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SUMMARY
The approximate Bayes factor, B,,, for log-linear contingency table models proposed by
Spiegelhalter and Smith (1982) is indeterminate if any of the cell frequencies is zero. It is
noted that use of a standard Jeffreys prior overcomes this difficulty. It is pointed out that —2
log Bi,1 is approximately equivalent to Schwarz’s (1978) model selection criterion in large
samples.
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Spiegelhalter and Smith (1982) — hereafter SS — proposed an approximate method for calcu-
lating the Bayes factor for a log-linear model M, for a contingency table against the saturated
model M,, with vague prior information. We adopt their notation and denote by SS(n)
equation (n) of SS.

Suppose x,, ..., x, have a multinomial distribution with parameters ¢, ..., ¢, where
¢, =0, T¢,=1. We write yT = (log x,, ..., log x,), 07 =(log ¢,, ..., log ¢,), and
Y = diag{x,, ..., x;}. Then if M, is the saturated model, and M, is the nested, log-linear,
model defined by setting the contrasts C6,; = 0, where C is an s x k matrix with rank s and
rows summing to zero, the approximate Bayes factor B, for M, against M, is given by SS
(32).

This, however, is indeterminate if any of the cell frequencies in the table is zero. This is
because of the use by SS of a prior density proportional to (I1¢;)~*. If, however, we use,
instead, the standard Jeffreys prior density proportional to (I1¢;)~'/?, the problem no longer
arises. Then, by the arguments of SS and Lindley (1964), the resulting Bayes factor is still given
by SS (32), with x; replaced by x; + % in the definitions of yand Y (i=1, ..., k), and SS (33)
replaced by c; ! = (32| CCT |2,

If this solution is adopted, the prior is proper, and so, in principle, the problem of assigning
an arbitrary multiplicative constant, for which the SS approach was primarily devised, need
not arise. One could, in theory, simply apply Bayes; theorem directly and so obtain the Bayes
factor exactly. However, in practice, this is difficult to do, and I know of no general solution to
the problem. Even for simpler, more specific, contingency table and related models, such as
those of independence or equiprobability, finding the Bayes factor exactly is not too easy; see,
for example, Crook and Good (1982), Altham (1971), Giinel and Dickey (1974), Giinel (1982),
Broniatowski (1981), and references therein.

The second purpose of this note is to point out that, conditionally on M,

—2log By, ~ 3% — slogn = BIC 1)
where n = X x;, < denotes asymptotic equivalence in probability as n — oo, and x? is the

standard likelihood-ratio goodness-of-fit statistic. This is equivalent to the Schwarz (1978)
model selection criterion for independent observations, extended to Markov chains by Katz
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(1981). The use of the AIC criterion for model selection in contingency tables, defined by
replacing log n by 2 in (1), is discussed by Sakamoto (1984).
To show (1) we remark that, by SS (32),

—21log By, /BIC = 1 + (Z2 — %?)/BIC + (log T',/BIC) )

where Z? = yTCT(CY~'C™)"'Cy and T, = n*c2|CY 'C”|. (2) then follows from (1) by
noting that Z2 — y? — 0 in probability as pointed out by SS (the proof is similar to that of
Lemma 14.9-1 in Bishop, Fienberg and Holland (1975)), T, — ¢} | C®~*C” | in probability by
the weak law of large numbers, where ® = diag{¢,, ..., ¢}, and BIC - — co in probability.

Our statement of (1) is conditional on M. Conditionally on M, BIC — o in probability by
Jensen’s inequality and the weak law of large numbers, so that BIC is a consistent criterion in
the contingency table case.
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