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Modeling Flat Stretches, Bursts, and Outliers in Time
Series Using Mixture Transition Distribution Models

Nhu D. LE, R. Douglas MARTIN, and Adrian E. RAFTERY

The class of mixture transition distribution (MTD) time series models is extended to general non-Gaussian time series. In these
models the conditional distribution of the current observation given the past is a mixture ot conditional distributions given each
one of the last p observations. They can capture non-Gaussian and nonlinear features such as flat stretches, bursts of activity,
outliers, and changepoints in a single unified model class. They can also represent time series defined on arbitrary state spaces,
univariate or multivariate, continuous, discrete or mixed, which need not even be Euclidean. They perform well in the usual case
of Gaussian time series without obvious nonstandard behaviors. The models are simple, analytically tractable, easy to simulate,
and readily estimated. The stationarity and autocorrelation properties of the models are derived. A simple EM algorithm is given
and shown to work well for estimation. The models are applied to several real and simulated datasets with satisfactory results.
They appear to capture the features of the data better than the best competing autoregressive integrated moving average (ARIMA)

models.

KEY WORDS: Autocorrelation; Autoregressive integrated moving average model; EM algorithm; Mixture transition distribution;

Non-Gaussian time series; Stationarity.

1. INTRODUCTION

Many time series exhibit non-Gaussian features such as
flat stretches, bursts of activity, outliers, and changepoints.
When the aim of the analysis is prediction or simulation, it
is important to model such behavior explicitly. Alternative
approaches in the presence of outliers and bursts are to use
robust estimation procedures (Martin and Yohai 1986) or
to remove outliers based on the use of diagnostics (Bruce
and Martin 1989); other references on outliers in time se-
ries can be found in these papers. These approaches are
valuable when the aim is estimation of structural features;
but when the primary aim is prediction, it is important to
obtain a full predictive distribution that takes into account
the possibility of future flat stretches, bursts, and outliers.
It is also possible to exploit the presence of flat stretches so
as to obtain narrower and more precise predictive intervals.
Similar remarks apply when the goal is simulation.

Here we consider a broad class of models, called mix-
ture transition distribution (MTD) models, that can repre-
sent all of these features. The models are simple, analyt-
ically tractable, and easy to simulate and to estimate, and
they appear capable of capturing a wide range of nonstan-
dard behaviors seen in practice. In this article we focus on
a small subclass consisting of stationary models involving
mixtures of conditional Gaussian distributions, and we in-
dicate how this may be extended in many directions.

As an example, consider Figure 1a, which shows a series
of 300 consecutive hourly viscosity readings in a chemi-
cal process. This series clearly has frequent flat stretches
during which the viscosity stayed virtually constant. One
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would expect this fact to be useful in prediction. This was
series D of Box and Jenkins (1976), who chose to model
it using an autoregressive AR(1) model. Figure 1b shows
a simulated realization from the fitted AR(1) model. The
AR(1) sample path does not look at all like the original
data, and in particular fails to reproduce the flat stretches.
Figure 1c shows a simulated realization from a fitted MTD
model; it clearly reproduces the flat stretches, and it fits the
data well in other ways as well.

For prediction, there is quite a lot to be gained by using
an MTD model rather than an AR model in this example.
The variability in the predictive distribution from the MTD
model is 60% less than in that from the AR model, and the
MTD-based predictive intervals also have empirical cover-
ages much closer to their nominal coverages than do the
AR-based predictive intervals. Further details of this exam-
ple can be found in Section 5.

In Section 2 we describe the MTD model, and in Section
3 we obtain its stationarity and autocorrelation properties.
In Section 4 we discuss estimation, in Section 5 we ana-
lyze some examples, and in Section 6 we outline several
extensions.

2. THE MIXTURE TRANSITION
DISTRIBUTION MODEL

Suppose that {Y;: ¢t € N} is a time series, a sequence of
random variables taking values in an arbitrary space. Then
{Y:} is generated by a mixture transition distribution (MTD)
model if

P
Fuly'™) = > oGl lye-). (1)

1=1

In (1), F(yly'!) is the conditional cumulative distribution
function (cdf) of Y, given that Y'~' = y'~!. evaluated
at y;, where Y* = (Y,.....Y)" and y* = (y1,....95)".
Also >P o, = L, > 0.4 = 1....,p, and G,(|y) is a
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Figure 1. The Chemical Process Viscosity Readings and Simulated

Sample Paths Generated Using the Fitted AR Model and the Fitted MTD
Model. (a) Chemical viscosity readings (series D of Box and Jenkins);
(b) a sample path generated using the fitted AR model; (c) a sample
path generated using the fitted MTD model.

(conditional) cdf for each 7 = 1,...,p and for each value
of y. G,(-|') may be specified by a parameter 6;.

The MTD model (1) was first introduced by Raftery
(1985a,b) in the discrete case, as a model for high-order
Markov chains. In that case it is far more parsimonious than
the usual fully parameterized Markov chain, because it re-
quires only one additional parameter for each extra lag. In
the examples studied by Raftery (1985a), it fits the data very
well. It is a discrete-valued analog to the usual AR(p) model
in that the lagged bivariate distributions satisfy a system of
matrix equations similar to the Yule-Walker equations, and
in that the past values Y;_1, ..., Y;—, do not interact in their
effect on the conditional distribution of Y; given the past. It
is also physically motivated as a direct model for systems
that tend to revert to previously occupied states. Martin and
Raftery (1987) pointed out that the MTD model is defined
for time series on arbitrary spaces and is not confined to
the discrete-valued case.

Here we study the special case where the component con-
ditional cdf’s G, are Gaussian, namely

awmpn@<%lﬁ&i). 2)

i

Although the conditional distribution of Y; given the past is
then a mixture of Gaussian distributions, we have found that
the resulting model is able to model non-Gaussian sample
path behavior such as outliers, bursts, and flat stretches, as
we show by example in Section 5.

We have found it useful to extend the MTD model defined
by (1) and (2) so that it includes the standard AR(p) model
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as a special case. This leads to

— P
fﬂ(yt|yt—l) = ao(b (yt Z]:l ¢ijt—j>

g0

n Zp: . Yt — Pult—
¢ Y ) 3)

=1

We refer to (3) as the Gaussian MTD, or GMTD, model.
A further generalization, obtained by adding a further inde-
pendent component in the mixture, allows us to model inde-
pendent pure replacement-type outliers (Martin and Yohai
1985, 1986) directly. The model is then of the following
form:

Ye =22, qﬁoj'yt_])

0o

Flyly'™) = ao¢><
- Y — DYt
+ ;aﬁ? (~———~OL )

+ ap—{-l@ ( L ) ) (4)
Op+1

. 1
where 0,4, is large and 37 o = 1.

The GMTD model (4) has (4p + 3) independent parame-
ters, which is relatively small given the modeling flexibility
that it allows. In the examples that we have worked with,
we found a special case, the random walk GMTD, to be
useful. This is defined by (3) with

{@=@:m=%:1

, 5
ZfZl (;501 =1. ( )

This generalizes the usual random walk and has (3p + 2)
independent parameters.

There are potential near-nonidentifiability problems with
the full GMTD model (3). For example, the conditional
expectation E(Y;|Y'™!) involves the sums (¢o, + @),
but does not involve either ¢o; or ¢, separately. Estimation
of ¢o, and ¢; separately depends on the shape of the condi-
tional distribution and not on its location, and thus may not
be very precise. The sums (¢g, + ¢,) are likely to be much
better estimated than either term individually. However, for
the purposes of prediction and simulation, these problems
do not present major difficulties. The identifiability problem
does not arise with the random walk GMTD model (5).

The GMTD model (3) can accommodate the situation
where the series is reasonably well approximated by an AR
model and has occasional bursts and outliers. In this case
the main AR component of the series would be captured by
the first term of the model (3), and the additional compo-
nents such as outliers and bursts would be captured by the
other terms. For instance, occasional outliers may be cap-
tured by a term in the model with a large variance o? and
a small «;; bursts can be accommodated with a larger «, or
with a temporal dependent latent process driving the mix-
ing process. The flat stretches can be captured by a random
walk GMTD model with a very small variance.
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3. PROPERTIES

We now give the stationarity and autocorrelation proper-
ties of a times series {Y;} governed by the GMTD model
(3). The proofs are in the Appendix.

3.1 Stationarity

Theorem I. A necessary and sufficient condition for the
process Y: to be stationary in the mean is that the roots
21,...,2p of the equation

p
1- Z (codpoi + aipi)z™" =0
i=1
all lie inside the unit circle.
For the case where there are only two mixture compo-
nents, without the full AR component (i.e., o = 0 and
p = 2), this condition gives a region of stationarity defined

by

o1 + g < 1,
—op1 + g < 1,

and
—aope < 1.

This region is the triangular region displayed in Figure 2.
The defining equations for the region of stationarity in this
case are quite similar to those corresponding to the ordinary
AR(2) process.

These stationarity conditions are derived for the process
with mean zero. However, there are several ways to modify
the GMTD model so that it has a nonzero mean and the
stationarity conditions remain the same. One simple way
is to introduce a constant into the standard AR(p) term of

v L

6 4 2 0 2 4 8
$

Figure 2. Stationarity Regions for Parameters of a MTD Model of
Order 2.
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Equation (3), which then becomes

8-> ¢0jyt—j>

o0
Zaz ( ¢zyt 1,>.

Now suppose that the process Y; is stationary in the mean.
The conditions for second order and strict stationarity are
quite difficult to obtain. However, when oy = 0 (i.e., the
process Y; is defined by (1) and (2)), the conditions for
second-order stationary can be derived as follows.

_ Yt
Fyly®™) = ao® <

Theorem 2. Suppose that the process Y;, defined by (1)
and (2) with o = 0, is first-order stationary. A necessary
and sufficient condition for the process to be second-order
stationary is that the roots 21, ..., 2, of the equation

P
1- E gtz =
i=1

all lie inside the unit circle.
In the case where p = 2, this condition gives a region of
stationarity defined by

041(15% + 02(15% < 1.

This region is the ellipse displayed in Figure 2. Thus an
extra condition is needed for the process to be second-order
stationary. This is in contrast to the ordinary Gaussian AR
model, which does not require any additional condition for
second-order stationarity.

3.2 Autocorrelations

We now obtain the autocorrelations for the GMTD model
(3). These autocorrelations satisfy a system of equations
similar to the Yule-Walker equations. We then explicitly
derive the range of autocorrelations for the case ap = 0
and p = 2. This range is then compared with that of the
ordinary AR(2) process.

Suppose that the process Y; is second-order stationary
and, without loss of generality, assume that its mean is zero.
Let p; be the lag-l autocorrelation. Then

E(Y1Yi) =

p
=FE (Yt_z Z (cooi + aidh‘)Yt—i)

i=1

EE(Y;Y; )Y )]

= > (codoi + i) E(Yi-1Ys-s).

1

Because the process is second-order stationary, it follows
that

pL= Z (ogoi + aids)p—sy for I=1,...,p. (6)

These equations are similar to the Yule-Walker equa-
tions for the ordinary AR(p) process, where the coefficient
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apdo, + oy, 18 replaced by the lag-i coefficient of the
AR(p) process.

Tn the case ap = 0 and p = 2, the equations (6) for [ = 1,2
become

p1 = a1 + aadapr (7)
and
p2 = a1¢1p1 + . (8)

The admissible region for the autocorrelations p; and ps is
defined by

afpi+ (=20F + an + 1)pT — 2pap7
+ (1 —en)pspt + anps — ar (1 — ) < 0.
The boundary of this region satisfies the equation

oy = piE£Vai (1l —a)(1 - pp)?
(1—a1)pf +au

)

with 0 < a; < 1 and —1 < p; < 1. The derivation of the
admissible region and its boundary defined by (9) are given
in the Appendix.

The plot of p; against p2, which represents the range of
autocorrelations of the restricted GMTD model with p = 2
and ag = 0, defined by (1) and (2), is displayed in Figure 3
and compared to the range of autocorrelations of the ordi-
nary stationary AR(2) process. This shows that even when
the full AR(2) component is not included, the range of auto-
correlations allowed by the MTD model is almost as great
as for the standard AR(2) process. Of course, for the full
GMTD model (3), the range of possible autocorrelations is
as great as that of the standard AR process.

4. ESTIMATION
4.1  An EM Estimation Algorithm

In this section we use the EM algorithm (Baum 1971;

Q |
-

0.0 0.5

lag-2 autocorrelation

-0.5

4

Q
)

T

-1.0 0.5 0.0 0.5 1.0
lag-1 autocorrelation

Figure 3. Range of Possible Autocorrelations for the Second-Order
MTD Process Defined by Equations (1) and (2) Withp = 2.
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Dempster, Laird, and Rubin 1977; Good 1956; Hartley
1958) to estimate the parameters of the GMTD model (3).
This provides a framework for estimating parameters in a
mixture model that can be applied to the present problem as
follows. Suppose that the observations Y = (y1,...,y,) are
generated from the GMTD model (3). Let Z = (Z1, ..., Z,,)
be the unobserved random variable, where Z; is a (p + 1)-
dimensional vector with component j equal to 1 if y; comes
from the jth component of the conditional cdf, and to zero

otherwise. Then the distribution of Z; = (2:,0, 2,1, - .-, 2,p)
is
P[Z; = (1,0,0,...,0)] = o,
P[Zt = (0’1ﬂ07-'-70)] =aq,
P[Zt - (0, 07 O, ) l)] = (yp
Let
a = (ag,...,0p),
o = (0-07 . 7(fp)w
¢) = (¢17 -'7¢p)7
¢U = (¢)017 '1(/750]))7
and
yP = (yt—la yt_p>
and set

V(¢>¢070) =

_ -1
<1ogf <——yt fsyP ),

— 1y
logf<m ,1!/11)7_“’

01

.
log f (—wy' - fpytp>> ,
P

Ula) = (logag, logary, ..., loga,)T,

and

W (o) = (log 0p,logoy, ..., log ap)T7

where f is the standard Gaussian density. Because Y and 2
are independent and the Z, are independent of each other,
the (conditional) log-likelihood for the complete data X =
(Y,Z) is

L(X7¢7¢O7Uaa): Z Z'Lv(d)vd)()',o')

1=p+1
+ > ZU(@) - > Z,W(o).
1=p+1 1=p+1

Here the log-likelihood function is evaluated conditionally
on the first p observations. To ensure its comparability when
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comparing different orders, we use the largest order for p.
The iterative EM procedure for estimating the parameters
by maximizing the log-likelihood function contains the fol-
lowing two steps:

E step: Suppose that ¢, ¢, o, and « are known. The
missing data Z are then replaced by their conditional ex-
pectations, conditioned on the parameters and on the ob-
served data Y. In this case the conditional expectation of
the jth component of Z; is just the conditional probability
that the observation y; comes from the jth component of
the mixture distribution, conditioned on the parameters and
Y. Denote the conditional expectation of the jth component
of Z; by 2 ;. Then the E step equations are as follows:

7, = ajhj (ye) ]
T apho(ye) + Soh_y crhu(ye) ’

and

aoho(yt)
aoho(ys) + 31— cuhy(ye)’

where hy(y:) = (1/0;)f((ye ~ ¢jy:—,)/05),5 = 1,...,p,
and ho(y) = (1/00) f ((ye — 220, Poryi—1)/00).

M step: Suppose that the missing data are known. The
estimates of the parameters ¢, ¢y, o, and « can then be
obtained by maximizing the log-likelihood function L.
The estimated parameters, <2>, (2)0, 6, and &, must satisfy the
following M step equations:

20 =

OL

- =0,
9 14.40.6.4
OL
— =0,
9o b,0,5,6
oL
St =0,
Oy 4,64

and
oL 0
99 14, 44,64

The estimates of the parameters are then obtained by it-
erating these two steps until convergence. Wu (1983) has
studied the convergence of the algorithm.

Given the model order, the information matrix can be
obtained by numerical differentiation or by using the ECM
algorithm (Meng and Rubin 1993), and used to obtain stan-
dard errors. We use the numerical method described by Tan-
ner (1993) to obtain the standard errors of the estimates in
the examples.

Journal of the American Statistical Association, December 1996

4.2 A Simulation Study

We now report the results of a simulation study designed
to assess the performance of the EM estimation method.
The simulation study is carried out with p = 2. There are
100 sample paths, each with 200 data points, generated by
the GMTD model (3). The parameters of the model are
chosen as follows:

o = (05070’,1,@2) = (4, .3, 3),
g = ((70,0’1,0'2) e (1, 1,5),
¢ = (¢1a¢2) = (_'77 8)’

and

Do = (do1, Po2) = (.9, —.6).

For each sample path, the EM algorithm is used to estimate
the parameters. In this case the F step equations remain the
same as before and the M step equations become

n ~
1 2t:p+1 Ztyytytfj

QZS/‘ I~ ) j:l,...,p,
! > th!/f_J
A Z[ 2t] .
(‘Y':_“_"—T, ]:O,...,’,
! Zt Zz 2tl P
- - 1/2
Gi = >0 2y (e — djyi—j)°
’ Zt 2tj ’

and

Zt Z40

where the components of <2>0 satisfy the following system
of equations:

D
Z Z0YtYt—0 = Z Po, Z 200Yt—jYe—is i=1...,p
=1 i

t

- Ay 1/2
R (Zt Zio(ye — ({bOY; 1)2>
gy = )

The sample means and standard errors of the EM param-
eter estimates are shown in Table 1. The results indicate
that the estimation method works well. The sample means
are very close to the true values, and the sample standard
errors are small. ’

5. EXAMPLES
5.1

Figure 4a shows the daily IBM common stock closing
price from May 17, 1961, to November 2, 1962 (369 obser-
vations); this is series B of Box and Jenkins (1976 hereafter

Example 1: IBM Stock Prices

Table 1. Empirical Means and Standard Deviations (SD) of the EM Parameter Estimates
for the Simulated Datasets
o Mean (SD) 4 Mean (SD) @ Mean (SD) bo Mean (SD)
4 .40 (.05) 1 .98 (.13) -7 —.70 (.03) 9 .90 (.02)
3 .30 (.05) 1 .99 (.16) .8 .79 (.04) —.6 —.60 (.02)
3 .30 (.05) 5 4.90 (.53)
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Figure 4. IBM Common Stock Daily Closing Price From May 17,

1961 (Day 1) to November 2, 1962 (Day 369). This is series B of Box
and Jenkins (1976). (a) IBM daily common stock price (series B in BJ);
(b) a sample path generated using the fitted MTD model; (c) a sample
path generated using the fitted ARIMA model.

denoted by BJ). BJ identified an autoregressive integrated
moving average model, ARIMA(O, 1, 1), as the best model
for this series; namely,

Yt = Yp—1 + & — 0941,

where the {e;} are independent N (0, c?) random variables
with 02 = 52.2. However, they found some evidence of
model inadequacy, which could be due to a change in the
moving average parameter (Box and Jenkins 1976), to vari-
ance shifts (Wichern, Miller, and Hsu 1976), or to nonlinear-
ity (Tong 1990). Thus models other than the linear ARIMA
model might perform well for these data.

To compare the rival, nonnested, models for this series
and for those in other examples, we use the Bayes informa-
tion criterion (BIC),

BIC = 2log(maximized likelihood) — & log(n),

where & is the number of independent parameters estimated.
This was first derived by Schwarz (1978) in the case of in-
dependent observations; his results imply that in large sam-
ples, the BIC is approximately equal to minus twice the
logarithm of the Bayes factor against the model of interest
in favor of an appropriate baseline model. Thus the crite-
rion favors models with large BIC values. In these exam-
ples the comparisons between the best ARIMA and MTD
models are decisive and are not sensitive to the particu-
lar model-comparison procedure adopted. For example, the
same conclusions would be reached using significance tests
at the 5% or 1% levels, or using the Akaike information
criterion (AIC) (Akaike 1973).
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Table 2. Model Comparison for the IBM Stock Price Series

Model k 2 log-likelihood BIC
MTD 6 —2,431 —2,466
ARIMA 2 —2,494 —2,506
Difference 4 63 40

The best MTD model according to the BIC is the second-
order random walk GMTD, defined by (5); namely,

Yo — oY1 — (1 — ¢)yt—2>

00

+ oy ® (yt —yt—1> T ay® <'A/t _yt—2> .
g1 a9

The estimated parameters are ¢ = 1.94 with standard error
SE4, = .28,

Flyly'™") = ao‘b(

(a0, 1, 2) = (.24, .69, .07),
and
(00,01,02) = (6.38,5.03,11.23),
with
(SEs,, SE,,,SE,,) = (1.06,.77, 3.41).

A comparison with the ARIMA(O, 1, 1) favored by BJ is
shown in Table 2; the MTD model is strongly preferred.

A sample path generated using the fitted MTD model is
displayed in Figure 4b. For comparison, we also generated
a sample path for the fitted ARIMA model with the same
sequence of observations for the white noise process; this
path is displayed in Figure 4c. The plots indicate that both
models are capable of producing sample paths that have
qualitative characteristics similar to those of the original
series. Both models have their estimated parameters near
the boundary of stationarity.

[=3
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[=3
3
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g e
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<
0 20 40 60 80 100
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0 20 40 60 80 100

(b)

Figure 5. 90% (a) and 60% (b) Predictive Intervals for the IBM Stock
Price Series. The dots denote the original observations. The dashed
lines are for the ARIMA-based predictive intervals and the solid lines
are for the GMTD-based predictive intervals.
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Table 3. Mean Squared Widths of the (1 — )% Pl'’s for the
IBM Stock Price Series

(1— )% .90 .80 .70 .60 .50
MTD 519.1 304.1 184.1 117.6 69.5
ARIMA 569.1 346.2 225.8 148.9 95.6

The predictive intervals (PI’s) for the series are con-
structed with one-step ahead prediction using both the fit-
ted ARIMA and MTD models. The 90% and 60% PI’s are
shown in Figure 5.

For easy visual examination, only the first 100 points
are plotted. The plots show that the MTD model produces
smaller PI’s than those produced by the ARIMA model used
by BJ. To examine this point further, we show the mean
squared widths of the PI’s in Table 3. The results confirm
that the ARIMA-based PI’s are longer on average than the
corresponding GMTD-based PI's for each nominal cover-
age. The empirical coverages of these PI’s (namely, the per-
centages of the data that fall within them) are displayed in
Table 4. The result shows that the PI’s constructed using the
GMTD model are better than those constructed using the
ARIMA model in the sense that the GMTD-based predic-
tive intervals have empirical coverages closer to the nomi-
nal coverages than the ARIMA-based predictive intervals,
especially for the lower nominal coverages.

The normal probability plots of the MTD-based and
ARIMA-based prediction residuals are shown in Figure 6.
Both plots indicate that the prediction residuals have distri-
butions with tails heavier than that of the Gaussian distribu-
tion. For this reason, the ARIMA-based PI’s, which assume
normality for the prediction residuals, are longer than they
are supposed to be and consequently overestimate the true
coverage. This mild, but important, non-Gaussianity is bet-
ter captured by the GMTD model, explaining its superiority
for this series. Box, Jenkins, and Reinsel (1994, pp. 317-
318) also considered the possibility that the inadequacy of
the ARIMA(O, 1, 1) might be accounted for in part by a
change in variance.

5.2 Example 2: Chemical Process Viscosity Series

Figure la shows series D from BJ, a series of consec-
utive hourly viscosity readings from a chemical process.
This series exhibits frequent flat stretches, and it is clear
from Figures 1b and 1c that these are captured better by
the MTD model than by the preferred ARIMA model of
BJ; namely, the AR(1) model

yr = .87ys—1 + 1.17 + €4,

Table 4. Empirical Coverages of the (1 — )% Pl's for the
IBM Stock Price Series
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Figure 6. Normal Probability Plots for the MTD-Based (a) and
ARIMA-Based (b) Prediction Residuals for the IBM Stock Price Series.

where 02 = .09.

The preferred MTD model according to BIC is the
second-order random walk GMTD model defined by (5).
This is the same model that was selected in Example 1.
The estimated parameters are ¢ = 1.06 with SE, = .04,

(g, 1, 0) = (.63,.25,.12),
and
(00,01,02) = (.1195,.0014,.0989),
with
(SEy,, SE,,, SE,, ) = (.002,.0004, .005).

A comparison with the AR(1) model favored by BJ is pre-
sented in Table 5. Again, the preference for the MTD model
is strong.

The 90% and 60% PI’s for the first 100 observations are
shown in Figure 7. The 90% PI's produced by the MTD
model are quite similar to those produced by the AR model,
but the 60% GMTD-based PI’s are smaller than the corre-
sponding AR-based PI's. Table 6 shows that although the
AR-based 90% PI’s are slightly narrower on average than
the corresponding MTD-based PI’s, the other AR-based
PI’s are wider than the corresponding MTD-based PI's. The
empirical coverages of these PI's are displayed in Table 7.
The results indicate that both models produce similar results
for the 70%-90% PI’s. Although the 50% and 60% GMTD-
based PI's underestimate the coverages slightly, they are
quite close to the nominal coverages. On the other hand,

Table 5. Model Comparison for the Chemical
Process Viscosity Series

Model k 2 log-likelihood BIC
(1— )% .90 .80 .70 .60 .50 MTD 7 —84 —124
AR 3 —-134 —151
MTD .91 .81 71 .62 51
ARIMA .90 .84 .78 .73 .56  Difference 4 50 27
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10 11

9

Figure 7. 90% (a) and 60% (b) Predictive Intervals for the Chemical
Process Viscosity Series. The dots denote the original observations. The
dashed lines are for the AR-based predictive intervals, and the solid lines
are for the GMTD-based predictive intervals.

the corresponding AR-based PI's overestimate the nomi-
nal coverages by a much bigger margin. Overall, the MTD
model is preferred for these data.

5.3 Example 3: A Simulated Series

We now consider a simulated series that exhibits bursts
of activity. The series consisting of 300 points displayed in
Figure 8a is generated using model (3) with g = 0,p = 3
where

(¢1a ¢27 ¢3) =

(a1, a2,03) =

(.3,.3,-2.5),
(4,.4,.2),
and
(0‘1,0‘2,0'3) = (1, 1,5)
According to the BIC, the best MTD model is the third-

order MTD model with estimated parameters

(¢1, 02, ¢3)

(0617042,063) =

= (.3,.3,-2.38),
(.37,.42, 21),
and

(01,09,03) = (.89,.95,4.75),
with (SEy,, SEy,, SE4,) = (.008,.006,.06) and (SE,,,
SE,,, SE,,) = (.12,.11,.46). The best AR model for this
series is of order 5. Table 8 indicates that the MTD model
is strongly preferred, as one would expect.

We also generated a sample path for the fitted AR model,
which is shown in Figure 8b. This shows that the simulated

Table 6. Mean Squared Widths of the (1 — «)% PlI’s for the
Chemical Process Viscosity Series

(1— )% .90 .80 .70 .60 .50
MTD 1.03 .54 .28 14 .06
AR .97 .59 .39 .26 16
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Table 7. Empirical Coverages of the (1 — )% Pl's for the
Chemical Process Viscosity Series

(1—a)% .90 .80 .70 .60 .50
MTD 91 .80 .67 .56 .48
AR 91 79 .73 .68 .59

AR sample path does not have the main characteristic of
the series being analyzed—bursts of activity. This compar-
ison is carried out purely to show that the AR model is not
adequate in this situation, but in fairness it must be remem-
bered that the AR model is not designed to perform well in
such circumstances.

Tables 9 and 10 show that the MTD-based PI's are
much better than the corresponding AR-based PI’s, and the
GMTD-based PI's are much narrower. Also, the GMTD-
based PI's have very good empirical coverages, whereas
the AR-based PI's overestimate the nominal coverages very
badly.

6. EXTENSIONS AND GENERALIZATIONS

The general MTD model (1) can be used to model quite
general non-Gaussian time series, even when it takes values
in a non-Euclidean space. The model was first introduced
for discrete data by Raftery (1985a) and was studied further
by Adke and Deshmukh (1988), Kwok (1989), Li and Kwok
(1989), Raftery (1985b), and Raftery and Taveré (1994).
It is also appropriate for sequences of counts and success
proportions; models for the Poisson and binomial case were
proposed by Raftery (1985b).

The MTD model may also be used to represent positive-
valued time series; for example, exponential, gamma, or
Weibull. This model seems to avoid the problems associ-
ated with previous efforts in this direction, such as those of
Gaver and Lewis (1980) and Lawrence and Lewis (1985)
(see Raftery 1985c¢).

The models can also fit time series with both discrete
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Figure 8. Simulated Series With Bursts (Example 3) (a), and a Sim-
ulated AR(5) Sample Path (b).
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Table 8. Model Comparison for Example 3

Model k 2 log-likelihood BIC
GMTD 8 —1,239 —1,284
AR 5 —2,198 —2,226
Difference 3 959 942

and continuous components in a natural way. One important
application of this is rainfall series (Stern and Coe 1984). It
lends itself naturally to the analysis of time series of angles
and has been used successfully by Craig (1989) and Raftery
and Tavaré (1994) to model time series of wind directions.
It could also be used to model time series of continuous
proportions, taking values in the simplex. (For a review of
the analysis of independent data of this kind, see Aitchison
1986.)

Another extension consists of allowing the random vari-
ables {Z,} defined in Section 4.1 to follow a Markov chain
rather than to be independent as in the present formulation.
The variable Z; determines which component of the con-
ditional distribution of Y; is chosen at time ¢t. When this
is a Markov chain, {Y;} is a hidden Markov process and
so belongs to a class of models that have proven useful
in research on speech recognition and image reconstruc-
tion (Levinson, Rabiner, and Sondhi 1983). The parameter
estimates can be obtained in this case using the forward—
backward algorithm of Baum (1971) (see Le, Leroux, and
Puterman 1992).

It may be possible to generalize the model further by
allowing the G, (+|-) in Equation (1) to be nonparametric and
to estimate them from the data. When both the o, and the G,
are unknown, this is a semiparametric estimation problem
(Bickel, Klaasen, Rartov, and Wellner 1993; Wellner 1985).
It may be possible to avoid the apparent nonidentifiability
problem by using an iterative estimation scheme, switching
between estimation of the «, and the G,.

Most of our discussion has related to short-memory sta-
tionary time series. However, the general MTD framework
also may be used to model both long-memory stationary
time series and nonstationary time series. Long-memory
stationary time series are characterized by the fact that the
variance of the sample mean declines more slowly than
O(1/n), that the autocorrelation function declines asymp-
totically much more slowly than in the short-memory case
(hyperbolically rather than exponentially), and that the spec-
trum is unbounded at zero. The long-memory property can
be captured by an inifinite-lag MTD model, defined by (1)
with p = oo, where the «, and the G, are suitably parame-
terized. One possible choice for the «, is

d(1—d)-(i—1—d)
il '

(10)

o, =

Table 9. Mean Squared Widths of the (1 — «)% PI's for Example 3

(1~ )% .90 .80 70 60 50
MTD 350 298 240 198 23
AR 1,084 658 430 284 182
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Table 10. The Empirical Coverages of the
(1 — )% Pl's for Example 3

(1—a)% .90 .80 .70 .60 .50
MTD .89 77 .70 .61 .49
AR .95 .94 .92 .91 .88

These are the same as the 7 weights for the fractionally
differenced ARIMA(0, d,0) process (Granger and Joyeux
1980; Hosking 1981), and so this can be regarded as a
non-Gaussian generalization of the fractional differencing
model. This may be generalized to allow for both long-
memory and short-memory dependence by setting the «,
equal to the 7 weights for the fractionally differenced
ARIMA(p, d, q) process. Mehran (1989) has also discussed
infinite-lag MTD models, although in a different context
and only for discrete-valued time series.

A natural way of modeling nonstationary time series is to
use state-space models. Kitagawa (1987) has described quite
a general framework for non-Gaussian state-space model-
ing. This is based on the idea of an unobserved state of
the process, x;, which may be vector valued, and evolves
in a Markovian fashion according to a state equation that
specifies the transition density p(z|z¢—1). Conditionally
on the state x;, the observations are independent with a
conditional density p(y:|z:), specified by the observation
equation. Kitagawa (1987) showed how the resulting fil-
tering, updating, and smoothing equations may be solved
by numerical integration; this becomes extremely demand-
ing computationally as the dimension of the state increases.
Martin and Raftery (1987) showed how the problem can be
simplified if the state equation has a form similar to the
MTD equation (1).

7. DISCUSSION

We have discussed a class of time series models, the MTD
models, that can capture many non-Gaussian features, in-
cluding flat stretches, bursts, and outlier stretches, as well as
much more general non-Gaussian behavior, in a single uni-
fied model framework. Raftery (1994) has shown that they
can also be used to represent changepoint-like behavior.

Other models that can capture some of these features
have also been proposed. For example, bilinear time series
models (Subba Rao 1984) can represent bursts quite well.
Threshold models (Tong 1990) can deal with flat stretches.
The literature on Bayesian forecasting and recursive updat-
ing provides ways of dealing with some of these features
that also involve mixtures, although they arise in a quite dif-
ferent way (Alspach and Sorenson 1972; Denby and Mar-
tin 1979; Harrison and Stevens 1976; Martin 1979; Martin
and Yohai 1985; Smith and West 1983; Taplin and Raftery
1994; West 1986). A useful aspect of the MTD model class
is that it can represent a wide range of such behaviors in
the context of the same model.

The conditional mean predictor for the MTD model (1)
is

EY Y™ =yl =) augilyid),

1=1
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where ¢;(y) = [ 2 dG,(z|y). This is an ACE-type predictor
for time series (Owen 1983); see Breiman and Friedman
(1985) for ACE modeling in regression. This conditional
expectation is the same as that for the generalized additive
model (Hastie and Tibshirani 1986), but here the error dis-
tribution is a mixture of conditional distributions. So gen-
eralized additive models are quite different from what we
propose here.

APPENDIX A: PROOFS OF THEOREMS
IN SECTION 3

The theorems in Section 3 are proven by using a result due to
Benés (1967). Roughly, Benés showed that for a Markov process
Y; to have a finite invariant measure, it is necessary and sufficient
that there exist a moment of V;, say of order k, that is finite for
all t. The existence of a finite invariant measure would ensure
the stationarity of the process, assuming that the process started
somewhere very far in the past or started with the initial distribu-
tion corresponding to the invariant measure. That is, the process is
strictly stationary with a finite kth order moment. First, we state
the results obtained by Benés (1967) in the following theorem.

Theorem 3 (Benés 1967). Let y, be a Markov process on a
locally compact metric space (£, p) with a countable base. Let B
be the o algebra generated by the open sets, and for A € B,¢ > 0,
set

P(t,y, A) = Pr{y: € Alyo = y}.
Assume that for fixed ¢ and A, P(t,y, A) is continuous in ¥, that
for an € neighborhood S¢ (y) about y, P(t,y, Se(y)) — 1 ast — O,
and that P(t,y,€) — 1. Let C" be the strictly positive cone of
the Banach space ca(€, B) consisting of the countably additive set
functions on B with variation norm. Let Uy, ¢ > 0 be the semigroup
defined for a measure 4 by the formula

Uip(A) = /P(t,yvA)u(dy),
JE

and let (f, ) denote the action of a linear functional on u. A
B-measurable function f on &£ is a “moment” iff f > 0 and
infyee—x, f(y) — oo as some sequence of compact set K, 1 .
Then the following conditions are equivalent:

* . has a positive finite invariant measure.
* there exists 4 € C7 and there exists moment g, with
Sup,;>0(9, Usit) < 0.

Using this result, the proofs of the theorems go as follows. The
notation used here is the same as in Section 3.

Proof of Theorem 1
Let ju; be the mean of Y;. Then by the model (3),
pe = B(Y:) = BE(Yi|Yie1, ..., Yip)

P

p
= EZ (a0¢01 + a1¢z)Yt»z = Z (aO(bOz + az¢z),uft—z<

1=1 =1
The necessary and sufficient condition for this homogeneous dif-
ference equation to have a stable solution, which is finite and in-
dependent of ¢, is that the roots z1, ..., 2, of the equation
P
1- Z (a0¢01 + az¢z)Z~1 =0
=1
all lie inside the unit circle (Goldberg 1958). Let x4 be the measure
corresponding to the distribution of the process at time zero (i.e.,
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finite mixture of Gaussian distributions), and hence ;« € C'*. Thus
by the Benés result, there exists a finite invariant measure for the
process Y;.

Proof of Theorem 2

Let g:(y:) be the marginal density of Y;. By (1) and (2), it can
be written as

P
ge(ye) = Z(Yz /ht(yf)gm(ytﬂ)dytﬂ,
=1

where R, (y:) = (1/0.) f((y¢ — $.9:—.,)/0,). Thus

p .
/(%)2 Zou / ho(ye)ge— (Y1) dyi—, dys
) =1 |
ZO& //(yt - d)lytfl + (ZJVLy,_l)Z
1=1 Yoo

X ho(Ye)ge—i(Ye—) dyi—. dys

p .
Zaq //(yf, — buYe—) R (Ye) ge— (yi—) dye—r dys
=1
P
+ Zal //(a%ytﬂ)QhT(yt)gtﬂ(ytﬂ)dyh, dy.
=1 "

The first term on the right side is then

P . ‘(z) 2
= Zazaf// (%) ho(ye) ge—o(ye—.) dye—, dy:
1=1 ¢
p
= Zalaf =C,
=1

which does not depend on ¢. The second term is

= Za‘(¢7)2 //(?/L—'L)ghz(.Uf)!/f—z(ytr«?)d?/r—zdyt
=1 v

p

= > a(e) BV

1=1

E(Y,)” =

Il

Thus

P
E(Y)® =) al¢) E(Yi )’ +C.
1=1
The necessary and sufficient condition for a nonhomogeneous
difference equation to have a stable solution that is finite and in-
dependent of ¢ is that the roots zy, ..., z, of the equation

P
1= au(g)? =0
=1

all lie inside the unit circle (Goldberg 1958). Let i be the measure
corresponding to the distribution of the process at time zero (i.e.,
finite mixture of Gaussian distributions), and hence i € C™*. Thus
by the Benés result, there exists a finite invariant measure for the
process Y.

APPENDIX B: RANGE OF AUTOCORRELATIONS

This is the derivation of Equation (9). By Equations (7) and (8),
we have

a1¢>1

1 — a2 (B-1

p1
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and
p2 = c191p1 + a2d2. (B.2)
Solving the system (B.1)—(B.2) yields
oy = p_l.__ngﬂ (B.3)
1-py
and
gy = 201 (B.4)
1—p7

Because the process {y:} is second-order stationary, by Theorem
2 we have

011(15% + azgf)% <1

or, equivalently,

(a1¢>1)2 + (0126252)2

(631 Q9

Substituting (B.3) and (B.4) into (B.5) yields

2 2
1 [ p1—p2p1 1 (p2—pt
o1 1 - p7 (o) 1 - pt

az(p1 — p2p1)? + a1 (p2 — p1)? — cna(1 — p7)? < 0,

<1 (B.5)

and
(1—a1)(pr = p2p1)® + arlpz — p7)? —a1(1 — aa1)(1 = p})* < 0,

since a1 + az = 1. Hence, rearranging this equation gives the
range of autocorrelations defined by

adpt + (=203 + a1 + 1)p} — 2p2p%
+(1- al)pgpf + alpg —ai(l—a1) <0, (B.6)

where
IIO1| _<_ 17
Ip2| S 1>
and
|a1| S_ 1.

Thus the boundary of the region defined by (B.6) satisfies the
following equation for fixed oy and ¢1:

aps + 2bps + ¢ =0,

where
a = (1 - al)p% + a,
b = —p%)
and
c=aipt + (=205 + a1+ 1)pf — a1(l — o).
Because

b —ac= (a% —ad)1-pd)? >0,
the solutions of the foregoing quadratic equation satisfy

oo = pi £ y/0d(1—ar)(1 - p3)?
(I—a1)pf + o ’

This is Equation (9) in Section 3.

[Received December 1993. Revised April 1996.]
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