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Estimating Bayes Factors via Posterior Simulation
With the Laplace—Metropolis Estimator

Steven M. LEWIS and Adrian E. RAFTERY

The key quantity needed for Bayesian hypothesis testing and model selection is the integrated, or marginal, likelihood of a model.
We describe a way to use posterior simulation output to estimate integrated likelihoods. We describe the basic Laplace—Metropolis
estimator for models without random effects. For models with random effects, we introduce the compound Laplace-Metropolis
estimator. We apply this estimator to data from the World Fertility Survey and show it to give accurate results. Batching of
simulation output is used to assess the uncertainty involved in using the compound Laplace-Metropolis estimator. The method
allows us to test for the effects of independent variables in a random-effects model and also to test for the presence of the random

effects.

KEY WORDS: Compound Laplace-Metropolis estimator; Integrated likelihood; Marginal likelihood; Markov chain Monte Carlo;

Random-effects model; World Fertility Survey.

1. INTRODUCTION

The standard Bayesian solution to the hypothesis testing
and model selection problems is to compute Bayes factors
for comparing two or more competing models (see Kass
and Raftery 1995 for a survey). The Bayes factor, By;, for
comparing model My to model M; for observed data, Y,
is the ratio of the posterior odds for M, against M; to the
prior odds, which reduces to

Boy = LY Mo)
F(Y|My)
In other words, the Bayes factor is the ratio of the inte-
grated (or marginal) likelihoods of the two models being
compared. Hence calculation of Bayes factors boils down
to computing integrated likelihoods,

F(Y (M) = / F(Y 18y, Myn) f (B M) 0 = 0,1,

where 0,, is the vector of parameters in model M, and
f(0,|M,,) is its prior density. Dropping the notational de-
pendence on the model, this can be rewritten as

f(Y) = / f(Y|0)£(6) de.

Historically, the integration required for calculating in-
tegrated likelihoods has been done by taking advantage of
conjugacy, by assuming approximate posterior normality,
or by using numerical quadrature, the Laplace method, or
Monte Carlo integration (see Kass and Raftery 1995 for a
review and references). More recently, it has become pos-
sible to estimate a wider range of models than previously,
using posterior simulation methods such as Markov chain
Monte Carlo (MCMC), the sampling importance resampling
(SIR) algorithm of Rubin (1987, 1988), and the weighted
likelihood bootstrap (Newton and Raftery 1994). Previous
ways of calculating integrated likelihoods often cannot be
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used for models estimated via MCMC or other posterior
simulation methods.

Several ways of estimating integrated likelihoods from
posterior simulation output have been suggested. These
were surveyed by Raftery (1996a) and include importance
sampling methods such as the harmonic mean of the output
likelihoods and modifications thereof (Newton and Raftery
1994), bridge sampling (Meng and Wong 1993), and path
sampling (Gelman and Meng 1994) (see also Gelfand and
Dey 1994). For the case where all complete conditional den-
sities have closed-form expressions, Chib (1995) has de-
scribed a method for finding integrated likelihoods from
posterior simulation output. In many applications these
closed-form densities are not available, in which case this
method will not be applicable.

Carlin and Chib (1993), George and McCulloch (1993),
Green (1995), and Madigan and York (1995) have proposed
MCMC methods that move through the set of models con-
sidered, eventually visiting each one with a frequency pro-
portional to its posterior model probability. These methods
can be used to estimate Bayes factors, but they require that
a new MCMC method be designed either in addition to or
incorporating the one used to estimate the models. Our fo-
cus here is on the computation of integrated likelihoods, and
hence Bayes factors, from the posterior simulation output
for the individual models.

In Section 3 we describe the basic Laplace-Metropolis
estimator of the integrated likelihood. In hierarchical mod-
els with both fixed and random effects, the basic Laplace—
Metropolis estimator cannot be used directly. Thus, in Sec-
tion 4 we introduce the compound Laplace-Metropolis es-
timator for hierarchical models. This estimator results from
applying the Laplace method at two different levels; it is ap-
plied at a second level to integrate out each of the random-
effects parameters.

In Section 6 we use the compound Laplace-Metropolis
estimator to calculate log-integrated likelihoods for a num-
ber of different models fit to data collected in Iran as part
of the World Fertility Survey. By taking the difference be-
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tween log-integrated likelihoods for two competing models,
we can estimate the log Bayes factor for comparison of the
two models. .

How variable are the log-integrated likelihood estimates
produced by the compound Laplace-Metropolis estimator?
In Section 7 we show how to answer this question by batch-
ing the posterior simulation output. We close by comparing
the estimates of the log-integrated likelihoods provided by
the compound Laplace-Metropolis estimator with a “gold
standard” based on very large samples from the prior dis-
tribution. The compound Laplace-Metropolis estimates are
seen to be remarkably accurate, particularly in light of the
substantially reduced computing time required.

2. CALCULATING THE INTEGRATED LIKELIHOOD
USING THE PRIOR DISTRIBUTION

Before describing the Laplace-Metropolis estimator, we
first describe a method for obtaining a “gold standard”
for the accurate calculation of integrated likelihoods with
which we can compare the Laplace-Metropolis estimator
developed in this article.

Because the integral in Equation (1) is not generally ana-
lytically tractable, it is usually necessary to approximate it.
This integral can be approximated by a simple Monte Carlo
estimator of the form

fmc =

~l =

J
> F(YIeW), 2
j=1

where {8():j = 1,...,J} is a sample from the prior dis-
tribution of the parameters. Unfortunately, it is generally
necessary to obtain a very large number of draws from
the prior distribution before f,,. becomes a good estima-
tor for the integral in Equation (1). In one study, Lewis
(1994) found that to reduce the Monte Carlo standard error
to an acceptable level, it was necessary to use a sample of
roughly 50 million draws from the prior distribution. The
computing effort needed to obtain such a large sample can
be enormous, requiring several days of computer time on
most workstations currently available. In this article we de-
scribe an estimator of the integrated likelihood that needs
much less computer time.

However, to check the accuracy of the estimator that we
describe, we have also calculated the Monte Carlo estimate
using Equation (2) for some of the models demonstrated in
this article; we refer to this Monte Carlo estimate as the
“correct” or “actual” log integrated likelihood. Unlike the
other methods considered, this has the advantage of being
the mean of a large number of independent and identically
distributed random variables, to which the law of large num-
bers and the central limit theorem apply. Thus, given enough
samples from the prior, we can be sure of getting close to
the correct value of the integrated likelihood and also of
having a reliable statement of the error involved.

3. THE LAPLACE-METROPOLIS ESTIMATOR
OF THE MARGINAL LIKELIHOOD

The Laplace approximation for an integral of the form

649

[ e"®du is found using a Taylor series expansion of a
real-valued function h(u) of a P-dimensional vector u. The
resulting Laplace approximation is

/ "™ du ~ (2m)P/2[H* /2 exp{h(u*)},

where u* is the value of u at which & attains its maximum
and H* is minus the inverse Hessian of & evaluated at u*.
The Laplace approximation is justified when h is a smooth,
bounded unimodal function, with a single dominant mode
at u* (Tierney and Kadane 1986). In practice the Laplace
approximation often works well even for some functions
that do not completely satisfy these conditions. We present
an example of this later.

For our purposes, we want to use the Laplace method to
approximate the integrated likelihood

10 = [ s@)scvi0)ae,

where f(0) is the prior distribution of a vector param-
eter 6 and f(Y|@) is the likelihood. Letting h(@) =
log{f(0)f(Y|0)}, we can apply the Laplace method to de-
rive the following approximation for the integrated likeli-
hood:

FOY) = (2m)P2H V2 £(0%) £ (Y]6*), 3)

where 6* is the value of 0 at which A attains its maximum

. and H* is minus the inverse Hessian of 4 evaluated at 6*.

For numerical reasons, and because it is customary to work
with log-likelihoods, it is better to work with this approxi-
mation on the logarithmic scale. Taking logarithms, we can
rewrite Equation (3) as

log{/(Y)} ~ & log{2r)} + - log{|H")
+ log{(6°)} + log{F(Y107)}. (4

If * and H* can be found analytically, then we can
use Equation (4) to estimate the log-integrated likeli-
hood directly. In many practical situations an analytic
solution is not available. Raftery (1996a) has suggested
a way to use the Metropolis—Hastings algorithm (Hast-
ings 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller 1953) to find estimates for 8* and H*, which may in
turn be used in equation (4). We refer to this as the Laplace—
Metropolis estimator.

To calculate the Laplace-Metropolis estimator requires
Metropolis estimates for both 8* and H*. Assume that we
have a posterior sample of parameter simulations from a
Metropolis run. There are several possible ways of estimat-
ing 6* from the sample, including the following:

* Estimate 6* as that @ in the sample at which h(8)
achieves its maximum.

* Estimate the components of 8* by finding the compo-
nentwise posterior means.

* Estimate the components of 8* by finding the compo-
nentwise posterior medians.

* Estimate 8* by finding the multivariate median, or L;
center, which is defined as that value of 8(9) that min-
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imizes

J
d(@W) = Z 6 — 9|,
=1

where | - | denotes L distance.

If the dimension of the parameter space is not too
large, then the posterior mode might be directly esti-
mated from the posterior sample using nonparametric
density estimation.

The first of these methods is the simplest conceptually
and usually the most accurate. Howeyver, it involves calcu-
lating the likelihood many times and so may take a pro-
hibitive amount of computer time. When this happens, we
use the multivariate median instead, because it does not
require too much computer time and because it provides
robustness against the outliers and distance excursions to
which MCMC trajectories are prone. We prefer it to the
estimated posterior mean because the latter is not robust to
outliers, and because in one dimension the median is closer
to the mode than is the mean for a wide range of distribu-
tions (Johnson and Kotz 1985, pp. 365-366).

The other quantity needed for the Laplace—Metropolis es-
timator is H*. This is asymptotically equal to the posterior
variance matrix, and we could estimate it by the sample
covariance matrix of the posterior simulation output. How-
ever, because MCMC trajectories take occasional distant
excursions, it is better to use a robust estimator of the pos-
terior variance matrix. For H*, we use the weighted vari-
ance matrix estimate with weights based on the minimum
volume ellipsoid estimate of Rousseeuw and van Zomeren
(1990).

4. THE COMPOUND LAPLACE-METROPOLIS
ESTIMATOR FOR HIERARCHICAL MODELS

We now consider the estimation of integrated likelihoods
for comparing alternative hierarchical (i.e., random-effects)
models. Here we use the term hierarchical model to mean
a model in which several observations are made on sub-
jects, which themselves are grouped into higher-level en-
tities to take account of the aggregation in the sampling
design (Raudenbush 1988). Hierarchical models usually in-
volve many nuisance parameters—the random effects—and
as a result, calculating integrated likelihoods can be hard.
In this situation we have obtained good results by adapting
the Laplace—Metropolis estimator to hierarchical models.

For a random-effects model we separate the vector of all
parameters into its components: the vector of fixed effects,
which we denote by n; the variance of the random-effects
hyperparameter, which we denote by ¥; and the vector of
random-effects parameters, . For calculating the Laplace—
Metropolis estimator, we need to distinguish between the
nuisance parameters, «, and the rest of the parameters and
hyperparameters, which together we denote by 8 = (1, X).

The term in the Laplace-Metropolis estimator, Equa-
tion (4), requiring additional attention for a random-effects
model is the log-likelihood, log{f(Y|6*)}. The first three
terms in Equation (4) can be calculated as in Section 3. We
still need to find the posterior mode of 8. To do so, we lo-
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cate the L; center of (n,%). The posterior variance matrix
of the fixed effects, n, (¥ is not needed) can still be used
for H*. The third term is the logarithm of the joint prior
density of the fixed-effects parameters and the variance hy-
perparameter.

In many random-effects models the random effects are
assumed to be conditionally independent given the other
parameters in the model, such as the fixed-effects param-
eters and the hyperparameters. We can take advantage of
this assumption to calculate the log-likelihood as simply the
sum of the log-likelihoods for each of the random effects.
In other words,

I
log{f(Y[n,£)} = > log{f(Yiln, %)}, (5)

i=1

where

Y ["7, /f Y [alana (al[na )dai, (6)
with a; being the random-effects parameter for the ith con-
text.

Equation (5) holds for any (n,X). In particular, it
holds for 6*, the joint mode of the posterior distribution,
Ff(Yila;,m,X). As a result, we can calculate each of the
log-likelihood terms in Equation (5) by conditioning on 6*.

It remains to calculate the integrals on the right side of
Equation (6), each of which will be of low dimension. For
regular statistical models, these integrals can be well ap-
proximated using the Laplace method as long as there are
enough observations on each random effect. Although the
Laplace approximation is exact asymptotically only as the
number of observations for each random effect becomes
large, we show in Section 8 that for the model considered
it is very accurate even when there is only one observa-
tion per random effect. By using the Laplace method for
each of these integrals individually, we obtain the Laplace—
Metropolis estimator of the log-integrated likelihood for a
general hierarchical model. If we denote the Laplace esti-
mate of the log-conditional likelihood for the ¢th random
effect, as defined in Equation (6), by L, so that

Lo=tog{ [ 1(¥ilos, 1, D) (el ) o}

then the Laplace—Metropolis estimator of the log-integrated
likelihood for a general hierarchical model, which we refer
to as a compound Laplace—Metropolis estimator, is

log{27} +

— P 1 X
[Me=75 - log{/H"[}

I
+log{f(07)} + Y0 £ie (0
=1

5. THE LAPLACE-METROPOLIS ESTIMATOR FOR
THE LOGISTIC HIERARCHICAL MODEL

In this section we derive the Laplace-Metropolis estima-
tor for one of the most frequently used types of hierarchical
model: the logistic hierarchical model. Here we assume that
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the data are produced by a mixed logistic model. That is,
we assume that

logit(m) = Xn + «, 8)
where the data may take on only values O or 1, # = {7},
7 1S the probability that y;;, the ¢th observation within the
ith random effect, is a 1, and X is a matrix of covariate
information. The likelihood of the vector of observations
for the ¢th random effect, Y, is

H exp{Xun + a;}¥
. 1+ exp{Xim + ai} '

f(Yilm, i) = ©)

We take the prior distribution of each of the random-
effects parameters to be Gaussian with mean 0 and vari-
ance ¥ and independent of the fixed-effects parameters and
the other random-effects parameters. Then the conditional
likelihood of the ith random effect’s vector of observations
is

) L \1/2 poo
f(Yilﬁ,E)=(ﬁ) | expiatan} das, (10

where

ha(au) = { [Xt: it (Xt + ai)} - (%) af

— {Z log(1 + exp{Xif + s })

} |

The first and second derivatives of ho(c;) are

(5] (0
exp{Xufi + o}

B [; (1 4 exp{Xy:1 + a;})

|
hg(ai):—{(%)+ 2]}

We can then locate the mode of hg(c;), which we denote
by o, using a few iterations of Newton’s method. Using the
second derivative above, we find that the square root of the
determinant of minus the inverse of the Hessian conditional
on 0* evaluated at o* is

2

exp{ Xy + o}
(14 exp{Xiuth + o })

>

t

B 1/2
exp{X;:7 + o*}
(1 + exp{X;: + a*})? )

’H2’1/2 — 21/2 (1 + 2

We now have all of the quantities needed to use the
Laplace method to approximate the integrals on the right
side of Equation (6). Doing so, we find that a Laplace es-
timate for each random-effects log-conditional likelihood

651
is

L =

>

t

D vl

t

1 ~
—3 log <1+2

3

_ [Z log(l + eXp{Xit'Fl + a*})

exp{X;7 + o*}
(1 + exp{X:7 + a*})?

ztn + a*)

These Laplace estimates of the log-conditional likeli-
hoods may then be used in Equation (7) to calculate a com-
pound Laplace-Metropolis estimate for hierarchical mod-
els. In the next section we show how this works for an
example using data collected in Iran as part of the World
Fertility Survey.

6. EXAMPLE USING DATA FROM THE WORLD
FERTILITY SURVEY

The Iran Fertility Survey (IFS) was a part of the World
Fertility Survey (WFS). The volume edited by Cleland and
Scott (1987) serves as the primary summary publication on
the WFS. The IFS included full fertility histories of a ran-
domly selected sample of 4,928 married women born be-
tween 1926 and 1963. The survey also obtained a large col-
lection of covariate information for each woman, including
data on years of formal education for the women as well

-as their husbands. (For analyses of the full data set, see

Raftery, Lewis and Aghajanian 1995 and Raftery, Lewis,
Aghajanian, and Kahn, 1996.)

We investigated the methods described in the preced-
ing section by fitting a small example logistic hierarchical
model to a randomly selected sample of 29 women from the
IFS dataset. The response used in this analysis was whether
or not a woman experienced a birth in each year in which
she potentially could have had a child; we refer to these as
exposure-years.

The first model consisted of four fixed-effect parameters
in addition to the intercept. The four fixed effects were the
age of the woman during each exposure-year (centered at
the average age in the IFS dataset), an indicator variable
which is 1 for the first exposure-year of the interval and
0 otherwise, the woman’s parity (i.e., number of previous
children born) during each exposure-year and the woman’s
completed education level (a six-level categorical variable).
In this example we also included a random-effects parame-
ter for each woman in the sample.

We implemented a Metropolis algorithm for estimating
the parameters of a mixed logistic model, Equation (8), in a
Fortran program written specifically to handle event history
data (Lewis 1993, 1994; Raftery et al. 1995). We obtained
the results shown in Table 1. The Metropolis algorithm was
run for a total of 5,500 iterations, of which the first 500
were discarded for “burn-in.”

Using the technique described in the previous section,
we found the estimated log integrated likelihood for this
example to be —220.5. How good is this estimate? The ac-
tual log-integrated likelihood is —221.8, calculated as in
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Table 1. Bayesian Estimates via MCMC for the Hierarchical

Event History Model for a Sample From the IFS Dataset

Variable Posterior mean Posterior s.d.
Intercept -.73 .50
Centered Age -.19 .36
First Year of Interval —-2.34 45
Parity —.04 .10
Woman’s Education Level -.35 .20
Variance of Random Effects A7 .22

Section 2. Thus in this case the compound Laplace—
Metropolis estimate is close enough to the true value so
as not to be misleading on Jeffreys’s (1961, app. B) quali-
tative scale for the interpretation of Bayes factors (see also
Kass and Raftery 1995). In the next section we describe a
way of assessing the uncertainty in the estimated integrated
likelihood that does not require the very time-consuming
calculation of the correct value. ‘

7. ASSESSING THE VARIANCE OF THE
ESTIMATOR USING BATCHING

To assess the uncertainty of the Laplace-Metropolis es-
timator, we use the method of batch means (Geyer 1992;
Hastings, 1970; Schmeiser 1982). Here we show how it can
be applied to the logistic hierarchical model. The idea is to
divide an entire MCMC sample into a fairly small number
of batches, say B, of equal size. The mean of the simula-
tions within each batch is found, producing B estimates of
the mean. Under relatively mild conditions, these B esti-
mates will be essentially independent. The sample of the B
estimates can then be used to provide an overall estimate
of the mean along with an estimate of its variance.

We calculate separate compound Laplace-Metropolis es-
timates within each of B batches, take the mean of the B
estimates as our overall compound Laplace-Metropolis es-
timate, and take the variance of the mean as an estimate
of the variance of the compound Laplace-Metropolis esti-
mate. In other words, within the bth batch we find the com-
pound Laplace-Metropolis estimate of the log-integrated
likelihood, £M,, as in Equation (7), and then use these
B estimates to calculate the overall compound Laplace—
Metropolis estimate,

— 1 —
M=% ;m/th.

We applied this method to the model estimated in Section
6. Instead of only 5,500 iterations, we ran the Metropolis
algorithm for 75,500 iterations. Once again, we discarded
the first 500 as “burn-in.” We divided the remaining 75,000
iterations into B = 15 batches of 5,000 iterations each.

Before examining parameter estimates or performing
other inference using Metropolis, it is a good idea to look
at plots of the (dependent) sequential realizations of all
the fixed-effects parameter estimates and plots of at least
some of the random-effects parameter realizations. We have
found that if the Markov chain is not mixing well or is not
- sampling from the stationary distribution, this is usually ap-
parent in sequential plots of one or more of the fixed-effects
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Figure 1. Sequential Realizations of the Intercept Parameter.

realizations. The sequential plot of the intercept realizations
is the plot that most often exhibits difficulties in the Markov
chain. Figure 1 shows the sequential realizations of the in-
tercept parameter for the four—fixed-effects model. The se-
quential plots of the other fixed effects were similar to the
intercept plot. In this case the Markov chain seems to be
mixing well enough and is likely to be sampling from the
stationary distribution.

Figure 2 shows the marginal distribution of the intercept
parameter; this was obtained using Terrell’s (1990) maxi-
mal smoothing nonparametric density estimation procedure.
This marginal distribution is not normally distributed but is

.skewed to the right. Thus the normal approximation to this

posterior marginal distribution would be quite misleading.

Table 2 shows the estimated log-integrated likelihood
within each batch. The first batch consisted of the 501st
through 5,500th iterations. The second batch was made up
of iterations 5,501-10,500, and so forth. Shown are the con-
tribution of the within-batch maximized log-likelihood, the
contribution of the other three terms of Equation (4) to each
within-batch log-integrated likelihood, and in the rightmost
column the within-batch log-integrated likelihood; the pre-
dominant contribution of the maximized log-likelihood is
apparent.

The mean of the 15 within-batch estimates is —220.5, and
their standard deviation is .7. It can be argued (see Lewis
1994) that the compound Laplace-Metropolis estimator will

02 03 04 05

| /

T T T L

0.0 0.1

-2 0 2 4

Figure 2. Estimated Marginal Distribution of the Intercept Parameter.
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Table 2. Compound Laplace—Metropolis Estimates for
Seperate Batches Using the Posterior Simulation Output

Within-batch Within-batch Within-batch
log-likelihood other log-posterior
Batch lez 1 L terms LM,

1 —205.7 —14.8 —220.5
2 —205.5 —14.3 —219.8
3 —205.8 —15.5 —221.3
4 —206.0 —14.6 —220.6
5 —205.5 —14.4 —219.9
6 —206.5 —15.3 —221.8
7 —206.2 —145 —220.7
8 —205.3 —14.4 —219.7
9 —205.8 —-15.0 —220.8
10 —205.4 —15.0 —220.4
11 —207.0 —14.2 —221.2
12 —206.0 —15.2 —221.2
13 —205.4 —13.8 —219.2
14 —205.7 —14.3 —220.0
15 —205.9 —14.5 —220.4

have an approximate ¢ distribution with (B — 1) df. Using
this approximation, a 95% confidence interval for the com-
pound Laplace-Metropolis estimate is (—222.0, —219.0).
The actual log-integrated likelihood was —221.8. So the
compound Laplace-Metropolis estimator worked well in
this example.

8. ONE OBSERVATION PER RANDOM EFFECT

The compound Laplace-Metropolis estimator is justified
by an asymptotic argument as the number of observations
for each random effect becomes large. In practice, the num-
ber of observations per random effect may often be small,
50 it is important to check that the approximation is accurate
in this case. In hierarchical models whose component dis-
tributions are smooth, unimodal, and not too heavy-tailed,
it seems reasonable to expect this to be so, because the in-
tegrands will then usually be smooth, bounded unimodal,
and fairly light-tailed, even if they are not highly concen-
trated. In one non-Gaussian example, Grunwald, Raftery,
and Guttorp (1993) found the Laplace method to give re-
sults accurate to three significant figures, even when the
likelihood involved in the integral was based on only one
observation.

To see whether the Laplace approximation was adequate
for the WFS example of Section 6, we checked the Laplace
approximation for the extreme case where there was only
one observation for each random effect, over the full range
of fitted values encountered. To do this, we calculated con-
ditional likelihoods as in Equation (10) using the Laplace
approximation and then using the adaptive 15-point Gauss—
Kronrod quadrature method implemented in the S-PLUS
integrate function; the latter gives a result that is essen-
tially exact. We performed these calculations for several
values of X7, covering the entire range of such values
found in the WFS example. We looked at how good the ap-
proximation was when there was only a single observation
per random effect (i.e., when the sth woman’s response, Y,
was just a scalar 0 or 1) and when there were only two ob-
servations per random effect, when Y; € {(3), (%), (3), (1)}
Table 3 gives the results of this investigation.
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As can be seen in Table 3, the Laplace approximation
was accurate to at least three digits after the decimal point
in all cases. In other words, even when there are only one
or two observations per random effect, the Laplace approx-
imation still works very well. As a further check, we cal-
culated the log-conditional likelihood for each woman in
the sample used in the example in Section 6 by Gaussian
quadrature. We compared these actual log-conditional like-
lihoods to the log-conditional likelihoods that we previously
estimated using the Laplace approximation. We found that
the estimated log-conditional likelihoods equaled the results
using quadrature to at least three digits after the decimal
point. So, at least for the logistic hierarchical model ap-
plied in this article, there is no reason to be concerned by
using the Laplace approximation in the compound Laplace—
Metropolis estimator.

9. DISCUSSION

Raftery (1996a) originally proposed the Laplace—
Metropolis estimator to get around limitations encountered
when trying to use the Laplace method. He also proposed
using the L, center as an approximation for the posterior
mode in the situation where it is impractical to calculate
the likelihood or the log-likelihood for each simulated pa-
rameter .vector. A reader might wonder why we needed to
use it here, because, as we noted in Section 6, we were able
to find the “actual” log-integrated likelihood by taking a

‘sample of 50 million draws from the prior distribution. The

program to do this took about 5 days on our SPARCstation
II. The compound Laplace-Metropolis approximation was
found in about 2 hours—a major reduction. Using the com-
pound Laplace-Metropolis estimator also requires notice-
ably less computer time than the adaptive 15-point Gauss—
Kronrod quadrature. Moreover, along with these substan-
tial savings in computer time, the approximations obtained
using the compound Laplace-Metropolis estimator are re-
markably accurate.

Table 3. Checking the Laplace Approximation With Only One
or Two Observations Per Random Effect

Xit®) Yi = (0) Yi=(1)
Laplace Exact Laplace Exact
—4 —.0189 —.0190 —3.9750 —3.9750
-2 —.1310 —.1311 —2.0969 —2.0969
0 —.6933 —.6931 —.6933 —.6932
Xi7) Yi = (
Laplace Exact Laplace Exact
—4 —.0378 —.0379 —7.8625 —7.8625
-2 —.2607 —.2607 —4.1255 —4.1255
0 —1.3649 —1.3647 —1.3649 —1.3647
XirT) Yi =) or()
Laplace Exact
—4 —3.9957 —3.9957
-2 —2.2379 —2.2379
0 —1.4086 —1.4084

NOTE: The exact value was calculated using adaptive 15-point Gauss~Kronrod quadrature.



654

The methods described here should not be expected to
work well if the analytic Laplace approximation (4) itself
(without posterior simulation) to the overall integrated like-
lihood is poor, or if the Laplace approximation (6) to the
integral over random effects is poor. General conditions for
the Laplace approximation to work well have been studied
by Kass, Tierney, and Kadane (1988, 1990, 1991), Tier-
ney and Kadane (1986), and Tierney, Kass, and Kadane
(1989a,b). One might expect the Laplace approximation
in its analytic form—and hence also the simulation-based
version used here—to fail if the posterior distribution is
highly nonnormal, particularly if it is long-tailed. However,
in several empirical studies, including the present one, the
Laplace method has been found to be accurate even when
the conditions for it to be so are not clearly met (Achcar and
Smith 1990; Grunwald et al. 1993; Leonard and Hsu 1994;
Raftery 1996b). One would expect the Laplace approxima-
tion (6) to the integral over random effects to work well
if either the prior distribution of the random effects or the
likelihood (9) for an individual random effect is bounded
and dominated by a single mode, without unduly long tails.

As noted previously, the standard Bayesian solution for
comparing two models is to compute the Bayes factor. The
Bayes factor is the ratio of two integrated likelihoods. In
this article we have demonstrated how we were able to ob-
tain good approximations for integrated likelihoods in hi-
erarchical models. We found a point estimate of —220.5
for the log-integrated likelihood for an example model with
four fixed effects. We have also fit a number of other models
to the IFS event history dataset. For example, when we add
husband’s level of completed education to the model, we get
an approximate log-integrated likelihood of —223.5. Hence
the Bayes factor found for comparing the model without
husband’s education to the model with husband’s educa-
tion is approximately €30 ~ 20, providing evidence for the
smaller model. Models containing other potential covariates
may be similarly compared.

Bayes factors can be used not only to compare mod-
els containing different fixed-effects-parameters, but also
to assess whether the data provide evidence for or against
the presence of random effects. In Section 7 we found
that a compound Laplace-Metropolis estimate of the log-
integrated likelihood for the four—fixed-effects model was
—220.5. This model included a random-effects parameter
for each woman in the sample. Should we have included the
random effects in the model? If we can calculate the log-
integrated likelihood of a model without random effects,
then we will be able to determine a Bayes factor for com-
paring the model with random effects to the model without
random effects.

The integrated likelihood for the model without ran-
dom effects can be approximated using the Laplace method
(Raftery 1996b). For the four—fixed-effects model, this was
—222.15. Hence the Bayes factor for comparing the model
with random effects to the model without random effects is
exp{—220.5 — (—222.15)} ~ 1.35. There is some, but only
weak, evidence favoring the model incorporating random
effects.
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