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Robust Bayesian Model Selection for Autoregressive
Processes With Additive Outliers

Nhu D. LE, Adrian E. RAFTERY, and R. Douglas MARTIN

Autoregressive (AR) models of order k are often used for forecasting and control of time series, as well as for the estimation of
functionals such as the spectrum. Here we propose a method that consists of calculating the posterior probabilities of the competing
AR(k) models in a way that is robust to outliers, and then obtaining the predictive distributions of quantities of interest, such as
future observations and the spectrum, as a weighted average of the predictive distributions conditional on each model. This method
is based on the idea of robust Bayes factors, calculated by replacing the likelihood for the nominal model by a robust likelihood. Tt
draws on and synthesizes several recent research advances, namely robust filtering and the Laplace method for integrals, modified
‘to take account of the finite range of the parameters. The method performs well in simulation experiments and on real and artificial

data. Software is available from StatLib.

KEY WORDS: Additive outlier; Laplace approximation; Posterior probability; Robust filtering; Robust likelihood.

1. INTRODUCTION
The AR(k), or autoregressive (AR) model of order &, for
a time series {z;} is defined by

Tt = P1Ts_1 + - + GpTi—k + &1, (1)

where {e1,€z,---} is a sequence of independent N(0,02)
random variables. This model is useful for the forecasting
and control of time series, as well as for the estimation of
functionals such as the spectrum or the amount of energy
in a given frequency band.

To use this model, a value for k¥ must be specified. Be-
cause there is rarely a direct physical motivation for the
AR(k) model (1), this choice must be based on the data.
There has been much work on ways of making this choice
(e.g., de Gooijer, Abraham, Gould, and Robinson 1985),
with particular emphasis on automatic model selection cri-
teria such as the Akaike information criterion (AIC; Akaike
1973) and the Bayes information criterion (BIC; Schwarz
1978).

To get an idea of the order selection difficulties caused
by outliers, let y; = x; + v;, where v; is an iid outlier-
generating component with variance 0%, and z; has variance
0% Then the lag-I correlations of the processes {y:} and
{z+}, denoted by p} and pfX, satisfy

plY=plX(1_R)7 l=172"",
where R = 03, /(0% + o). Therefore, as 0% increases to

oo (ie., as R increases to 1), pf decreases to zero. Thus
model selection based on the empirical autocorrelation and
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partial autocorrelation functions can be misleading in the
presence of outliers and tends to underestimate model order.

Both AIC and BIC are monotone functions of the pre-
diction error variance o2, usually estimated by the maxi-
mum likelihood estimate (MLE) 62. The commonly used
MLE-based AIC and BIC are affected by outliers in two
ways: (a) they are distorted by grossly unreliable parame-
ter estimates, and (b) they are greatly inflated by outliers.
This was pointed out by Martin (1980), who proposed a
bounded-influence robustified likelihood approach to model
selection. Another approach, based on robust filtering and
an associated robustified likelihood, also was proposed by
Martin (1981).

Here we propose a new approach to the comparison of
AR models that attempts to overcome the difficulties associ-
ated with outliers and with model uncertainty. This consists
of calculating the posterior probabilities of the competing
AR(k) models in a way that is robust to outliers and then ob-
taining the predictive distributions of quantities of interest,
such as future observations or characteristics of the spec-
trum, as a weighted average of the conditional predictive
distribution given each of the models.

To obtain the posterior probabilities, we calculate the
Bayes factors, or ratios of posterior to prior odds, for each
of a set of pairwise model comparisons. The basic idea is
explained in-Section 2 in the context of AR models without
outliers. In Section 3 we introduce the idea of robust Bayes
Jfactors, obtained by replacing the likelihood for model (1)
by a robust likelihood following Martin (1981). This robust
likelihood has two key ingredients. The first is a robust pre-
dictor that provides robust location or centering for the pre-
dictive distribution, along with an associated robust scale.
The robust predictor and associated scale are obtained us-
ing the robust filtering algorithm of Masreliez (1975) and
Martin (1979). The second ingredient is a bounded and con-
tinuous likelihood-type loss function that replaces the non-
robust sum of squared residuals in the Gaussian likelihood.
Here robustness refers to robustness of the Bayes factors
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against the outliers in the observed data, not against the
prior distribution as often referred to in the literature.

Computation of the Bayes factors using the robust likeli-
hood requires integration over the parameter space. Because
this is analytically difficult, we follow Raftery (1988) and
use the Laplace method for integrals (Tierney and Kadane
1986). In doing so, we reparameterize the model (1) in terms
of the partial autocorrelation coefficients and modify the
Laplace method to take into account the finiteness of the
parameter space. The method works well in simulation ex-
periments and in a real example (Secs. 4 and 5). Software
to implement it is available; see Section 6.

2. BAYES FACTORS FOR TIME SERIES

2.1 Bayes Factors and Accounting for
Model Uncertainty

Fruitful approaches to statistical problems often involve
postulating a class of probability models and comparing
these models on the basis of how well they predict the ob-
served data. The Bayesian approach to the problem of infer-
ence in the presence of several competing models is based
on posterior model probabilities. If the class consists of the
(K +1) models My, ..., Mg, then the posterior probability
of the model M given data D is

2 1=o P(DIMy)p(M,)

In Equation (2), p(Mj,) is the prior probability of model M),
and p(D|Mj,) is its integrated likelihood, defined by

p(os) = [

Ok

p(D|Ok, My,)p(0| M) db, 3)

where 6, is the (vector) parameter of model My, p(6x| M)
is its prior distribution, p(D|0y, M) is the likelihood, and
Oy, is the parameter space.

Pairwise comparisons are based on the posterior odds
ratio

p(Mx|D) _ [P(D|Mk)J [P(Mk)
p(M;|D) p(DIMy) | [ p(M1)

where By, is the Bayes factor for M} against M; and Ay,
is the corresponding prior odds. If M} is nested within M;,
then the data D favor M, if By, > 1, whereas they provide
evidence for M, if By, < 1. Jeffreys (1961, app. B) sug-
gested that the evidence for the larger model be considered
strong if By; < 107! and conclusive if By, < 10~2. The
posterior probabilities can be recovered using the equation

K ~1
Bok Aok {1 + Z (Boz)\ol)lH .

=1

] = Bri Ak,

p(Mg|D) =

This framework yields solutions to the estimation, predic-
tion, and decision-making problems that take into account
uncertainty about the order of the AR, unlike model selec-
tion methods that condition on a single selected model. If A
is a quantity of interest, such as a property of the spectrum,
the next observation, or the utility of a course of action,
then its posterior distribution given the data D is evaluated
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by combining all models considered; that is,
K
p(AID) =) p(A|My, D)p(My| D). @)
k=0

This equation was first given by Leamer (1978, p. 117)
and was proposed explicitly as a solution to the decision-
making problem in the time series context in equation (5.1)
of Poskitt (1988).

A simple approximation for p(D|Mjy), introduced by
Schwarz (1978), is

R 1
log p(D| M) ~ log p(D| My, 6x) — 5 dlogn, ()

where 6, is the MLE of 0;, and d and n are the numbers
of parameters and observations. We refer to Equation (5) as
the BIC approximation; its error is O(1) (Kass and Raftery
1995). Choosing the order that maximizes the right side of
Equation (5) is the much-used BIC model selection proce-
dure.

Akaike (1983) wrote that, asymptotically,

log p(D|My,) = log p(D| My, 8y) — d, (6)

which we call the AIC approximation. This is true only if
prior information increases at the same rate as the informa-
tion in the data, which is unrealistic in most applications.
Nevertheless, the procedure of choosing the order that max-
imizes the right side of Equation (6) has been much used,
and so we include it in our comparison and examples. (For
a review of Bayes factors, see Kass and Raftery 1995.)

2.2 Bayes Factors for Autoregressive Processes
Without Outliers

We now apply the Bayesian framework to the model
comparison problem where the data y7 = (zy,...,z7) are
from a stationary Gaussian AR(k) process defined by (1);
that is, the observations contain no outliers. Let M} de-
note the Gaussian AR(k) model. To obtain the posterior
probabilities, we need to evaluate the integrated likelihood,
p(yT'|My),k = 0,..., K, which is given by Equation (3).
The log-likelihood function of the data given the model
and its parameters is

log p(y” |0k, Mk)
2
T 1 , 1 zp — 2!
= —*2‘10g(27f)—§ E log f; D) E (T )

where 3. 7' = E(x|yt 1), y*"! = (@4_1,2¢_2,...,21), and

f2 = E(z; — 212, Thus 2!~ is the conditional mean of
x; given the data up to time (¢ — 1), and f2 is the corre-
sponding conditional variance; both can be found using the
Kalman filter (Harvey 1981).

There are several difficulties with the evaluation of the
integral (3). The constraints on the parameters (¢, . .., ¢x)
that ensure stationarity are complicated. We avoid this diffi-
culty by reparameterizing in terms of the first k¥ partial au-
tocorrelations 6y, = (71, ..., m). The parameter space O
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is then just the hypercube (—1,1)%, and the mapping that
transforms the (g1, ..., ¢x) such that the process.is station-
ary to (m,...,7) is one-to-one and onto Oy, and both it
and its inverse are continuously differentiable (Barndorff-
Nielsen and Schou 1973; Ramsey 1974).

The integral (3) cannot be evaluated analytically, and so
we approximate it using the Laplace method for integrals
(Tierney and Kadane 1986). The Laplace method was ap-
plied to Bayes factors by Raftery (1988) in the context of
generalized linear models. The Laplace method is modified
here to take into account the finiteness of the parameter
space, as follows. Let g(@) be a real-valued function from
R* to R, where 6 is a k-dimensional vector. A Taylor series
expansion of g(@) at 9 yields

9(8) =~ g(60) + (6 — 60)'(Vgs,)
+ 5 (660 (V0,0 00),

where (Vgg,) and (V2gg,) are the gradient and Hessian of
9(0) evaluated at 6. Let 6y be the mode of g(8). Then

/@ explg(8)] O
< [ exp|a(60) + 5 (6 80) (V006 ~ )| do
(€]
— explg(60)] /@ exp[é (6 — 60)/(V2g0,)(6 — 9@] a6
— explg(60)]| — V2ga, |/?(2m)*/2 / o0)do, (D
(€]

where ¢(0) is the k-dimensional multivariate normal
density with mean 6, and variance—covariance matrix

[—vzgeo]_l'
Applying the approximation (7) to the integral (3), with
6, = (m,...,m) as the k-dimensional vector of partial

autocorrelations and with

9(8%) = log[p(y” |0k, My )p(Ox| My)],
yields
p(y" | My) ~ (2m) /2|2 gge |V 2p(y " |0%, My)p(O| My)

0;) dby, 8
X /(_1)1)k¢( »k:) ko (8)

where 6}, is the value of 8, that maximizes g(6y). The inte-
gral on the right side of Equation (8) is evaluated by Monte
Carlo integration. Arguments similar to those of Tierney
and Kadane (1986) show that the error of the approxima-
tion (8) is O(T~1).

Thus for a good approximation of the integrated like-
lihood p(yT|My), all we need are the posterior mode
of 0, and the Hessian of the log-likelihood function,
log p(y7'|0x, My), at that point. A natural parameterization
for AR models is in terms of the partial autocorrelations,
when the parameter space is the hypercube [—1, 1]?. When
little prior information is available, a reasonable “nonin-
formative” prior is uniform in the partial autocorrelations;
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this is proper, and so difficulties with improper priors do
not arise. With this prior, the posterior mode is equal to
the MLE.

3. ROBUST BAYES FACTORS FOR
AUTOREGRESSIVE MODELS

3.1 A Robust Likelihood for Autoregressive Models

We now consider the model comparison problem for AR
processes with additive outliers. Suppose that the data y”
= {y1,...,yr} are generated by the model

Yi = Ty + z1Wy, 9

where {z:} follows Equation (1), {w;} is a sequence of
observations from a outlier-generating distribution whose
variance is much larger than o2, and {z;} is a 0 — 1 process
with P[z; = 1] = v being the fraction of outliers in the
data. When z; = 1, y; is called an additive outlier.

Our approach to the comparison of different AR orders in
the model (9) is to use a robust likelihood that approximates
the likelihood of the (unobserved) series {z;}. Following
Martin (1981), this is defined as

T
. T 1
log p(y” | My, 0x) = —5 log(2m) — 5 > logs?
t=1

T ~t—1
1 _
D) E P<y—t—8‘§i—) . (10)
t=1

In Equation (10), #:~! and s; are robust estimates of
the conditional mean and standard deviation of z; given
z1,...,%¢—1, found by robust filtering as described in Sec-
tion 3.2.

The function p is chosen to be bounded and continuous
so as to ensure that one observation does not have a large
influence on the likelihood function and that small changes
do not produce large changes in the likelihood function.
Here we use the function

p(z) = 2% if |z| <a,
= a? if |z|>a.

The basic idea is to downweight potential outliers, namely
observations whose prediction residuals y; — #:~! are
large compared to their predictive standard deviations s;.
Here we use a = 2.5 as the tuning constant, so that an ob-
servation is censored once its prediction residual is more
than 2.5 times its predictive standard deviation. A robust
integrated likelihood, #(y”|Mjy), is defined by replacing
p(y" | Mk, 8x) with 5(y” | My, 6y in (8).

An exact Bayesian solution involves specifying a prior
distribution for o2 and integrating over this parameter. Here
this is complicated, and instead we approximate the result-
ing integral by conditioning on a robust estimate of the
innovations variance, as described in Section 3.3.

3.2 Robust Filtering

To calculate the robust Bayes factors, we need the pre-
diction location and scale of the observations, Z;;_; and s;.
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We obtain these using the robust filter of Maserliez (1975)
and Martin (1979).

The model (1) and (9) can be written in state-space form
as

xt =Ix;_1 + &

and

(11)

where v; = z;w; denotes the outlier-generating component,
x; and e; have dimension k, T is a p x p matrix, and H is
a 1 x p matrix, defined by

ys = Hxy + vy,

é1 @2 br—1 P

1 0 ... 0 0

r—|l o1 ... 0 o

0 0 1 0

X? = (:I,'t,.fb't_l, . axt—k-!—l)
H=(1,0,...,0)

el = (&,0,...,0).

We denote the state prediction density by f(x;|y*~1!); this
is assumed to exist for ¢ > 1. The observation prediction
density is f(y|y*~'). The conditional mean of x; given y*
is denoted by %; = F[x|y?].

When ¢; and v; in (11) are Gaussian, the computation
of %; = E(x|y") yields the Kalman filter recursion equa-
tions. Unfortunately, %, is hard to calculate exactly when
v is non-Gaussian, except in a few special cases such as
that of stable random variables (Stuck 1976). But there is
a simplifying assumption that does allow calculation of %,
(Masreliez 1975)—that the state predictor density is Gaus-
sian, namely

f(xtlyt_l) = N(xt;ﬁz_laMt)’

where N(-;u,X) denotes the multivariate normal density
with mean p and covariance matrix ¥ and

M; = E{(x; — &) (x; — &) T |y* 1}

is the conditional covariance matrix for the state prediction
error. Given this, %, satisfies the recursions

% = %71 4+ MGHTW, (1), (12)
Mt+1 = I‘PtI‘T + Q, (13)
and
P, = M; - M;HT¥(y,) HM,, (14)
where

Ue(ys) = ‘(%) log fY(Z/t|yt_1)
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is the score function for the observation prediction density
fy (y¢|y*™!). The matrix Q is the covariance matrix of e;
that is equal to o2 at the (1, 1) position and to zero every-

where else, %:7! = I'%,_y, and

Viye) = — (%) Wy (ye)-

The density fy (y:|y*~!) is generally intractable when
outliers are present. Thus it is difficult to obtain the ¥
function. But, as noted by Martin (1979), ¥ and ¥’ can be
well approximated by appropriately chosen bounded con-
tinuous functions. Boundedness ensures that y, does not
have an unbounded influence on Z;, and continuity ensures
that small changes in y; do not produce large changes in
Z;. The empirical study of Martin and Su (1985) showed
that Hampel’s two-part redescending function caused little
bias in outlier-free situations while providing good robust-
ness towards outliers. Thus here we use Hampel’s two-part
redescending function,

V) =y, |yl <ac
= alc-y)/(1-a), ac<y<g,
= —oz(c—f- y)/(l - Ck), —c<y<-—ac

= 0, ly| > ¢,

with ac = 2.5 and ¢ = 4.0. That is, observations with pre-
diction residuals (divided by their predictive standard devi-
ations) in the interval (2.5, 4.0) are downweighted linearly,
and those with prediction residuals greater than 4 are given
zero weight. To ensure boundedness and continuity of ¥/,
Martin and Su (1985) also recommended that ¥’ be replaced
by the weight function w(z) = 9(z)/z.

Let s? be the (1, 1) element of M,. Then the recursions
(12)—-(14) may be replaced by

~ ~ my Tt
xe=I%_1+— s — |,
St St

M. =T'P,I'T + Q,

and

P M, - ) BB

St sz’

where m; is the first column of M; and r; is the observation
prediction residual

~t—1
Tt =Yt — th .

3.3

We first find the values of the parameters that maximize
the robust log posterior density, and we find its Hessian
at the posterior mode. The narameters of an AR(k) model
are the k partial autocorrelations I = (7y,...,7) and the
innovations variance o2. In the nonrobust setup, it is easy
to find the joint posterior mode of these (k + 1) parameters
given the data {y,}. But in the robust setup this is harder,

Implementation
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Figure 1. Monthly Inward Movement of Residence Extensions:

RESEX Series. (a) The RESEX series; (b) the seasonally differenced
RESEX series.

and we estimate the innovations variance in advance by
substituting a highly robust estimate of ox into the equation

2

o =% [] 1=

k
=1

%

The highly robust scale estimate 5x we use is the median
of absolute deviations about the median (MADM) defined
by

A

Gx median (|]y; — median {y;}|).

1
6745
This estimate is highly robust with respect to bias (Martin
and Zamar 1993). The robust likelihood is then maximized
as a function of II by the Newton—Raphson method.

The estimates are not sensitive to the initial value of
II, which affects the number of iterations required in the
Newton—Raphson method. To reduce the number of itera-
tions, we estimate the partial autocorrelations sequentially.
We first estimate the lag-1 partial autocorrelation 7; for the
AR(1) model with starting value 0, then estimate (y, 7o)
for the AR(2) model with starting values (#1,0), and so
on. Convergence in this sequential method is quick, usually
taking from two to eight iterations. In all of the examples
that we have worked with, the estimates from the sequential
method were very similar to those from the global method
in which all the partial autocorrelations are estimated at
once, and the global method always took longer than the
sequential one. For any given data set, it is hard to know
whether the objective function has a unique maximum, but
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in experience with data sets used in the examples and the
simulation study, we have never had any convergence prob-
lems.

4. EXAMPLE: TELEPHONE EXTENSION SERIES

Figure 1(a) shows the inward movement of residential
telephone extensions (RESEX series) in a fixed geographic
area in which each of the 89 months from January 1966
to May 1973 (Martin, Samarov, and Vandaele 1983). There
are two large values in November and December 1972. The
first value is due to a November “bargain month” (i.e., free
installation of residence extensions), and the second value is
due to a spillover effect in December because not all of the
November orders could be filled in that month. The plot also
shows some seasonal behavior. The seasonally differenced
series, defined as

y(t) = RESEX(t) — RESEX(t — 12),

is shown in Figure 1(b); it has two large values, and the
seasonal structure has been removed.

The posterior model probabilities are obtained using the
robust, nonrobust, BIC, and AIC methods. Specifically, the
posterior probabilities defined in Equation (2) are calculated
with the integrated likelihood (3) obtained with the nonro-
bust method through Equation (8) and the robust method
through Equations (8) and (10). The BIC and AIC approx-
imations are evaluated through Equations (5) and (6).

Table 1 shows that according to the robust method, the
differenced series can be represented by an AR(2) model.
The robust posterior probability of the process having or-
der 2 is .84, which is much greater than the second largest
posterior probability of .11 for order 3. Brubacher (1974)
also identified the series as an AR(2) process, using an in-
terpolation technique described by Brubacher and Wilson
(1976). The method requires a priori identification of the
outlier locations. Although it is a trivial task for this se-
ries, it is generally difficult to correctly specify a priori the
outlier locations. Martin (1980) obtained the same result us-
ing an iterative procedure. Although his procedure seems to
work well for this series, its convergence is not guaranteed
in general.

The nonrobust method (and BIC) favor the AR(1) model.
The AIC approach yields low posterior probabilities for all
orders. As expected, the robust method does much better
because it corrects for the outliers which are clear in this
data set. Table 2 shows the predictive scores of the robust
and nonrobust methods. The predictive score for a given

Table 1. Posterior Model Probabilities for the RESEX Series
Order
Method 0 1 2 3 4 5 6
Robust 0 .01 .84 1 .04 0 0
Nonrobust 0 74 .20 .05 .01 0 0
BIC .01 .75 .20 .04 0 0 0
AIC 0 .38 .32 .19 .07 .03 .01
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Table 2. Predictive Scores for the Data

Posterior
Method Model probability Predictive score
Robust AR(1) .01 —631.71
AR(2) .84 —628.21
AR(3) 1 —628.25
AR(4) .04 —627.27
Combined —628.15
Nonrobust AR(1) 74 —725.69
AR(2) .20 —724.87
AR(3) .05 —724.40
AR(4) .01 —724.41
Combined —725.16
order k is
77
t—1
> logp(yely' ™, My). (15)
t="7

The predictive distribution that takes into account model
uncertainty is derived from Equation (4). Its performance
is measured by its predictive score, namely

7 6
> log (Zp(ytlyt‘l,Mk) *p(MklyT)) . (16)
t="7 k=0

Note that the last y” should in principle be replaced by
y'~!, but in this example it makes almost no difference.

The predictive densities in Equations (15) and (16) are
calculated as follows. Assuming a contaminated normal dis-
tribution for residuals yields

ye =&~ (1=7)N(0,s7) + YN(0,02),

where the prediction location Z!~' and scale s; are de-

fined and obtained as described in Section 3.2. The outlier-
generating component variance o2 is estimated using the

following relationship [Equation (9)]:

az = a§( + ’yai.

The observation and state variances (02,0%) are estimated
by the sample variance and the robust estimator MADM
(Sec. 3.3). The fraction of outliers + is then estimated by
the proportion of observations outside the range (median
{y:} £ 2.580x).

With the estimated values of v = .05,0x = 1,641.2, and
oy = 6,976.8, the estimated value of o, is 30,370. The
predictive density of (y¢|y*~!) is then approximated by the
density of (y; — zi71).

Our recommended procedure of robust estimation and
model selection, with model averaging to take into account
model uncertainty, has the best predictive performance of
any of the methods considered here. Standard approaches
would choose either an AR(1) or an AR(2) model and esti-
mate them nonrobustly. Our approach improves on this con-
siderably, by nearly 100 units of predictive score or nearly
200 units on the scale of twice the predictive score on which
deviances and likelihood ratio test statistics are measured.

Almost all of the gain in predictive performance in this
example is due to the fact that we have used a robust
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method. Model averaging has given some further improve-
ment, but it is small. This is probably because there is lit-
tle model uncertainty. In other situations where there is
substantial model uncertainty, model averaging does yield
meaningful improvements in out-of-sample predictive per-
formance (Madigan and Raftery 1994; Raftery, Madigan,
and Hoeting 1993; Raftery, Madigan, and Volinsky 1995).

5. SIMULATION

5.1 A Simulation Study

We now report a simulation study to compare the robust
method of Section 3 with the nonrobust Gaussian method
of Section 2.2 along with the BIC and AIC approximation
methods, for both Gaussian AR time series and AR time se-
ries with additive outliers (AO’s). The MLE-based BIC and
AIC approximations are included to examine how well they
approximate the integrated likelihood. Because we have not
investigated the BIC and AIC based on the robust variance
estimate, our results should be interpreted accordingly.

The results for AO series indicate how much is gained
by using the robust method, whereas the results with Gaus-
sian data indicate the loss from using the robust method
unnecessarily. In each case we used 500 time series of 200
data points each, generated from Equations (1) and (9) with
k =1 and ¢; = m; = .5. The contamination fraction, v,
was set at .1, the innovations variance ag was chosen to be
unity, and the value of outliers was fixed at +6, where § is
a positive constant. The outliers could be negative or pos-
itive with equal probabilities. We used § = 0, 4, and 7 to
represent no outliers, “moderate” outliers, and “large” out-
liers. The standard deviation of z; is 1.15 when there are
no outliers. The posterior probabilities were calculated for
orders zero to 5 using uniform priors for the partial auto-
correlations and equal prior probabilities for the competing
models. Table 3 shows the number of times that each order
has the highest posterior probability.

Case 1: 6 = 0 (no outliers). The robust and nonrobust
methods both performed very well. In most cases, the poste-
rior probabilities of the process of order 1 were quite large,

Table 3. Percentage of Times That Each Order was Assigned
With the Highest Posterior Probability

Order
é Method 0 1 2 3 4 5
0 Robust 0 96 3 1 0 0
Nonrobust 0 96 3 1 0 0
BIC 0 96 3 1 0 0
AlC 0 75 12 6 5 2
4 Robust 0 85 13 2 0 0
Nonrobust 21 71 8 0 0 0]
BIC 24 70 6 0 0 0
AlC 8 60 20 6 3 3
7 Robust 0 92 6 2 0 0
Nonrobust 76 23 1 0 0 0
BIC 78 21 1 0 0 0
AIC 43 35 10 5 5 2

NOTE: The true order was 1.in each case.
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Figure 2. Simulated Series Used for the Spectrum Estimation Exam-
ple. (a) The simulated series; (b) the simulated series with two additive
outliers.

so that there is little to be lost by using the robust method
when there are no outliers. The BIC method’s performance
was quite similar to that of the nonrobust method, as ex-
pected. The AIC method was inferior to the other three
methods; it tended to favor higher-order models, in agree-
ment with asymptotic results (Shibata 1976).

Case 2: 6 = 4 (moderate outliers). Table 3 shows the
robust method to be better than the nonrobust method. The
nonrobust posterior probabilities were larger and more dis-
persed than the robust posterior probabilities for order zero
and were smaller and more dispersed for order 1. This is in
line with the expectation that the nonrobust method would
favor lower-order models when there are isolated additive
outliers in the data. Again, the BIC method and the non-
robust method performed similarly. The AIC performed
worse than the others; it tended to favor higher-order
models.

Case 3: § = 7 (large outliers). Table 3 shows the robust
method to be much better than the nonrobust method. The
robust method generally gave high posterior probability to
the correct order, whereas the nonrobust method gave high
posterior probability to order zero in most cases, as did the
BIC approximation. The nonrobust method did very poorly,
favoring the correct model in only 23% of the cases, com-
pared to 92% for the robust method. The nonrobust method
chose order zero 76% of the time, which is not surpris-
ing because when § = 7, the theoretical lag correlations of
the contaminated process are close to zero. Here the lag-
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1 autocorrelation of the observed process is .11, compared
with .5 for the underlying uncontaminated process. The AIC
method also performed poorly.

Overall, when there were no outliers in the data, the ro-
bust and nonrobust methods both worked well, indicating
that there is little to be lost by using the robust method
when the data are indeed Gaussian. When there were out-
liers in the data, the robust method performed better than
the nonrobust method, particularly when the outliers were
large. The performance of the nonrobust method deterio-
rated rapidly as the outliers got bigger.

The performance of the robust method was slightly better
when there were either no outliers or large outliers than
when the outliers were of moderate size. This is inherent in
robust estimation, because it is easy to identify an outlier
when it is clearly extreme but harder to identify moderate
outliers that are too small to be identified with certainty but
large enough to distort the results.

The performance of the BIC method was similar to that
of the nonrobust method whether or not there were out-
liers in the data. The results indicate that the BIC pro-
vides a good approximation to the integrated likelihood,
in line with the theoretical result of Kass and Wasserman
(1995). This suggests that a robustified version of BIC, in
which log p(yT|My, 8) is used instead of the maximized
log-likelihood in Equation (5), may provide a good approx-
imation to the robust integrated likelihood.

The AIC method performed poorly overall. It tended to
favor higher-order models whether or not there were out-
liers in the data. The results indicate that the AIC method
does not approximate the integrated likelihood well for au-
toregressive processes.

5.2 A Simulated Example: Spectrum Estimation

We estimate the power spectrum of a series of 100 ob-
servations generated from the AR(2) model,

Y¢ = Tys—1 — AYs—2 + €4,

where ¢; is from the standard normal distribution. We
then reestimate the power spectrum after introducing two
additive outliers to the series. The data are shown in

Figure 2.
The power spectrum of an AR(k) model is
2
_ % 1

5
T+ Y08 ¢y exp(—if))

Hence the power spectrum for an AR(k) model can be es-
timated by replacing ¢, by their estimates. To incorporate
the model uncertainty, we estimate the power spectrum of
the series by a weighted average of the estimated spectrum
given each order, using the posterior model probabilities
shown in Table 4 as weights.

The theoretical and estimated power spectra are displayed
in Figure 3. As expected, for the clean series, both the robust
and nonrobust estimates of the spectrum, including BIC and
AIC, are reasonable in the sense that their peaks are close
to the theoretical peak. But for the contaminated series, the
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Table 4. Posterior Model Probabilities in the
Spectrum Estimation Example
Order
Data Method 0 1 2 3 4 5 6
Gaussian Robust 0 0 .79 17 .03 01 0
Nonrobust 0 0 77 18 .04 01 O
BIC 0 0 83 14 02 .01 0
AlC 0 0 43 26 .15 12 .04
Contaminated Robust 0 01 .79 16 .03 .01 O
Nonrobust 67 25 .07 .01 0 0 0
BIC 68 24 07 .01 0 0 0
AlC 26 28 27 12 04 .02 .01

robust method still produces a peak close to the theoretical
one, whereas the nonrobust, BIC, and AIC methods fail to
do so.

6. DISCUSSION

We have proposed a method for the order selection prob-
lem when the data are from a stationary Gaussian AR pro-
cess of order k with additive outliers. This method works
well in the presence of outliers and also with clean Gaus-
sian data. It yields the posterior probability of each of the
models considered, allowing one to take into account model
uncertainty. It is designed to deal specifically with additive
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Figure 3. Theoretical and Estimated Power Spectra (a) Theoretical
and Estimated Spectrum for Cleaned Simulated Series; (b) Theoretical
and Estimated Spectrum for Simulated Series With Outliers. — true;
-+ robust; - - - nonrobust; — — — BIC; — —- AIC.
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outliers; its effectiveness for other types of outlier such as
innovations outliers or level shifts remains to be examined.

The method takes about 10 minutes of CPU time on a
Sparc 2 Workstation to analyze a series of length 200, ob-
taining the posterior probabilities of order 0, 1, ..., 5. An
S-plus function to implement the approach is available in
StatLib and can be obtained free of charge by sending the
message “send ar.robust from S” to statlib@stat.cmu.edu.

Although AR model selection in the presence of outliers
has not been much studied, there are many approaches to
parameter estimation, filtering, and prediction in the pres-
ence of outliers. These include explicit state-space model-
ing (West and Harrison 1990), the use of mixture transition
distribution (MTD) models (Le, Martin, and Raftery 1990),
and testing for outliers (Tsay 1986); other references have
been listed by Martin and Raftery (1987). It is possible that
these other approaches could also be extended to yield ro-
bust Bayes factors for AR model order.

Other authors have discussed AR order selection meth-
ods that yield a set of possible orders rather than a single
one (see, for example, Rezayat and Anandalingam 1988).
Our proposal here goes beyond this in yielding posterior
probabilities of all the models initially considered and in
formally taking into account model uncertainty.

[Received February 1993. Revised April 1995.]
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