of noncentral
Student’s f distributions. The estimates in Table 6 directly incorporate model uncertainty.
Taking account of model uncertainty tends to shrink the parameter estimates towards 0 and
tends to increase the standard deviation of the estimate.

The shrinkage effect can be demonstrated via closer examination of the BMA pos-
terior distribution associated with the coefficient for speed limit (4). Figure 5 shows the
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Figure 5. The BMA marginal posterior density for B4, the coefficient for speed limit. The spike corresponds
to P(.L’J’J, =0 D) = (0.38. The vertical axis on the left corresponds to the posterior distribution for 94 and the
vertical axis on the right corresponds to the posterior distribution for 34 equal to 0. The density is scaled so that
the maximum density is equal to P(ﬁ; i 0|D) on the right axis.

marginal posterior distribution for the coefficient for 34. The spike in the plot of the pos-
terior distribution corresponds to P(ﬁq = OlD) = 0.38. This spike is an artifact of our
approach as we consider models with a predictor fully excluded from the model. The aver-
aged curve in Figure 5 is centered at —0.28. Weighting this by P(8; # 0|D) = 0.62 gives
—0.28 x 0.62 = —0.17. This is the mean estimate of the parameter shown in Table 6. Thus,
accounting for model uncertainty has the effect that the parameter estimate is closer to 0.
This shrinkage effect is similar to other shrinkage estimates such as ridge regression.

The inclusion of transformations in the model selection procedure can lead to a better
understanding of the relationship between the predictors and the response. Predictors T1 and
T8 are both coded as saturation transformations. For predictor T1, the relationship between
segment length and automobile accident rate per segment can be described as linear up to
a threshold at 12.9 miles. For larger segment lengths, the expected value of the response
does not change. The relationship between the number of signalized interchanges per mile
and the response can be described similarly.

5. ASSESSMENT OF PREDICTIVE PERFORMANCE

5.1 OVERVIEW

We compare the quality of the predictions from model averaging with that of the
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predictions from any single model that an analyst might reasonably have selected. To select
the single models we use three standard variable selection techniques: Efroymson’s stepwise
method (Miller 1990), minimum Mallow’s C,,, and maximum adjusted R?. Efroymson’s
stepwise method is like forward selection except that when a new variable is added to the
subset, partial correlations are considered to see if any of the variables currently in the subset
should be dropped. Similar hybrid methods of forward selection are found in most standard
statistical computer packages. For the stepwise methods, we used significance levels of .05
and of .15; the latter corresponds roughly to choosing the model with the best value of AIC.

To measure performance we did a cross-validation analysis. We omitted each obser-
vation, in turn, and ran MC> or a standard model selection procedure using the remaining
observations. We assess performance by comparing the predicted value for each hold-out
observation to the observed value.

We use two measures of performance, both of which are based on the posterior predic-
tive distribution. The first measure of predictive ability is the coverage for 95% prediction
intervals. We define predictive coverage as the proportion of observations that fall in their
corresponding 95% posterior prediction intervals.

The second measure of predictive ability is the logarithmic scoring rule of Good (1952)
where for each event A which occurs, a score of — log {pr(A4)} is assigned. For our exam-
ple, the “predictive log score” is based on the posterior predictive distribution suggested
by Geisser (1980). The predictive log score is a combined measure of predictive bias (a
systematic tendency to predict on the low side or the high side) and calibration (a systematic
tendency to over- or understate predictive accuracy). The smaller the predictive log score
for a given model or model average, the better the predictive performance. See Raftery et
al. (1997) for details of the computation of predictive coverage and of the predictive log
SCOre.

5.2 HicHwWAY DATA: PREDICTIVE PERFORMANCE WHEN TRANSFORMATIONS ARE
CONSIDERED

For all methods, we used the set of transformations that were selected for the full dataset
(Table 3). Initial diagnostics indicated that these transformations were reasonable for the
cross-validation analysis. To perform cross validation for the model averaging approach,
we omitted each of the 39 observations in this dataset, in turn, and ran MC? for 20,000
iterations using the remaining observations. For the standard methods, we performed a
similar analysis, omitting each observation, in turn, and then selecting a single best model
for each standard model selection approach.

For MC? and models selected using standard approaches, we computed a 95% poste-
rior prediction interval for each omitted observation. We report the number of observations
that fell in their corresponding 95% prediction intervals (Table 7). For the model averaging
approach, 90% of the observations in the performance set fell in the MC? 95% predic-
tion interval. Standard variable selection methods had worse predictive performance with
predictive coverage as low as 79%.
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Table 7. Highway Data: Cross-Validated Predictive Performance. Comparison between model aver-
aging and standard variable selection techniques. The “Number of Observations” column is
the number of observations that fell inside the corresponding 95% prediction interval. The
percentage values shown for the stepwise procedures correspond to the significance levels
for the F-to-enter and F-to-delete values. For example, F = 3.84 corresponds approximately
to the 5% level.

Predictive Numberof  Predictive log

Method Coverage  Observations score
Bayesian model averaging via MC? 90 35 43.2
Stepwise regression (5%) 85 33 54.6
Stepwise regression (15% — AIC) 82 32 50.0
Mallow's C, 79 3 53.3
Adjusted R? 79 31 50.9

We also computed the predictive log score for all methods. The model averaging ap-
proach has superior predictive performance as measured by the predictive log score. The
standard methods that select single models produce higher predictive log scores. The log
score can also be interpreted on a “per observation™ basis. A difference in predictive log
score of 6.8 can be interpreted as an improvement in predictive performance per obser-
vation by a factor of exp(6.8/39) = 1.19 or by about 19%. Thus, the model averaging
approach predicts the accident rate about 19% more effectively than single models chosen
using stepwise regression (with F-to-enter and F-to-delete values corresponding to the 15%
significance level). Similarly, on a per-observation basis, the model averaging approach
predicts the accident rate about 22%, 30% and 34% better than adjusted R, Mallow’s (T
and stepwise regression (with F-to-enter and F-to-delete values corresponding to the 5%
significance level), respectively.

5.3 HicHwAY DATA: PREDICTIVE PERFORMANCE WHEN TRANSFORMATIONS ARE
NOT CONSIDERED

To investigate whether including both transformed and original predictors in model
selection leads to over-fitting the data, we compared MC? results when transformations
are included and excluded. Instead of doing a leave-one-out cross-validation analysis, we
randomly selected 30 observations (the “training set”) and used these to run MC2. For the
training set, we used ACE diagnostic plots to investigate transformations as described in
Section 4.1. Transformation of predictors 7 and 8 was indicated. The threshold values for
predictors 7 and 8 corresponding to the maximum R? in equation (2.5) were the same as
the threshold values indicated for the entire dataset (see Table 3). To investigate predictive
performance, we computed the predictive log score on the 9 observations that were not
included in the training set, namely observation numbers 9, 10, 21, 24, 25, 27, 33, 35, and
39, as listed in Weisberg (1985, Table 8.1).

Table 8 gives the predictive log score for MC? and the top 10 models by posterior
model probability for the case when transformations are included. For this split of the data,
MC? produced better out-of-sample predictions than most of the models with high posterior
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Table 8. Highway Data With Transformations, 30 Observations in Training Set: MC3 Predictive Perfor-
mance. Models with the ten highest posterior model probabilities for MC3,

Fosterior  Predictive
Mode! Log
Predictor Prob. (%) Score

9 14.4
13.1
14.2
14.8
13.9
11.8
12.3
11.8
1 11.4
1 8 11 12.5

MC? model averaging 10.5
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model probability. For example, MC? outperformed the model with the highest posterior
probability by 3.9 points.

Table 9 is similar to Table 8 except that transformations were not included in the
analysis. Comparison of these tables reveals that the predictive log score for MC? model
averaging when transformations are included is slightly better than the predictive log score
when transformations are not included. If over-fitting was occurring, one would expect the
score to be worse.

These results indicate that modest gains in the predictive log score are realized when
transformations are considered. We would expect the gains would be larger in examples
where the models with the highest model probabilities included transformations.

Table 9. Highway Data With no Transformations, 30 Observations in Training Set: Models with the ten
highest posterior model probabilities for MC3.

Posterior  Predictive
Mode! Log
Predictor Prob. (%) Score

9 14.4
13.1
14.8
11.8
12.3
12.5
10.8
13.7
1.2
10 11.7

MC?3 model averaging 10.7

12

12
11
11
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6. SOFTWARE FOR IMPLEMENTING MC?

BMA is a set of S-Plus© functions which can be obtained free of charge via the World
Wide Web at http://lib.stat.cmu.edu/S/bma, or by sending the e-mail message “send BMA
from S” to statlib@stat.cmu.edu.

The program MC3.REG performs Markov chain Monte Carlo model composition for
linear regression allowing for Bayesian variable selection, outlier identification, and trans-
formation selection. The set of programs implements the MC? algorithm described in Sec-
tion 3.3.

7. DISCUSSION

Averaging over models which include transformations produces better out-of-sample
predictive performance than models chosen using standard techniques, in the example.
Change-point transformations can lead to better understanding of the relationship between
the predictors and the response.

In addition to variable and transformation selection, there is also uncertainty involved
in the identification of outliers in regression. In Hoeting et al. (1996), we considered vari-
ables and outliers. We showed in an example that accounting for this uncertainty via BMA
improves predictive performance as compared with any single set of variables and outliers
that could reasonably be selected. To broaden the flexibility of our proposed methodology as
well as to improve our ability to account for model uncertainty, a variable, transformation,
and outlier selection approach which combines variable selection, outlier identification, and
transformation selection has also been proposed (Hoeting 1994).

Clyde, DeSimone, and Parmigiani (1996) proposed a method for model mixing based
on a re-expression of the space of models in terms of an orthogonalization of the design
matrix. George and McCulloch (1993) developed the stochastic search variable Selection
(SSVS) method which is similar in spirit to MC>. So far, this has been applied to variable
selection in regression but not to transformations.

Volinsky (1997) and others have noted the relationship between BMA and ridge regres-
sion. By shrinking regression parameter estimates towards zero, ridge regression accounts
for over-confidence in the full model. In contrast, in the BMA estimates of the regression
parameters shrinkage occurs via the posterior model probabilities. Volinsky showed that
ridge regression can outperform BMA under certain conditions in simulation studies. He
proposes combining BMA and ridge regression by using a “ridge regression prior” in BMA.
This corresponds to the prior § ~ N (0, ”T.ZI , where k is the ridge regression shrinkage
parameter. Clyde and George (1999) have shown that a closely related approach, empirical
Bayes BMA, works well for nonparametric regression using wavelets.

In this article we assessed convergence of the Markov chain by comparing the results of
MC? to models selected using standard model selection procedures. Assessing convergence
of the MC? procedure is still an open problem. Available software such as CODA (Best,
Cowles, and Vines 1995) is not completely applicable bewcause it focuses on convergence



BaYEsiAN VARIABLE AND TRANSFORMATION SELECTION 505

of parameters. A main concern here is whether or not the model space has been explored.
While use of CODA diagnostics on Equation (3.3) is possible, this software is not well suited
to address the question of whether or not the model space has been adequately covered.

The first step in the overall strategy in Section 3.4 involves running the ACE algorithm to
determine whether monotonic transformations of the predictors is a reasonable assumption.
If this is not reasonable, then the change point approach to transform the predictors may
not be reasonable. In our experience, the monotonic assumption for ACE transformations is
often appropriate. If it is not, another approach would be to include power transformations
of the predictors in the MC? algorithm in a similar manner to that proposed for the response.

In this article we use an automatic method to choose change-point locations that is
based on the Bayes factor. In the example above, the change point for predictor 9 indicated
by the automatic approach was somewhat questionable. We used the change point indicated
by the Bayes factor, however, to maintain the fully automatic approach for choosing change-
point locations for all examples. One could use the Bayes factor approach as only a guide
to choosing the location for a change point in conjunction with diagnostic plots like those
in Figure 1. This choice is up to the user.

We have found ACE and the change-point transformations useful in several contexts,
but other more elaborate approaches such as Friedman and Silverman’s (1989) adaptive
algorithm to optimize over the number and location of spline knots (TURBO), Friedman’s
(1991) multivariate adaptive regression splines (MARS), and Hastie and Tibshirani’s (1990)
adaptive backfitting algorithm for generalized additive models (BRUTO) might also be
useful. Our change-point transformations for multiple regression models could also be
considered to be a special case of the regression splines developed by Kooperberg, Stone,
and Truong (1995). They used a linear spline approach to estimate the conditional hazard
function of censored response data with one or more covariates. Our approach is also similar
to Smith and Kohn’s (1996) work on nonparametric regression. These authors suggested a
Bayesian approach to select regression spline knots, variables and Box—Cox transformations
of the response variable. None of these authors accounted for model uncertainty in their
work, but our approach could be generalized to account for model uncertainty in these
contexts.

There also exists a substantial computer science literature addressing feature selection
and transformation usually under the heading “Constructive Induction.” For an overview we
refer the reader to a special issue of IEEE Intelligent Systems, Vol. 13, No. 2, March/April
1998 and the references therein. Much of this literature concerns itself with improving
predictive performance through the inclusion of new predictors that are functions of multiple
existing predictors; see, for example, Pazzani (1996). Genetic algorithms are commonly
used to deal with the resultant search problem.
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