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Discharge Rates of Medicare Stroke Patients to
Skilled Nursing Facilities: Bayesian Logistic
Regression With Unobserved Heterogeneity

Michael J. KAHN and Adrian E. RAFTERY

We determine factors, both hospital-specific and market area—specific, associated with hospitals’ propensities for discharging
Medicare stroke patients to skilled nursing facilities (SNF’s) in California and Florida. Logistic regression is generalized to the
case of a betabinomial, hierarchical model, in which covariate information is included in the hyperparameters of the second-stage
beta distribution. It is found that the posterior mean of the proportion discharged to SNF is approximately a weighted average (i.e.,
shrinkage estimator) of the logistic regression estimator and the observed rate. We develop fully Bayesian inference that takes into
account uncertainty about the hyperparameters, and we find that this also allows us to test for overdispersion in a natural way.
The number of observed zeros (i.e., hospitals that sent no stroke patients to a SNF) is excessive compared to the number expected
from a standard logistic regression model and is fit better by the hierarchical betabinomial model. The factors associated with
discharge to SNF differ between California and Florida. In California the case-mix index and percent Medicaid admissions of the
hospital, as well as the per capita income for the area and whether there is a rehabilitation facility in the area, are associated with
discharge rates to SNF’s. In Florida, whether there is a rehabilitation facility in the area is the only factor that exhibits association
with discharge rates to SNF’s.

KEY WORDS: Betabinomial model; Empirical Bayes procedure; Laplace approximation; Locally uniform prior distribution;

Overdispersion.

1.
The Problem

In 1983 the Health Care Financing Administration
(HCFA) introduced a prospective payment system (see, for
example, Neu and Harrison 1988) for Medicare hospital
reimbursement. Before advent of the prospective payment
system, a retrospective reimbursement system was in place.
In the retrospective system, each Medicare patient’s medi-
cal costs were tracked by the hospital, and the bill was sent
to HCFA. The prospective payment system is an attempt to
curb costs without sacrificing quality of care. After intro-
ducing the prospective payment system, HCFA found that
use of posthospital facilities increased dramatically, and so
did HCFA’s outlays to such facilities. HCFA is interested in
better understanding the relationship between hospital char-
acteristics, including characteristics of the market in which
the hospital operates, and the hospital’s rate of discharge of
Medicare patients to one type of posthospital care: skilled
nursing facilities (SNF’s). Classically, such investigations
begin with logistic regression methods. This allows an esti-
mate for a particular hospital’s “true” rate to be determined
from information concerning all of the hospitals. (We con-
sider a hospital’s “true” rate to be its rate in the near future;
in the following year, say.)
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Figure 1 shows the total number of discharges (n;) of
stroke patients for urban hospitals in California and Florida
in a 12-month period in 1984-1985. Although there are a
few hospitals with more than 50 stroke discharges, nearly
one-half of the California hospitals and one-fourth of the
Florida hospitals had fewer than 10 discharges. Clearly, the
greater the number of discharges, the better the information
about that hospital’s “true” rate.

This leads to the consideration of a shrinkage estima-
tor, in which the estimate for a particular hospital is a
weighted average of an ensemble estimator that draws from
all the data (e.g., logistic regression) and an estimator that
uses only the information from that particular hospital. If
a particular hospital’s observed rate contains little informa-
tion about its “true” rate (e.g., if n; is small), then more
weight should be given to the ensemble estimator. Con-
versely, when the information in a particular hospital’s ob-
served rate is high, less weight should be given to the en-
semble estimator. This is precisely how empirical Bayes
methods work, leading us to consider empirical Bayes mod-
els for these data.

Exploration of these data reveals extrabinomial variation
in the form of an excessive number of observed discharge
rates of zero (i.e., hospitals that discharged no stroke pa-
tients to SNF’s), even when we look only at hospitals with
at least 20 stroke discharges (see Kahn 1990 and Figures 5
and 6 in Section 4.1). This raises the question of whether
some hospitals have policies not to send patients to SNF’s
or whether this large number of zeros is a result of un-
observed heterogeneity, with many hospitals simply having
low “true” rates of discharge.

© 1996 American Statistical Association
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Figure 1. Histograms of the Number of Discharges of Medicare Stroke Patients, July 1984-June 1985, From Urban Hospitals in California (a)
and Florida (b). About one-half of the 360 California hospitals had fewer than 10 discharges, compared to one-fourth of the 157 Florida hospitals.

For comparative purposes, we begin by discussing logis-
tic regression and quasi-likelihood methods. Next, we de-
scribe an empirical Bayes extension of these models. We
specify the betabinomial-logit model, find moments, and
show how to obtain maximum likelihood estimates (MLE’s)
for the regression parameters and their corresponding stan-
dard errors. We then show that the parameter estimates from
the betabinomial-logit scheme will be nearly the same as
the logistic regression estimates and that their standard er-
rors are close to those obtained through the quasi-likelihood
method. Further, we show that the empirical Bayes estimate
of the “true” rate will be approximately a convex combina-
tion (weighted average) of the logistic regression estimate
and the observed rate. In fact, the weights are determined by
the correlation between the hospital’s observed rate and the
hospital’s “true” rate; see Section 2.3.3. Finally, we develop
a fully Bayesian way of incorporating uncertainty about the
hyperparameters and apply it to the hospital data.

1.2 Background

There is an enormous literature concerning regression-
like methods in which the response variable is dichotomous
or, if grouped, binomial. The best-known and most widely
used of these methods is logistic regression (see, for exam-
ple, Cox 1970), which assumes that there is no unobserved
heterogeneity. Here we develop regression methods for bi-
nomial data with unobserved heterogeneity. We first de-

scribe a model that synthesizes logistic regression and the
betabinomial distribution to represent overdispersion. We
then show how standard empirical Bayes methods can be
used for estimation. Such standard methods underestimate
variability, however, because they do not take uncertainty
about the hyperparameters into account. We develop fully
Bayesian inferential methods that remedy this.

The betabinomial distribution has found numerous ap-
plications in toxicology, particularly in studies of terato-
genesis or carcinogenesis (see, e.g., Haseman and Kupper
1979). The betabinomial distribution has also been useful in
studies of consumer purchasing (Chatfield and Goodhardt
1970), advertising campaigns (Danaher 1988), animal litters
(Healy 1972), the incidence of disease (Griffiths 1973), ra-
diation (Prentice 1986), and prediction of fires in New York
City (Carter and Rolph 1973).

Kleinman (1973) and Tamura and Young (1986, 1987) in-

- vestigated the properties of maximum likelihood estimation
in the betabinomial model and derived alternatives to mo-
ment estimators. The reason that moment estimators were
ever considered was the difficulty of finding the MLE with-
out sufficient computing power. Today this is of less con-
cern. Maximum likelihood estimation for the mean param-
eter, o in the parameterization (2) in Section 2.3.1, is stable.
The MLE of + tends to be unstable for large values of +,
but Albert (1988) showed that for moderate values of n,
the MLE is stable for «y less than about 3,000. In the Medi-
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care data analyzed in this article, there were no problems
of instability; the MLE’s of « are all less than 50.

Williams (1975) was the first to consider the problem of
unequal n; for the binomial counts and to test the equivalent
of a betabinomial-analysis of variance (ANOVA) model.
That is, Williams allowed « and o to depend on which
treatment the subject received, say (v;, ;) fori=1,... K
treatments (see also Crowder 1978). Williams (1982) gen-
eralized the betabinomial-ANOVA model to the case where
one has some other, possibly continuous, concomitant in-
formation. He developed a quasi-likelihood . method and
did not discuss maximum likelihood estimation of the
betabinomial-logit model (Sec. 2.3). Instead he discussed
an iteratively reweighted least squares method for finding
quasi-likelihood estimates. Other work in this vein has been
done by Stiratelli, Laird, and Ware (1984), Anderson and
Aitkin (1985), and Im and Gianola (1988). These authors
used different sorts of logit-normal ANOVA models that
might be of interest in our problem if we had patient-level
data. (Though patient-level data are now available, we did
not have access to them at the time of this study.)

Williams (1982) also discussed maximum likelihood es-
timation when the distribution of p; is logistic-normal
(see Aitchison and Shen 1980). The most striking differ-
ence between the logistic-normal-binomial model and the
betabinomial-logit model is that in the betabinomial-logit
model we have logit(E(p;)) = XJT,B, whereas in the logistic-
normal-binomial model E(logit(p;)) = xT,B Thus all con-
comitant information is added together on the logistic scale
in the logistic-normal-binomial model. One problem with
the logistic-normal-binomial model is that the intractabil-
ity of the marginal distribution of Y; makes it difficult to
check the fit of the model, forcing one to use ad hoc meth-
ods for finding the MLE of the hyperparameters. Williams
(1982) presented a reasonable method for estimating the
logistic-normal-binomial model, but we prefer having the
marginal distribution of Y; with which to work, and we
prefer the conjugacy properties of the beta distribution. Al-
bert (1988) discussed another way of fitting hierarchical
generalized linear models, including the betabinomial-logit
model. An even more sophisticated model might allow 3
to vary between metropolitan statistical areas (MSA’s). An
example of this in the logistic regression case was given by
Wong and Mason (1985). Follman and Lambert (1989) also
provided a hierarchical logistic model that is especially use-
ful for errors-in-variables logistic regression and for gener-
alizing the linear-on-the-logit-scale specification of logistic
regression. But their model does not facilitate predictive in-
ference or evaluation of hospital performance in a natural
way. The betabinomial-logit model does allow for predic-
tive inference and hospital evaluation.

The model described in this article is motivated by, and
applied to, the analysis of rates at which urban hospitals
discharge Medicare stroke patients to nursing homes. We
wish to understand the relationship between various hospi-
tal characteristics and the discharge rates to nursing homes,
as well as how the rates vary between hospitals. Yet, due to
extrabinomial variation, primarily manifesting itself in an
excess of hospitals that sent no stroke patients to a SNF,
standard logistic regression models do not fit well. The

31

betabinomial scheme that we present accounts for overdis-
persion in the data. Quasi-likelihood (QL) methods are an
alternative attempt to account for extrabinomial variation,
but, whereas QL simply assumes parametric forms for the
first two moments, the methods discussed here are based
on a fully specified stochastic model. Using a fully speci-
fied model allows us to test for overdispersion and also to
assess the fit of the model, particularly the extent to which
it accounts for the excess zeros. It also allows us to de-
termine whether the excess zeros are better explained as
“true zeros” or as a by-product of routine overdispersion.
These additional goals would be difficult to achieve using a
quasi-likelihood approach.

Our method is easily implemented and gives point es-
timates that are often nearly identical to those given by
logistic regression (Sec. 2.3), although the standard errors
of the point estimates are typically larger than those from
logistic regression. Logistic regression and the proposed
betabinomial-logit models are the same when each obser-
vation is Bernoulli; that is, when each observation is either
a zero or a 1.

2. METHODOLOGIES

2.1 Logistic Regression

The logistic regression model is

inde
Y;|8 ~P Bin(n;, p;(x;; B)),

where x; € R™ is a known vector of covariates with the
first component equal to 1, 3 € R™ is a vector of regression
parameters where the first component corresponds to an in-
tercept, and B(Y)[x;) = p;(x;i6) = (1 + exp(-x] )~
€ (0,1) or, equivalently, logit(p;) = log[p,;/(1 — p;)]
= T,B The estimating equations for the MLE of 3 are
given by the usual linear, exponential family results. Al-
though these equations look much like the standard, linear-
model equations, in which case E(Y) = X3, in the logistic
regression case we have a nonlinear system of equations to
solve for 3. This is easily done using the Newton—Raphson
method (see, e.g., Cox 1970).

2.2 Quasi-Likelihood

For a detailed discussion of quasi-likelihood methods
and accompanying references, see the text of McCullagh
and Nelder (1983). The quasi-likelihood approach makes
parametric assumptions about the first and second moments
but not about the distributional form of the Y;. In our
case the assumptions are that E(Y;) = n;p;(x;;8), V(Y;)
= o%n;p;(x;; B)(l —p;j(x;;3)),and that the Y; are indepen-
dent where o2 is an over(under)dispersion parameter when
02 > 1(< 1). Logistic regression and quasi-likelihood have
identical first and second moments when ¢ = 1. With these
assumptions, the quasi -likelihood estimating equations for
3 are the same as in the standard logistic regression case,
but the standard errors of the 3 are inflated or deflated by
a factor of o. Followmg McCullagh and Nelder, we use the
consistent (as N — oo i.e., as the number of hospitals gets
large) estimator of o2

j=1L...,N, (1)
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2.3 The Betabinomial-Logit Model

2.3.1 The Betabinomial Distribution. In this section
we discuss the basic properties of the betabinomial distri-
bution. This distribution arises naturally in a hierarchical or
Bayesian context in the following manner. Let

Y|p ~ Bin(n, p)
and
p ~ Beta(ya,y(1 — a)), (2)

with v € (0,00) and & € (0,1). The marginal distribution
of Y is then said to have a betabinomial distribution with
support {0, ...,n},

[ "\ T+l -a)+n—yl'(y)
P =y) = ( y ) T(ya)T(v(1 - a))T(y + n)

(©)

This distribution was first discussed by Skellam (1948) (also
see Johnson and Kotz 1970). Here Bayes’s theorem gives

plY ~Beta(ya+Y,y(1 —a)+n-Y). 4)
If we have n =1 (i.e., Y is Bernoulli(p)), then (3) becomes
PY=1)=a=1-P(Y =0).

That is, Y remains Bernoulli with success probability
equal to the mean of the distribution for p.

2.3.2 Approximations. For the case where n is any
positive integer, consider Stirling’s approximation for I'(z):

[(z) ~ V2rz® /272,

This yields the following approximation for the mass func-
tion, (3):

P =)~ (] )=y ema), O

where

B y 1/2 Na+y Yyoty—1/2
C(yv s Oé) -
Y+n Yo + no

)'y(l—a)-l—n—y—l/Z

o ( Tl-a)+n—y
Y1 —-a)+n(l-a)

As «y gets large, c(y, v, o) approaches 1, so that the betabino-
mial mass function approaches that of a Bin(n, o). Also, be-
cause E(Y') = na, the second and third factors in ¢(y, v, ¢)
will, on average, be near 1, giving

5 1/2
C(yva?a)N (’y-f—n) .

2.3.3 Moments. The mean and variance of a betabino-
mially distributed random variable are

E(Y) = E(E(Y|p)) = E(np) = na

Journal of the American Statistical Association, March 1996

var(Y) = var(E(Y|p)) + E(var(Y|p))
Yy+n
= 1— . 6
(i) @
Model (2) specifies a joint distribution for Y and p, with
1
E(Y7) = BE(Ypip) = B(np?) = "X

so that

rEcorr(Y,p):MnZ’y.

From (4), we see that
Y a+ n (X—)
Y+n Y+n\n

= 1-rDa+r? (%) . )

E(p|Y, 7, )

Thus the posterior mean is a weighted average of «, the
mean of p, and Y/n, the mean of the data. The weights
are determined completely by =, in such a way that the
greater the correlation between the observable, Y, and the
unobservable “true” rate, p, the more influence Y/n has
in estimating p. When Y and p are uncorrelated, the data
do not influence the estimate of p at all. (In our case this
would only happen approximately if v were much larger
then n.) This says that the “regression line” of p on Y/n has
intercept «, slope 72, and passes through the point (o, o).
This emphasizes the empirical Bayes focus of implicitly
trying to determine the unknown correlation between Y;
and p; and drawing regression-like inference for p; from Y’
(in the normal theory context, see Stigler 1990).

2.3.4 The Likelihood Function. Suppose that we have
a set of data to be modeled by the hierarchical scheme de-
scribed earlier. Let

inde: .
Y;|p; “~* Bin(n;, p;)
and
p; " Beta(yay, v(1 - o). ®)
We allow for covariates as did Albert (1988). Let
aj(x;;8) =1+ exp(—x;",[i))_1 = logit_l(xf,@) €(0,1)

and v € (0,00). Then E(Y;|x;,8) = nja; = n;(1

+ exp(—x]3))~"! as in the logistic regression model (1).

But from (3),

var(Y;|x;, v, 8) = njo;(x;; 8)(1 — oj(x;58)) (11”13) ’

whereas in the logistic regression case (1), we have

var(Yj|x;, B) = n;p;(x5;8)(1 — p;(x;; B))-



Kahn and Raftery: Bayesian Logistic Regression 33
Table 1.  Logistic Regression, Quasi-Likelihood, and Betabinomial-Logit Results for the California Hospital Data
Variable Logistic S.E. t QL S.E. t BB-Logit S.E. t
¥ * * * * * 41.206 12.52 3.29
intercept —-.735 112 —6.54 129 —5.71 —.737 131 —5.62
bedsupply .068 .038 1.80 .043 1.58 .078 .045 1.72
cmi —.134 .039 —3.42 .045 —2.99 —.129 .046 —2.81
%MDadm —.137 .046 —3.00 .052 —2.62 —.116 .052 —2.22
income .236 .041 5.81 .047 5.08 235 .049 4.84
rehabs —.667 123 —5.44 41 —4.75 —.674 144 —4.67
Log-likelihood (model) —616.373 —606.015
Log-likelihood (intercept) —651.140 —627.427

*

NOTE: " = Not Applicable; t = t-Ratio.
As noted earlier, these are equivalent when n; = 1 or 7y
= OoQ.

The variance in the QL model (see Sec. 2.2) is given by

var(Yj|x;, 8) = n;p;(x;; 8)(1 — p; (x5 8))o”.

We see from this that the betabinomial-logit model gen-
eralizes the QL variance specification in the sense that
the overdispersion parameter, (y + n;)/(y + 1), depends
on j through n;. At the same time, the betabinomial-logit
model is more restrictive in the sense that in the QL model
o2 > 0, but in the betabinomial-logit model (y+n;)/(y+1)
€ (1,n;). Hence we cannot model underdispersion with
the betabinomial-logit model. Although QL may be a sen-
sible method for fitting overdispersion in some situations,
in the logistic regression case it does not yield an actual
stochastic model. It is not clear how one might generate
random variates from a QL model, but presumably one can
use any distribution with the right mean, variance, and sup-
port for the Y. There are a number of such distributions,
each having different characteristics beyond the first two
moments. QL may be fine if one is interested solely in how
the {x;} relate to the Y}; that is, if one’s sole interest is
(3. But if interest is in predictive inference, then one must
have a stochastic model capable of generating the data. The
betabinomial-logit model is a proper, stochastic model al-
lowing for extrabinomial variation from which data can be
generated.

Further, the betabinomial-logit and logistic regression
models can be checked and compared by way of goodness-
of-fit tests, by exact or approximate Bayes factors or by
likelihood ratio tests. Also, these likelihood-based statis-
tics give us a test of overdispersion in a natural way. The

goodness-of-fit test described by Kahn (1990) calculates,
based on the fitted models, the expected number of hospi-
tals with no discharges to SNF, 1 discharge to SNF, and
so on, and is useful for diagnostic purposes in both the
betabinomial-logit and the logistic regression models.

The most important difference between the binomial and
betabinomial models is that in the latter we are modeling
the {p;} as stochastic variables. This says that the “true”
rates of all the hospitals that have covariate information
x; can be modeled as coming from a beta(ya;,y(1 — ;))
distribution. Thus the data are more variable than in the
logistic regression model.

Using (3), we obtain the likelihood for « and 3 as

L(v, B)
) o o) [T~ -]
E ( Z ) (I o+ ]

with H,::lo(a + k) = 1. Hence the log-likelihood of the jth
observation is

Li(v, B) = ¢; + wlvaey,y;) + w(y(1 — o), mj —y; — 1)
- w(’Yvnj - 1))
= 0. The

)

where w(a,m) = Y77, log(a + k) and w(a,0)
score function is given by

% = ayd(v0y,95)
+ (1= o) d(v(1 = o), 5 — y;) — d(7,ny)
and
l;
55 yzijoy (1 — aj){d(vay, y;) — d(v(1 — o), 5 —y;)},

Table 2. Logistic Regression, Quasi-Likelihood, and Betabinomial-Logit Results for the Florida Hospital Data
Variable Logistic S.E. t QL S.E. t BB-Logit S.E. t

¥ * * * * * 40.289 14.201 2.84
intercept —1.432 077 —18.51 .093 —15.43 —1.435 .099 —14.53
bedsupply .095 .071 1.34 .085 1.12 .057 .091 .63
cmi —.009 .055 —.16 .066 —.13 .013 .069 19
%MDadm —.184 .081 —2.26 .098 —1.88 —.186 101 —1.84
income 129 .057 2.25 .069 1.88 .136 .074 1.35
rehabs —.217 .096 —2.26 115 —1.88 —.267 125 —2.14

Log-likelihood (model) —298.575 —289.269

Log-likelihood (intercept) —309.044 —296.480

*

NOTE: " = Not Applicable; t = t-Ratio.
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Figure 2. Scatterplot of the Empirical Bayes Point Estimate, in California, of p; (Symbol “-”) and the Logistic Regression Estimate of p; (Symbol
“o”) Versus the Individual Estimate of p; (Symbol “+”). The curves are robust, locally weighted scatterplot smooths (Cleveland 1979). The naive
empirical Bayes estimate (solid line) always lies between Y/n and the logistic regression estimate (dotted line).

where where A; = yx;;2;;0(1 — ;). These are used in Newton—
mo1 Raphson procedures for finding the MLE’s of v and g.
_ _ Kahn (1990) showed that MLE’s from the betabinomial
d(a,m) = kz=o a+k and  d(a,0) = 0. model are consistent and asymptotically normal. Con-
strained methods are necessary if 4 < 0, because v > 0.
The second derivatives are Let 3(®BB) be the MLE of 8 from the betabinomial-
o I logit model and let 3™ be the MLE of @8 from the
@ _ ]2: 1 _ i Q; logistic regression (or quasi-likelihood) model. Then &;
o = (k)P = (v k)? = logit™'(xT4®) and p{" = logit™" (xT3")). From
nj—y;—1 Section 2.3.2, we know that &; ~ ﬁ(L), so that (7) implies
(1 - Otj) .. . J 0 . .
- Z —————"—-5, that the empirical Bayes estimator obtained by plugging in
= - +k) 4 and & for v and o in (4) is
- vt by~ =il 42 (),

; 59.:./1;7:]'013‘(1—&]‘){2-—.-’6—2- J

786 i (10 + k) a weighted average of the logistic regression estimator and
ni—y;—1 k the observed rate at hospital j, with #; = \/n;/(n; + 7).
g (v(1 = ;) + k)? } ’ 3. ACCOUNTING FOR UNCERTAINTY ABOUT
THE HYPERPARAMETERS: A FULLY

and BAYESIAN APPROACH
821 yi—1 k(1 - 2a;) — 'ya?- We now develop a fully Bayesian analysis of the
56:506, = A;j { Z (o, + k)2 betabinomial-logit model. This requires that a prior dis-
: k=0 J tribution be specified for the hyperparameters, (v,3). To
nj—y;—1 k(1 — 2a;) — (1 — ;)2 begin, we assume that the scale parameter, ~, is indepen-
Z 1 J_ : AP z } , dent a priori of the regression parameter, 3. (This was the
k=0 (v(1 —ay) +k) motivation for the parameterization given by (2).) Further,
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Figure 3. Scatterplot of the Naive Empirical Bayes Point Estimate (Solid Line), in Florida, of p; (Symbol “-”) and the Logistic Regression Estimate
(Dotted Line) of p; (Symbol “o”) Versus the Individual Estimate of p; (Symbol "+"). The curves are robust, locally weighted scatterplot smooths

(Cleveland 1979).

we assume that the scale parameter follows a Jeffreys’s in-
variant (locally uniform) distribution,

h(y) oy~

Even though this prior is improper, it is straightforward to
show that the resulting posterior is proper. A more chal-
lenging problem is the specification of a prior for the re-
gression parameter, 3. We follow the approach taken by
Raftery (1988). Suppose that the independent variables have
been centered and scaled to have mean zero and variance
1. Then let

B~ N((1,0,...,0)T, diag{7?,¢?%,...,¢°}).

This has the appealing property that it is objective in the
sense of Berger and Sellke (1987) (i.e., symmetric and non-
increasing away from the intercept, 31, relative to the scaled
covariates).

This prior then leads to the following posterior for p;:

foi1Y)
N
o / 9(p313,7,8) [ [ p(¥ilr, B)h(, B) dy 4B, (10)

i=1

where
N

¢~ [TIpikn @k B)drds,

i=1

p;/aj+yj“1(1 _ pj)'y(l—aj)+nj——Yj—1

B(ya; +Yj,7(1—a;) +n; = Y;)’

9(pj|Y;,7,8) =

B(yo; + Y, v(1 — o) + 1y — Y5)
B(yau,v(1 — o)) ’

p(Yilv, B) =

and

_ 2 2
o2t Desp L | (222 4 (%)

B\’

e (21,
with B(a,b) = [[(@)L'(®)]/[C(a + b),pi € (0,1),0
= logit™*(z7B) € (0,1),y > 0,8 €R™,7 > 0, and ¢ > 0.
There is no simple, closed-form expression for this inte-
gral, so one needs an approximation. We choose to use the
Laplace approximation for integrals (De Bruijn 1970; Tier-
ney and Kadane 1986; Tierney, Kass, and Kadane 1989),
which works as follows. Suppose that F' : R® — R is twice
differentiable. Then

/nmwzeﬂmeW@m (11)
where x* is the value of x at which F(x) attains its maxi-
mum and A is minus the inverse Hessian of In(F'(x)) eval-
uated at x*. ’
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Table 3. Shrinkage Summary for the California Hospital Data

n Min Q1 Mean Q3
360 .41 .70 .80 .78 .89 .98

Median Max

In our case we have two integrals to approximate: one for
the numerator and one for the denominator (i.e., calculation
of C). In the numerator we have

log(F(v,8)) = —log(B(ya; +Y;,v(1 — ;) +n; —Y;))
+ (ya; +Y; — 1) log(p,)

+ (y(I—aj)+n; —Y; —1)log(l — p;)

N
+ ) Si(v.8), (12)
i=1
where
n;
Si(’)/n@) = 10g< Y; >

+ log(B(ya; +Yi,v(1 — ;) +n; — Y;))
— log(B(yau,y(1 — a)))
~ log(y) — 5 log(2m)

— log(r) — (m — 1) log(¢)
-flE=y ()
_—cl

In the denominator we have

2

N

IOg(G(’Ya IB)) = Z Si(’Ya /8)

i=1

(13)

Let v* and 3* be the values of v and 3 that maximize (12)
and, similarly, let v** and §** be the values of v and 8
that maximize (13). Let A be minus the inverse Hessian of
(12) evaluated at (v*,3*) and let B be minus the inverse
Hessian of (13) evaluated at (y**,3**). Then the Laplace
approximation to (10) becomes

F(p;Y) =~ |A]"/?|B|7"/2 exp(log(F (7", 87))
— log(G(y™, 8™))). (14)

4. APPLICATION: MEDICARE DATA
4.1 Standard Empirical Bayes Analysis

We use data obtained from Dr. C. R. Neu at the RAND
Corporation. For this example, we will consider urban (as
defined by the U.S. Census Department’s Metropolitan Sta-
tistical Areas [MSA’s] in 1985) hospitals in California and
Florida. The data are for Medicare stroke patients dis-
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charged from hospitals between July 1, 1984 and June 31,
1985.

Let n; be the number of stroke patients discharged from
hospital j and let Y; be the number of the n; who initially
went to a nursing home on discharge from hospital j.

The covariates used in this example are as follows:

* cmi: The “case mix index” is the relative costliness of
the group of Medicare patients at the hospital. This
variable is a proxy for tertiary-care hospitals, or hos-
pitals that are better suited to deal with Medicare pa-
tients’ more complicated illnesses.

* 9%MDadm: The percentage of the hospital’s admis-
sions that are paid through Medicaid, a state-run
health care program for the underprivileged. This vari-
able is a proxy for inner-city, poor area hospitals.

* bedsupply: The ratio of Medicare-approved nursing
home beds in the MSA to the number of persons age
65 or older in the MSA.

* income: The per capita income for the MSA.

» rehabs: A dichotomous variable indicating whether
there is a secondary-care rehabilitation unit in the
MSA (rehabs = 1) or not (rehabs = 0). These facil-
ities are more intensive secondary-care facilities than
SNF’s.

With the exception of the indicator variable, rehabs,
all other variables have been centered to have mean zero
and scaled to have standard deviation 1. Also note that
the case mix index (cmi) and percent of Medicaid admis-
sions (%MDadm) are hospital-specific variables, whereas
the standardized bed supply (bedsupply), per capita income
(income), and whether or not there is a rehabilitation facil-
ity in the area (rehabs) are MSA-level variables serving as
proxies for market characteristics of the area in which the
hospital operates.

Table 1 gives results from fitting the logistic regression -
model (1) to the California data, as well as the quasi-
likelihood model (62 =~ 1.3) and the betabinomial-logit
model (3). In each case Nca = 360 and Z;V:Cf n; = 4,811.
Table 2 gives results for Florida with 62 ~ 1.45, Npg, = 157,
and YN n; = 3,207,

As is to be expected from Section 2.3.2, the point esti-
mates for 3 in the two models are close. Figures 2 and 3 plot
each hospital’s observed proportion, each hospital’s logis-

. tic regression estimate, and each hospital’s naive empirical

Bayes estimate and scatterplot smooths for each (see Cleve-
land 1979). Further, consider 1 — 7'32 to be the amount of
shrinkage for each hospital’s estimate, 7; = 1 & 1 — frJZ- =0
representing no shrinkage from the individual hospital’s es-
timate of Y;/n; and r; = 0 & 1 —r? = 1 being complete
shrinkage to the ensemble, logistic regression estimate. In
this case Tables 3 and 4 describe the amount of shrinkage
for the California and Florida hospitals. Because the aver-
age rate for the hospitals is small, about .2, there is a large

Table 4. Shrinkage Summary for the Florida Hospital Data
n Min Q1 Median Mean Q3 Max
157 .35 .59 .72 .70 .83 .98
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Figure 4. Four Naive Empirical Bayes Beta Densities. The middle two correspond to California hospitals with only one Medicare stroke discharge;

one went to a nursing home (short-dashed line), one did not (dotted line).

The two densities on the ends correspond to hospitals with relatively large

numbers of Medicare stroke discharges. One had 31 discharges, of whom none went to a nursing home (solid line). The other had 27 discharges,

of whom 13 went to a nursing home (long-dashed line).

cluster of points close to .2, making it difficult to see the
shrinkage in this region. It is easy, though, to see the shrink-
age for the California hospitals with observed rates above
.3. The smooth of the logistic regression values indicates
that the logistic regression estimates vary around the MLE
of p; under the assumption that p; = p for all j, namely
>-Y;/ > n;. The smooth of the empirical Bayes estimates
indicates that these estimates vary about a line with a slope
between that for the logistic regression case (slope = 0)
and that for the individual estimation of p; by Y;/n; (slope
= 1). Also, notice that the hospitals whose observed propor-
tions are 1.0 have empirical Bayes and logistic regression
estimates that are almost identical. This is due to the fact
that all of these hospitals had a single Medicare stroke dis-
charge who went to a nursing home, so-that ff is small.
Hospitals with large numbers of Medicare stroke patients
discharged have an empirical Bayes estimate nearer Y;/n;.

Tables 1 and 2 show that bedsupply is not a signif-
icant predictor of nursing home use. In California, cmi,
%MDadm, and rehabs are significantly negatively associ-
ated with nursing home use, whereas income is signifi-
cantly positively associated with nursing home use. Thus
California hospitals in wealthy MSA’s without a rehabilita-
tion facility tend to have higher rates of discharge to nurs-
ing homes. After adjusting for other relevant factors, a 1
SD increase in percentage of hospital Medicaid admissions
in California is associated with a decline of about .12 on
the logit scale, which translates into roughly a 10% decline

(from .2 to .18) in SNF discharge rate for an otherwise av-
erage hospital. The effect of having a rehabilitation facility
in the MSA is fairly large, resulting in a decline of about a
.67 on the logit scale, which translates into roughly a 45%
decline (from .2 to .11) in SNF discharge rate for an other-
wise average hospital.

In Florida the picture looks much different; cmi and bed-
supply are uncorrelated with nursing home use, whereas
%MDadm, income, and rehabs are marginally correlated
with nursing-home use, although the signs of the coeffi-
cients for these three covariates are the same as they were
in California. Figure 4 plots four densities corresponding to
hospitals with four different discharge patterns, to illustrate
the shrinkage another way. Two of the hospitals had rela-
tively large numbers of Medicare stroke patients discharged
but very different proportions going to nursing homes: 0/31
for one hospital, 13/27 for the other. The other two hospi-
tals each had a single Medicare stroke patient discharged,
but one hospital sent the patient to a nursing home and
the other did not. It is clear from this picture that the two
hospitals with a single Medicare stroke discharge have den-
sities that are very similar and near the center of the data.
The other two densities have nearly disjoint supports. The
hospital with an observed proportion of 0/31 has an empir-
ical Bayes density for the “true” rate of discharging Medi-
care stroke patients to nursing homes concentrated approx-
imately. on (0, .22), whereas the hospital with an observed
rate of 13/27 has support concentrated on (.21, .57).
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Figure 5. A Comparison of the Observed Number of Discharges per Hospital to the Expected Number Under the Betabinomial-Logit and Logistic
Regression Models in California. (a) Observed discharges per hospital in California, (b) expected discharges per hospital under the betabinomial-logit
model; (c) observed-expected (betabinomial-logit); (d) expected discharges per hospital under the logistic regression model; (e) observed-expected

(logistic).

Tables 1 and 2 also show that the standard errors of the
components of 3 using quasi-likelihood are close to those
from the betabinomial-logit scheme. This has been the case
for a number of other data sets to which we have applied
this methodology. Also, in California the log-likelihood of
the betabinomial-logit model is greater than that of the lo-
gistic regression models by 10.4 points for just one addi-
tional parameter. In terms of Bayes information criterion
(BIC) (Schwarz 1978), the betabinomial-logit model is also
favored, by a margin of about 14.8 points. This corresponds
to an approximate Bayes factor of about 1,660:1 in favor
of the betabinomial-logit model, which is strong evidence.

In Florida, the betabinomial-logit model yields an ob-
served likelihood larger than that of the logistic regres-
sion model by 9.3 points. BIC favors the betabinomial-logit
model here by a margin of 13.6 points, corresponding to
an approximate Bayes factor of about 880:1. Because the
QL model does not specify a stochastic model, neither a
likelihood nor a goodness-of-fit statistic can be calculated.
Figures 5 and 6 show the expected values for each cell
in the betabinomial-logit model and the logistic regression
model. The betabinomial-logit model accounts for more of
the extrabinomial variability in California. In Florida, the
betabinomial-logit model does a better job of explaining the

hospitals with observed rates of zero, although the fit is less
than perfect, and deserves closer inspection and possibly in-
clusion of other independent variables.

4.2 Fully Bayesian Posterior Densities

The numerical integrations of Section 3 were performed
for the four hospitals in Figure 4. A Newton—-Raphson pro-
cedure and a minus inverse Hessian routine were written in
Fortran to find the maximum values required in (14); these
are available from the first author (kahn@mayo.edu). Fig-
ure 7 shows both the naive empirical Bayes density from
Figure 4 and the approximate posterior density from (14).
The fully Bayesian posterior densities are wider than the
naive densities, by about 15% as measured by the poste-
rior standard deviation, whereas the posterior means are
practically identical. This exhibits how far off one can be
when using the naive estimate of variability. It is interesting
to note that the inference is highly robust with respect to
specification of the prior variances of 3. We calculated the
posterior distribution for various combinations of 72 and ¢?
between 1 and 100 and found that it exhibited little vari-
ability in this broad range. For this problem with these data,
the likelihood dominates the prior.

Despite the large ¢ statistics for some predictors, the pos-
terior densities of the California hospital discharge rates
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Figure 6. A Comparison of the Observed Number of Discharges per Hospital to the Expected Number Under the Betabinomial-Logit and the
Logistic Regression Models in Florida. (a) Observed discharges per hospital in Florida; (b) expected discharges per hospital under the betabinomial-
logit model; (c) observed-expected (betabinomial-logit); (d) expected discharges per hospital under the logistic regression model; (e) observed-

expected (logistic).

show a high degree of overlap. The two most disparate
cases—0/31 and 13/27—have posterior densities that over-
lap by a small amount (5-7%), and it can be said with
probability about 95% that these hospitals have different
true rates of initially discharging stroke patients to nursing
homes. But no other two densities are as different. Fur-
ther investigation as to why the hospital with 31 stroke dis-
charges had none going to a nursing home would be in or-
der. For the covariates reported in this article, the 0/31 hos-
pital had Medicaid admission of more than 44% (this is 2.24
standard deviations above the mean percentage of Med-
icaid admissions), whereas the 13/27 hospital had about
13% Medicaid admissions (very nearly the mean value).
Because a high percentage of Medicaid admissions is typ-
ically a feature of poorer, inner-city hospitals, and because
hospitals with higher percentages of Medicaid admissions
tend to have lower rates of stroke patients discharged to
SNF’s, one might want to investigate the possibility that
nursing homes in the area prefer not to deal with this par-
ticular hospital.

The betabinomial-logit model better accounts for the ex-
cess of observed zeros than the logistic regression model,
as is shown by Figures 5 and 6. The betabinomial-logit also
accounts for this excess of zeros better than a model using
a mixture of a point mass at zero and a logistic regression
model (Kahn 1990). Hence the excess of zeros is accounted
for by the unobserved heterogeneity of “true” hospital rates

of discharge to SNF’s. There is no evidence that any hos-
pital has a “true” discharge rate of zero.

5. DISCUSSION

In this article we have developed the betabinomial-logit
model as a way of accounting for unobserved hetero-
geneity in logistic regression. Maximum likelihood esti-
mation for the betabinomial-logit model is straightforward
and takes little more computing time than logistic regres-
sion. The betabinomial-logit model behaves like a quasi-
likelihood method but enjoys the advantages of a true
probability model. Logistic regression is also a probabil-
ity model but does not allow for unobserved heterogeneity.
The naive empirical Bayes, betabinomial-logit estimate is
(approximately) a shrinkage estimator that lies between the
logistic regression estimator and the individual estimate,
PNEB) v (1 —2)p) + 72(Y/n), where r = corr(Y, p).

The fully Bayesian approach is straightforward using the
Laplace approximation to obtain a proper posterior distri-
bution for the {p;} from which we can draw inference. This
accounts for variability in the estimation of the hyperparam-
eters, which standard empirical Bayes procedures ignore. In
the California data we found that the fully Bayesian pos-
terior variances were about 20-30% higher than the stan-
dard empirical Bayes posterior variances and were robust to
the choice of prior variance for the regression parameters
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Figure 7. The Naive Empirical Bayes (Dotted Line) Posterior Density Versus the Bayes Empirical Bayes (Solid Line) Density for Four California
Hospitals; One With No Stroke Discharges to SNF From a Total of 1 Stroke Discharge, One With 1 Stroke Discharge to SNF From a Total of 1
Stroke Discharge, One With 13 Stroke Discharges to SNF From a Total of 27 Stroke Discharges, and One With No Stroke Discharges to SNF From

a Total of 31 Stroke Discharges.

of the betabinomial-logit model. Also, the fully Bayesian
posterior mean is nearly the same as the standard empirical
Bayes mean, so that the interpretation of the posterior mean
as a shrinkage estimator between the logistic regression es-
timate and the individual estimate remains valid under the
fully Bayesian analysis. ,

For this problem, we found that the hospital-specific
and market area—specific factors, associated with hospi-
tals’ propensities for discharging Medicare stroke patients
to SNF’s differ between California and Florida. In Cali-
fornia we found that both a hospital’s case-mix index and
its percentage of Medicaid admissions are negatively corre-
lated with its rate of discharge to a SNF. At the market-area
level, the per capita income of the MSA in which the hos-
pital operates is positively correlated with a hospital’s rate
of discharge to SNF’s, whereas the existence of a rehabili-
tation facility (a more intensive secondary-care facility) in
the hospital’s MSA is associated with fewer discharges to
SNF’s. In Florida, the only covariate significantly associ-
ated with discharge rates to SNF’s is whether there is a
rehabilitation facility in the hospital’s MSA, with the pres-
ence of such a facility associated with a lower discharge rate
to a SNF. And finally, in both states the large number of
observed zeros is best explained by the unobserved hetero-

geneity between hospitals’ rates. Though there is evidence
that some hospitals have small rates of discharging Medi-
care stroke patients to a SNF, there is no evidence that any
hospital in California or Florida has a “true” rate of zero.

Finally, many authors have suggested using the Gibbs
sampler for calculating posterior distributions in hierarchi-
cal models (Gelfand and Smith 1990) and in particular for
the betabinomial distribution (Casella and George 1992).
But for the betabinomial-logit model, we have found that
the Laplace method is accurate and requires far less com-
puter time than the Gibbs sampler. Though the Laplace ap-
proximation requires quite a bit more analytical work (i.e.,
calculation of gradients and Hessians), the work pays off
generously. The Laplace method has also been found to be
both more exact and less computationally expensive than
the Gibbs sampler for calculating Bayes factors in a Pois-
son gamma model (Rosenkranz 1992).

[Received August 1992. Revised August 1995.]
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