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SUMMARY
A model for Markov chains of order higher than one is introduced which involves
only one additional parameter for each extra lag. Asymptotic properties and the auto-
correlation structure are investigated. Three examples are given in which the model
appears to model data more successfully than both the usual high-order Markov chain
and the alternative models of Jacobs and Lewis (1978), Pegram (1980) and Logan
(1981).
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1. INTRODUCTION
The purpose of this paper is to introduce a model for /th-order Markov chains which combmes
realism with parsimony. The conventional model for /th-order Markov chains has (m — 1 m!
parameters where m is the number of states. This large number of parameters has discouraged
use of the model for /> 1, even when higher-order dependence is present.
Our model is as follows. Consider a sequence {X;: tEN}, where N is the set of positive
integers, taking values in {1, 2, .. ., m }. The model is

!
P[X;=jo | Xee1 =/1s e o Xe =11l = Y, Nt jps (1.1)
i=1
where A; +...+N, =1 and Q ={g;i } is a non-negative m x m matrix with column sums equal to
1, such that

1

< Y MG <1G,ky, .. kg=1,...,m). (1.2)
i=1

Thus the conditional probability of observing X; =j, given the past is a linear combination of
contributions from each of X;_q, . .., X;_;. In addition, (1.1) is analogous to the standard AR(/)
model in that:

(i) each additional lag, after the first, is specified by a single parameter; and
(ii) the autocorrelations satisfy a system of linear equations similar to the Yule-Walker equations;
see Section 2.2.

Another way of writing (1.1) is as follows. Let x; = (x(1), ..., x{(m))’, where x,() =1 if
X, =j and 0 otherwise. Let x; = (X/(1), . . ., ¥/(m))" where the random variable Xx,(j) is a function
of past values and is realised as the condmonal probability P [X;=j | Xy_1 =71, Xs-2 =J2,...]

+ Present address: Dept of Statistics GN-22, University of Washington, B313 Padelford Hall, Seattle,
WA 98195, USA.

© 1985 Royal Statistical Society 0035-9246/85/47528 $2.00



1985] Markov Chains 529
when X;_y =j;,X;_. =J2,.... Then (1.1) can be written

1

Xt = Z NiOXz-i- (1.3)
i=1
When /=1, (1.3) defines a first-order Markov chain with transition matrix Q (using Bartlett’s,
1978, convention whereby the columns, and not the rows, of a transition matrix sum to 1). If
Qn=m where 7= (m,,...,m,) is a positive m-vector with m; + ..+ m,, = 1, then the equilibrium
distribution of the process is m; see Section 2.1.
We know of only three other models for high-order Markov chains. One was proposed by
Pegram (1980) and Jacobs and Lewis (1978c), who called it the DAR(]) process, and generalizes
a model of Lloyd (1977) and Jacobs and Lewis (1978a, b). It is a special case of (1.3) with

Q=0I+(1-6)nl’, 1.4

where [ is the identity matrix of order m, and 1 is an m-vector of ones. (1.4) does achieve
parsimony, but the range of dependence patterns that can be represented is severely restricted
when m 2> 3. This is because X, depends on X,_, , say, only through the probability of their being
equal; the model does not allow X, to have a high probability of taking values “close to” X;_;.
For instance, suppose X, is the contents of a Lloyd reservoir on day ¢, taking values in {0, 1, 2, 3}.
Then the conditional probability that X, =0, given the past, is the same if X,_;, ..., X;_; were
all 3 as if they were all 1. Thus the reservoir would be as likely to be empty on day ¢ if it were full
on the preceeding days as if it were nearly empty, which may be unrealistic. Non-Markovian
models similar in conception to (1.4) have been proposed by Jacobs and Lewis (1978a, b, 1983).
For these, in addition to the other problems, efficient estimation is difficult because the likelihood
cannot be easily written down.

When m =3, (1.1) can not only represent a much wider range of dependence patterns than
(1.4), but it can also capture a much wider range of autocorrelations without any additional
parameters; see Section 2.3. When m = 2, however, (1.1) is not a generalization of (1.4). Thus this
paper contributes nothing new in the binary case, which has in any event already been studied in
detail. Models similar to (1.4) have been proposed by Kanter (1973), Klotz (1975) and McKenzie
(1981), while Kedem (1980) describes an alternative approach.

The other two models are due to Logan (1981), who describes them as constrained and uncon-
strained, respectively. They involve rather a large number of parameters. In Table 1 we give the
numbers of parameters for the models mentioned here for common values of / and m.

TABLE 1
Numbers of parameters for Markov chain models
Model
1 m (1.4) (1.1) LC LU Usual
2 2 3 4 4 4
3 4 12 15 18
4 5 13 20 28 48
5 6 21 30 45 100
3 2 4 4 8 8 8
3 5 8 18 33 48
4 6 14 28 76 192
5 7 22 40 145 500

(LC: Logan’s constrained model. LU: Logan’s unconstrained model.)
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In Section 3 we give three examples in which (1.1) appears to combine parsimony and realism
more satisfactorily than the alternatives.

2. PROPERTIES
The results of this section are proved in the Appendix.

2.1. The Limit Theorem
We now state the basic limit theorem for (1.1).

Theorem 1. Suppose that {X,:tEN} is defined by (1.1), that Q is positive, and that

n=(my,...,my) issuchthatm;>0(@G=1,...,m),m +...+m, =1and Qn =n. Then
lim P[X,=]'|X1=i1,...,X1 =i1] =7Tj (il,...,i,,j=1,...,m).
t— o

It is apparent from the proof of Theorem 1 that if Z, = (X, . . ., X¢+1-1) then {Z,} is an ergodic
Markov chain with state space {1, ..., m}! and equilibrium distribution £. Thus if Z; has the
distribution &, then {Z,} is stationary and so is {X;}. In what follows we assume this to be the
case.

2.2. Bivariate Distributions and Autocorrelations

The autocorrelation structure of (1.1) does not satisfy the Yule-Walker equations in general,
which is not surprising since the same is true of the usual first-order Markov chain, of which (1.1)
is a generalization. However, as the following theorem shows, the entire bivariate distribution does
satisfy a system of linear equations similar to the Yule-Walker equations.

Theorem 2. Suppose {X,: t EN} is defined by (1.1) and is stationary. Let P(k) be an m x m
matrix with elements
pij(K) =P [Xpsp =i, X, =j1 G,j=1,... ., m;kEZ),
and P(0) = diag {m,, ..., m,, }. Then

1
PK)= ¥ NOPk-g) (KEN). SN CA)
g=1
Note that when /=1, (2.1) reduces to P(k) = Q¥ P(0). This is the standard result for first-order
Markov chains. For (1.4), (2.1) becomes

!
pin(k)=0 Y, Npi(k—j)+(1-6) mmy
j=1

so that each sequence {p;,(k): kK € N} does satisfy a system of Yule-Walker equations in that case.

From Theorem 2 we can derive a system of equations for the autocorrelations themselves that
resembles the Yule-Walker system, although it does not in general allow them to be calculated
uniquely (sometimes it does: see Section 2.3).

Corollary to Theorem 2. Suppose that { X;: t € N} is defined by (1.1) and is stationary. Suppose
Y; is a random variable with the distribution Qx;, i.e. the conditional distribution of Y, given
Xe=x is Ox, so that P[Y,=i|X,=]] =qy. Let pg = corr (X¢4x, X;) and py = corr (Yreg, Xo).
Then

I
Pk= Y Nbk-; (KEN). 22
j=1
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We now investigate the uniqueness of the solution to (2.1). We note that P (- k) =P(k)' and
also that if P(1),...,P(I—1) are known then P(l), P(I+1),... are determined uniquely. The
question is thus whether the (I—1)m? linear equations (2.1) with k=1,...,/—1 in the
(- 1) m* unknowns p;(k) (i,h=1,...,m;k=1,...,1—1) have a unique solution. In
the following theorem we give sufficient conditions for this to be the case.

Theorem 3.

(i) If71=2,(2.1) has a unique solutionif 0 <A; <1

(i) If /=3, (2.1) has a unique solution if \; 20 (=1, 2, 3) and Q has at least one row all of
whose elements are non-zero.
(iii) If />4, (2.1) has a unique solution if ;=0 (i=1,...,])and

A=-m— =) 2N =N — )<, (23)
where 1; = min {q;1, - - -, s, }.

2.3. The Autocorrelation Structure with Three States

We now examine in greater detail the correlation structure when m = 3. For 51mp11c1ty we
consider only the special case where the marginal probabilities are equal, i.e. 7'r——1 and where
Q is chosen in such a way that the autocorrelations do satisfy a set of Yule—Walker equations.
We let

. al, 0<axl1
o=5(1-laJ+ { 24
lalE, -1<a<0

where | | <1,/ isa 3 x 3 matrix of ones, [ is the identity matrix of order 3 and

0 0 1
E=(0 1 0).
1 0 O

When a >0 this is exactly (1.4); the inclusion of the a <O case, which is possible only in the
context of (1.1), broadens (2.4) considerably without introducing any extra parameters.

We now investigate the range of autocorrelations that can be represented by (2.4) when /= 2.
The equation (2.2) implies that

P1 =01 T 201
) 2.5)
2 =¢1p1 T
where ¢1 = )\1 o, P = 7\;0[.
We first derive the range of possible values of (p;, p,) when a =0, i.e. for (1.4).
Combining (2.5) with the constraints (1.2) yields the admissible region
Py = %
p1tp2 =20 (2.6)

p2={p1 (1+3p;)—1}/Q2 +py).

This region is illustrated in Fig. 1(a). We see that the range of possible autocorrelations is rather
limited. In particular p, > —% and p, = -l which is disturbing given that the standard first-order
Markov chain allows p, to take any negatlve value greater than —1 in this case.

In order to see to what extent the range of autocorrelations represented by (1.1) is more com-
plete than for (1.4) we carry out the same calculations for o <O. This yields

—(1+2p))<py<—py
p2(1+201)22p,(1 +py)—1 2.7
—1<(py +1)(p1 —p2)
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(@ (®)

> P4

P1
-1 0 1 -1 0 1

Fig. 1. Range of possible autocorrelations for the three-state model specified by
(a) equation (14); (b) equation (1.1).

The admissible region for the full model, i.e. the union of the regions (2.6) and (2.7), is shown in
Fig. 1(b). We see that using (1.1) instead of (1.4) extends the set of possible autocorrelations
considerably, and that both p, and p, can take any value between —1 and 1. A comparison of
Fig. 1(b) with Fig. 3.3(b) of Box and Jenkins (1976) shows that the range of autocorrelations
for (1.1) is almost as great as for the standard AR(2) model, in spite of the severity of the restric-
tions placed on the parameters of (1.1).

3. EXAMPLES
3.1. Estimation and Model Choice

We first describe the statistical procedures used. Maximum likelihood estimates of the
parameters of (1.1) were obtained by numerically maximizing the log-likelihood

m 1
L= Yy R .- - ip 108 ( 2> )\jQioij) ,
iy iy, =1 ji=1
where n; .. 5= Zexe(io) X4-1(i1) . . . X¢-1(ir), subject to (1.2). A constrained non-linear
optimization program was used.

To compare models we used an information criterion rather than a multiple hypothesis testing
procedure, because the models are not nested. Tong (1975) recommends choosing the model
which minimizes AIC =—2L + 2k, where k is the number of independent parameters. However,
Katz (1981) preferred the alternative of choosing the model which minimizes BIC =—2L + k log n
because (i) it is a consistent estimator of Markov chain order, unlike the AIC method; (ii) it is
approximately the same as choosing the model with highest posterior probability; (iii) it chooses
simpler models; and (iv) it performed well in a simulation experiment. We therefore report our
results in terms of BIC. However, the model “choices” made are the same as those resulting from
an appropriate sequence of likelihood-ratio tests at the 5 per cent level.

3.2. Wind Power

In order to\ investigate wind turbine design, hourly windspeeds were classified into one of four
states defined by the mode of operation of a particular turbine. State 1 corresponds to no power
being produced (0 to 8 knots), state 2 to the turbine outputting less power than its full potential
(8 to 16 knots), state 3 to its operating at full capacity (16 to 25 knots), and state 4 to its being
closed down due to excessively high winds (over 25 knots). We consider a sequence of 672 hourly
windspeeds at Belmullet, Ireland from 1st to 28th July, 1962. For a full description of this and
related data see Raftery ef al. (1982).

The “time-of-day” effect is negligible and there is no seasonal effect over this short period, so
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that a stationary model is appropriate. The usual Markov chain model, as well as (1.1) and (1.4),
were fitted to the data for orders 0, 1, 2, 3, 4. All the model comparisons were carried out
“within” the fourth-order model, so that the contributions to L from the first four observations
were ignored in all cases. Jumps of more than one state were not observed and parameters corres-
ponding to them were taken to be identically zero.

TABLE 2
BIC values for wind power data

Markov chain (1.1) (1.4)
Order k BIC k BIC k BIC
(0] 3 1758.55 - - - -
1 6 874.09 - - - -
2 16 874.47 7 836.73 5 915.34
3 42 1006.06 8 828.05%* 6 892.41
4 110 1410.45 9 834.56 7 896.73"

k = number of parameters, * indicates lowest BIC value

From Table 2, (1.1) with /=3 is the model with smallest BIC, the only near competitors being
(1.1) with /=2 and 4. The same model is chosen if one uses a sequence of likelihood ratio tests
at the 5 per cent level, and if one uses A/C. The parameter estimates are ?\1 =0.629, )\2 =0.206,
)\3 =0.165 and

2=\ 0 0088 0847 0.116
0 0 0040 0.884

(1.4) is clearly inadequate and even the usual first-order Markov chain seems better.

0.837 0.058 0 0
2 (0.163 0.854 0.113 0 )

3.3. Inter-personal Relationships ‘

Katz and Proctor (1959, Table 2) give 300 two-step transitions for relationships between
students at two-month intervals, the three states being “mutual”, “one-way”, and “indifferent”.
The usual likelihood-ratio test for Markov chain order rejects the first-order hypothesis, aqd so we
compare only the second-order models. These data were also analysed by Bishop et al. (1975,
chapter 7) and in accordance with their widely-used conventions for counting degrees. of freedom
we do not count parameters which correspond to estimated zeros in the one-step transition matrix.

TABLE 3
BIC values for Katz and Proctor’s data (* indicates lowest BIC value)

Model k BIC
Second-order Markov chain 12 326.63
(1.1) with1=2 5 300.02*
(1.3) with1=2 4 316.76

From Table 3, (1.1) has the smallest BIC by a considerable margin over (1.4). The parameter
estimates are A; =0.754, A, = 0.246 and
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. 0.581 0.133 0
o= ( 0 0.545 0.093 )
0419 0.322 0.907

3.4. Occupational Mobility of Physicists
We reanalyse the data used by Logan (1981) to illustrate his own models. His Table 1 gives
9170 two-step transitions between the three states “Management”, “Research”, and “Teaching”
for Ph.D. physicists in the U.S. As in Section 3.3 the usual likelihood-ratio test rejects the first-
order hypothesis, so again we compare only the second-order models. The BIC values are given in
Table 4, those for Logan’s models being based on his own tables of expected values.

TABLE 4
BIC values for Logan’s data (*indicates lowest BIC value)

Model k BIC
Second-order Markov chain 18 10702.69
(1.1) with1=2 7 10618.11*
(1.4) with1=2 4 10645.18
Logan constrained (second-order) 12 10652.52
Logan unconstrained (second-order) 15 10676.64

In Table 4, (1.1) has the smallest BIC, by a substantial margin. The parameter estimates are
A; =0.711, A, =0.289 and

0=1| 0069 0.830 0.078
0.031 0.065 0.851
Logan’s models both fare rather poorly, with higher BIC values than both (1.1) and (1.4), in spite
of their having been derived specifically for this kind of data. This seems to be because they
involve more parameters than are justified by the fit obtained.

A (0.900 0.104 0.071)

4. CONCLUSION

We have introduced a model for Markov chains of order higher than one which involves only
one additional parameter for each extra lag, can represent a wide range of dependence structures,
and appears to model real data successfully.

It is limited in being defined only for a finite state space. However, discrete-valued time series
often have an infinite state space, even if almost all the observations are small in practice. An
important example of this is when the observations are counts of events in a point process. In
this case consecutive counts will not be independent unless the events form a Poisson process.
Unless a scientifically relevant model is available, the difficulty of fitting models for stationary
point processes when only counts are available may make it worthwhile modelling the sequence
of counts directly.

The main problem in generalizing (1.3) to an infinite state space is that the matrix Q becomes
infinite. Thus for the model to have an operational meaning Q must be specified by a finite
number of parameters. A simple way of deriving such a model for Q is to consider a random vector
(Y, Z) with the desired marginal distribution and to define gy =P [Y =] | Z=k]. Thus, for
example, we may obtain a Poisson model by taking (Y,Z) to have the bivariate Poisson distri-
bution of Holgate (1964), and a negative binomial model by taking (Y, Z) to have the bivariate
negative binomial distribution described by Johnson and Kotz (1969, Section 11.3).

One may build models with a richer structure than (1.1). For example, the “autoregressive”
form of (1.3) suggests adding in “moving average” terms to construct a class of models with a form
analogous fo that of the standard ARMA class, which would generalize the DARMA models of
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Jacobs and Lewis (1978a, b, 1983). However, such models would not be Markovian in general,
and efficient parameter estimation could be a major problem.

Another possibility is to allow Q to vary with lag in (1.3). While this would in general be
overparameterized for most purposes, it could be a valuable generalization if Q itself is modelled.

The success of log-linear models for discrete multivariate data might lead us to consider apply-
ing them to discrete-valued sequences, as an alternative to the linear models with which this paper
is concerned. This could be done by subjecting the parameters of the log-linear formulation of
the Ith-order Markov chain, given in Bishop e al. (1975, chapter 7), to constraints. Such an
approach may have certain disadvantages compared with the linear models discussed in this paper.
For example, the marginal distribution is a complicated function of all the parameters. Also, the
generalization to an infinite state space, which, as we saw, is simple for linear models, seems less
straightforward.

In seeking a parsimonious model, we have largely confined our attention to simplifying the
effect of increasing lags. The number of parameters could be further reduced by modelling the
matrix Q. Various ways of doing this are suggested in this paper. In Section 2.3 we saw how, in
a special case, considering only second-order properties leads naturally to a model for Q, while
in Section 3.2 the data themselves impose restrictions on Q. We have also considered how model-
ling Q enables us to deal with an infinite state space. When the state space is finite, the problem of
modelling Q is equivalent to that of modelling square contingency tables with marginal homo-
geneity, for which the work of Clogg (1982) and others could be useful.
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APPENDIX
Proofs of Results in Section 2
Proof of Theorem 1: Let S be the m! x m? transition matrix for the Markov chain with the m/
possible values of (X;_q, . .., Xz_;) as states. The elements of S are

PXi=io, Xy =ity o o Xpprr =gy | X1 =J1s - o Xy =11

1
Y Mdigjsif i =fp fork=1,2,...,1-1
={ k=1 -

0 , otherwise.

Each row of S corresponds to an I-tuple (io, . . ., {;_; ) and these are ordered in such a way that iy
varies most slowly, i; second most slowly, and so on. Similarly, the columns of S corresponds to
values of (j;, . . .,/;) with j; varying most slowly, and so on.

We first show that S is ergodic. All the states of S intercommunicate, and so S is irreducible.
Amongst the diagonal elements of S, m are non-zero, corresponding to

i0=il="‘=il-l =j1="‘=fl=k(k=1"'~;m)a

as they have values gz, > 0 by hypothesis. Thus these m states are aperiodic and hence since S is
irreducible all its states are aperiodic. It follows by Cox and Miller (1965, p. 124) that S, being
finite, specifies an ergodic Markov chain. Hence S has a unique equilibrium distribution £ satisfying
S§ = £ with elements

& ,..,p= lim P[X, =i, .. Xmy=1))
t— oo
arranged so that i; varies most slowly, and so on. Let w = (wy, . . ., W,,) be the corresponding

one-dimensional marginal equilibrium distribution. Also let R be the “collapsed form” of S as
defined by Pegram (1980). This is an m x m' matrix which consists of the elements of S not
identically equal to zero. Clearly, in general

Rt =w. (A1)
Also for the model (1.1)
I
R= 3 NU;
j=1
where U;=A4; 1 X ... X Aj ; where
Qifj=k
A]',k=
1 if j#k

and X denotes the matrix right direct product AXB ={a,-iB }. We now calculate R£ in another
way. The kth element of Uj & is (where all summations are over 1, . . ., m)

z Qri; i i
1y J 2t el
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=’zi; ki P2 &,

(I -
j ip:h=1, . )
h#j

= Q1. Wi
ii kt]- ti

which is also the kth element of Qcw. Thus

1

RE= Y N(Qw)=Quw (A2)

j=1
Equating (A.1) and (A.2) shows that
Quw=w
to which the unique solution is w = m by Cox and Miller (1965, p. 124).
Proof of Theorem 2. First consider the case where k=1, ..., 1 Let
Sei =AXtrn—g:8=1,..,1,g #k}

and A, ={g:g=1,...,1,g#k}. Then

pij(k) = Si {P[Xpik=1,X¢=7 18w}

=SE {p (Xesx =1 1X: =7, Str] P[Xt=f|Stk]}
tk

= 2o M Bl xeg PIG=/ 18] )+ N E{qy P IXe=/1Sul}
tk Stk

8 <€ Ak (A3)

= X A, E {q PlX;=j | Xesrogl } + Niqiim;
g€ Ag gXt+k-g b Xtvk-g ! rrie-g R

m

= Z N Y ampni(k—g)*+Neqym;
g€ Ag h=1

But g;;m; is the (i, )th element of QP(0), so this is the (i, /)th element of

k
2 N QP(k—g),
g=1
as required.
When k=1+1,1+2,...the result follows by an argument which is the same, except that the
last term in (A.3) does not have to be considered separately. .

Proof of the Corollary to Theorem 2. Let y=(7vy,...,vm) where v; = (i — E(X,))/\/var(Xy,).
Then py = y'P(k) v and ) = ¥ QP(k) . The result then follows from (2.1). o

Proof of Theorem 3. (i) The result holds provided the m* equations
P(1) =7, QP(0) + (1 — 7)) P(1)’ (A4)
in the m® unknowns {pi;(1)} have a unique solution. (A.4) may be written

m

pii(l):' Z bi/’;rs prs(1) * ¢ij, (A.5)

r,s =1
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where
Q=N qis, if j=r
bij;rs =
0 , otherwise

and ¢;; = A1 q;;7;. Then by Bellman (1970, p. 298), (A.5) has a unique solution of Z b;;,,s <1 for
r,s=1,...,m. But T b;;,s=(1—-%;)<1 by hypothesis, and so (A.5) has a unique solution,
as required.

(iii) Let

i=1

Then Q can be written Q = YU+ nl’ where U= {ui]-} is a non-negative matrix with column sums
equal to one, so that U has all the properties of a transition matrix. (2.1) then becomes

P(k)

)
Y, NQP(Kk-)) (k=1,...,1-1)

j=1
l

Y NYUP(k—j)+nn (A6)
j=1

since (n1)P(h)=nn' (hEZ) and \; +...+ N =1. Then, since P(0) = diag {m,,...,m,, } and
P(— ) = P(h)' we can write (A.6) as

1-1 m
i)=Y X by (k,0)pyps(@) + cj(k) (A.7)
v=1r,s=1
where
Ay YUy, ifj=sand 1 <ov<k-1
bijirs (k,v)= { Nty VUi, ifj=rand 1 <v<I-k
’ 0 , otherwise
and Cij(k) = Akt//ui]-'nj + n;i Tj.
By Bellman (1970, p. 298) (A.7) has a unique solution if

-1 m

1> Y Y bysko) (s=1,...mup=1,...,01-1)"
k=1 i,j=1
-1 m l-v m

= Z z Ag—pVuy + Z Z A +o Vil
k=v+1i=1 k=1i=1

since
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m

Y w,=1(=1,..,m).

i=1

Since A; = 0 by hypothesis this is greatest when v = 1, in which case it is equal to
¢(2 - >\1 - )\1_1 —7\1) < 1

by hypothesis (2.3). Thus (A.7) has a unique solution, as required.
(ii) Clearly (iii) holds when /=3, in which case (2—2A; —N_; —7;) = 1. Also, suppose the zth
row has no zero elements. Then n; >0 and so ¢ <1 —n,; <1 so that (2.3) is satisfied.



