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This article describes an interesting application of Markov chain Monte Carlo (MCMC).
MCMC is used to assess competing explanations of marital fertility decline. Data col-
lected during the World Fertility Study in Iran are analyzed using methods developed to
perform discrete time event history analyses in which unobserved heterogeneity is ex-
plicitly accounted for. The usual age-period-cohort identifiability problem is compound-
ed by the presence of a fourth clock, duration since previous birth, and a fifth clocklike
variable, mother’s parity. The authors resolve this problem by modeling some of the
clocks parametrically using codings suggested by alternating conditional expectation
(ACE) and Bayes factors to decide which clocks are necessary. Compound Laplace-
Metropolis estimates are used to compute Bayes factors for comparing alternative mod-
els. The new methods enable the authors to conclude that Iran’s fertility decline was pri-
marily a period effect and not a cohort effect, that it started before the Family Planning
Program was initiated, that it was the same for women at all educational levels but var-
ied depending on husband’s education, and that it was greatest in the largest cities,
particularly Tehran.
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1. INTRODUCTION

With the world’s population now greater than 5.5 billion, the need
for reducing human fertility is as great as ever. Although fertility rates
in most developed countries have dropped dramatically during the
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past century (Coale and Watkins 1986), high fertility rates are still
common in many developing countries. The demographic question of
what triggers and drives a fertility decline remains an open one.

Even before World War II, economic modernization was proposed
by many as the best predictor of reduced human fertility. In formulat-
ing the classical theory of the demographic transition, Notestein et al.
(1944) and other leading demographers of their time argued that eco-
nomic modernization, in the form of increased industrialization and
urbanization, would lead to a substantial decrease in human fertility.
As elaborations on the theory of the demographic transition, Becker
(1960) proposed his demand theory and Easterlin and Crimmins
(1985) presented a theoretical framework combining both the demand
for and the supply of children. In the context of any of these three theo-
retical frameworks, economic modernization remained central to
reducing the growth rate of the human population.

Based on the findings of the European Fertility Project (Coale and
Watkins 1986), alternativeideationalexplanations for reduced fertil-
ity rates received attention in the demographic literature (e.g., Cleland
and Wilson 1987). Instead of emphasizing economic modernization,
ideation theory focused more on the diffusion of ideas as an explana-
tion for fertility decline. It was the increased knowledge and accep-
tance of fertility control that was most important in reducing fertility.
Shared social customs, culture, and language were proposed as impor-
tant variables in explaining reduced fertility.

There is still an ongoing debate on which of these theoretical expla-
nations for reduced human fertility is more useful. This article
describes how we addressed this question using event history models
in which unobserved heterogeneity is explicitly accounted for.

A large amount of data on human fertility and many potential
explanatory variables have been accumulated since World War II.
This includes the World Fertility Survey (WFS) (for an overview, see
Cleland and Scott 1987); numerous knowledge, attitude, and practice
(KAP) surveys (Bongaarts 1991; International Institute for Popula-
tion Studies 1972); and the Demographic and Health Surveys (DHS)
(IRD/Macro International 1991). Iran was a participant in the WFS,
but because of the 1979 revolution, the data from Iran were not
included in most of the results published from the WFS.
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To use event history models in our study of what leads to decreased
human fertility, we found it necessary to use a number of new and re-
cently developed statistical methods; methods that were not available
at the time when the WFS was completed. These new methods include
the following:

• useofdiscrete timeeventhistoryanalysiswithunobservedheterogeneity
• use of event history analysis to evaluate inclusion of alternative

demographic clock variables and to determine whether parity needs to
be included

• use of substantively meaningful variables to represent the period effect
• use of the alternating conditional expectation (ACE) technique to sug-

gest how to code some of the covariates
• interpretation of the coefficients found using event history analysis in

terms of the total fertility rate
• use of Bayes factors to compare alternative models and approxima-

tion of the Bayes factors using the Compound Laplace-Metropolis
estimator.

The use of these methods in the application of event history analysis to
the Iranian data is the primary focus of this article.

2. FINDINGS

In our study of the Iran Fertility Survey (IFS), the Iranian portion of
the WFS, we found that fertility drops as women become more edu-
cated and, to a lesser extent, as the father becomes more educated. An-
other strong predictor of reduced fertility is whether previous children
are still living at the time of the survey. A lesser predictor is the size of
the place of current residence. Our results using the Iranian data cor-
roborated the results found in previous studies of human fertility, such
as Bumpass, Rindfuss, and Palmore (1986), Hobcraft (1985), Gilks
(1986), and Cleland and Rodríguez (1988). However, using the meth-
ods discussed here, we were able to find a number of new results:

• The Iranian fertility decline was a period effect and not a cohort effect,
equally affecting childbearing women of all ages.

• The period effect on the fertility decline could be parsimoniously
coded using the level of primary school participation.
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• Parity was associated with fertility at all parity levels, not just for first
and second births, contrary to Hobcraft’s (1985) findings.

• The Iranian fertility decline started before the Family Planning Pro-
gram was initiated.

• The fertility decline was the same for women at all educational levels,
but its extent depended on husband’s education.

• The fertility decline was largest in Tehran, substantial but less than in
Tehran in other urban areas, and relatively small in rural areas and
small towns.

• The onset of the fertility decline was preceded by a fertility increase.

Detailed discussions of these findings may be found in Raftery, Lewis,
and Aghajanian (1995).

Our models also included a number of demographic control vari-
ables, which we refer to as clocks. We explored models with up to five
different types of clocks. These may be described as follows:

1. age of the mother
2. duration since previous birth or since initial union
3. mother’s cohort
4. period (i.e., calendar year)
5. mother’s parity.

Thus, the usual age-period-cohort identifiability problem was pres-
ent and was compounded by the presence of a fourth clock, duration
since previous birth, that appears in event history data but not in data
with one observation per individual, and a fifth clocklike variable,
mother’s parity. We resolved the identifiability problem by modeling
some of the clocks (age, duration, parity) parametrically using cod-
ings suggested by the ACE method (Breiman and Friedman 1985)
when substantively plausible and supported by the data. As an exam-
ple, we found that duration of birth interval was best coded using
dummy variables for intervals of 0, 1, or 2 years and a continuous vari-
able using an exponential transformation for intervals longer than 2
years. More details on the use of ACE and on how each of the clocks
were coded may be found in Raftery, Lewis, Aghajanian, and Kahn
(1996). We then used Bayes factors to determine which clocks were
needed in the model.

We found that age, duration, and parity were significant in all of our
models. However, we observed that including both cohort variables
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and period variables in the model was not as good as using the period
variables alone. Hence, we concluded that the onset of the fertility
decline in Iran was mostly a period effect and not a cohort effect. This
finding is discussed further in Section 4.3.

We were also able to substantially reduce the number of period
variables needed by replacing our original set of period variables by a
variable using the proportion of eligible children who actually
attended primary school. This variable was one of a number of vari-
ables that we investigated for representing the period effect. Other
variables studied included the enactment of the Family Protection Act
in 1967 and the rate of participation in the Family Planning Program,
which was initiated in 1967. Neither of these variables represented the
period effect nearly as well as the rate of primary participation. This
finding has implications for the broader debate on the causes of fertil-
ity decline. See Section 4.3 for more information about the different
alternatives we explored for coding the period effect for use in our
event history models.

3. INITIAL ANALYSES

3.1. DATA

The WFS is a set of individual surveys carried out in 42 developing
countries between 1972 and 1984. The data collected included full ret-
rospective pregnancy histories, marital histories, contraceptive use
data, data on breast-feeding of most recent children, and selected
socioeconomic characteristics. Analyses of the data collected were
completed for all but one of the developing countries. The one country
was Iran. Analysis of the IFS, which was carried out in 1976 and 1977,
was not completed because of the Iranian revolution of 1979.

The IFS was based on a nationally representative sample of ever-
married women who were less than 50 years old at the time of the sur-
vey. Based on a multistage random sampling procedure, 6,056 house-
holds were visited and all ever-married women less than 50 years old
were interviewed. This resulted in interviews being completedwith
I = 4,912 women. There were a total of 20,641 births in 93,006 ever-
married-women years.
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Aghajanian, Gross, and Lewis (1993) assessed the quality of the
IFS data. They found that the data were of generally good quality, at
least as good and in many ways better than data from other WFS par-
ticipating countries. The types of errors found in the IFS were similar
to errors found in other WFS surveys. There were a modest number of
misreported ages and misreported dates of events such as births,
deaths, and so on. The single biggest problem was that although
respondents were asked for both the month and year when events
occurred, the month frequently could not be provided. Therefore, we
worked with only the year in which events took place. We did experi-
ment with imputation methods for month of birth, but the results were
almost the same. This probably reflects the fact that the month was
missing in roughly two thirds of the cases.

3.2. EXPLORATORY ANALYSES

Before performing more elaborate analyses, we did a variety of ini-
tial explorations of the IFS data. These were done to find which vari-
ables were the most likely to be associated with fertility, as well as to
look into how to best code the variables. These initial explorations
consisted of linear regressions in which the response was the number
of years between successive births, in effect treating each birth inter-
val as an independent outcome even though most women had more
than one interval; censored birth intervals were omitted. As an initial
exploratory technique, these regressions proved to be very informa-
tive. Included as independent variables in these regressions were vari-
ables such as the mother’s parity (number of previous children),
mother’s birth cohort, mother’s age at marriage, mother’s work status
(however, in Iran most mothers do not work outside the home), size of
the place of mother’s current residence, both mother’s and father’s
level of completed education, and so on.

Based on these regressions, we determined that including separate
indicator variables for each parity level was unnecessary. We found
that using a single indicator variable for parity 1 and one other variable
linear in parity was adequate. We also noticed that the set of independ-
ent variables associated with parity 0 intervals was quite different than
those associated with parity 1 and greater intervals. Because our pur-
pose was to investigate variables associated with reducing fertility, it
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made more sense to develop a model for parity 1 and greater intervals
and to exclude parity 0 intervals from further study. In the IFS data set,
there were 16,997 parity 1 and greater births in 77,279 ever-married-
women years.

Also, we found that using indicator variables for mother’s birth
cohort (grouped in 5-year intervals) improved the model. Mother’s
work status was found to be insignificant. Mother’s age at marriage
was associated with birth intervals only for first children and not with
parity 1 and greater intervals, so there is no need to consider it further
in this article. Both mother’s and father’s level of education contrib-
uted significantly to the model.

While running these regressions, we also used the ACE technique
of Breiman and Friedman (1985) to check on possible monotonic
transformations of independent variables. ACE suggested that a
monotonic transformation of the size of place of current residence
variable was called for. This enabled us to reduce the number of cate-
gories for the size variable from eight to five. An example of the use of
this technique is given in Section 4.4.

4. METHOD

4.1. DISCRETE TIME EVENT HISTORY ANALYSIS
USING LOGISTIC REGRESSION

We modeled the marital fertility histories in the IFS using discrete
time event history analysis (Allison 1984; Yamaguchi 1991). To apply
event history analysis to the IFS data, each year that a woman was
married is treated as a separate case. We refer to each of these cases as
a single woman exposure year.

The discrete time event history model may be estimated using
logistic regression:
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whereπ it is the probability that theith woman has a child in thetth
year of a birth interval,xpit is thepth covariate for thei th woman in
yeart, andβ β β0 1, , ,K P are unknown regression coefficients. Logistic
regression can be used to estimate discrete time event history models
by treating each discrete unit of exposure as if it were an independent
observation (Allison 1984; Holford 1976).

We included control variables to take account of demographic dif-
ferences between exposure years. That is, we included independent
variables for demographic clocks such as current age, duration since
previous birth, parity, birth cohort, and/or period (i.e., calendar year).
Before any further development of a discrete event history model for
fertility, we had to determine how best to code each of these five
clocks. We also had to determine which of these clocks to include in
the model.

We did this by comparing models with various subsets of the clock
variables using Bayes factors, approximated by the Bayesian informa-
tion criterion (BIC) statistic, which is defined as

BIC P N= − +χ 2 log , (2)

whereχ2 is the likelihood ratio test statistic for comparing the null
model with no covariates to the model of interest,P is the number of
independent variables in the model of interest (not counting the inter-
cept) as defined by equation (1), andN is the sample size—that is, the
number of cases (exposure years) in the logistic regression (Kass and
Raftery 1995; Raftery 1995). BIC is an approximation to twice the log
Bayes factor for the null model against the model being considered;
the approximation is particularly good for a specific reasonable choice
of prior (Kass and Wasserman 1995). The smaller BIC is (i.e., the
more negative), the better the model. For the model with no covariates,
BIC is zero, so a positive BIC indicates a model that is worse than the
null model. This criterion also has the intuitively appealing feature
that it combines a measure of absolute goodness of fit (χ2) with a pen-
alty for the number of parameters (P log N).

4.2. CODING AGE AND DURATION USING PARAMETRIC MODELS

There is a clear relationship between fertility and age of the mother.
To assess the functional form of this, we calculated the number of
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woman exposure years and the number of births to women of that age
in the IFS data set for each year of age below 50. Dividing the number
of births by the number of woman exposure years gives an estimate of
the average age-specific marital fertility rate. The logarithm of the fer-
tility rate is fit well by a quadratic polynomial function of woman’s
age; namely,

log ( ) . . . ( . )fertility a a R= − − − =1155 0 509 0 468 0 932 2 , (3)

wherea= (age–mean(age))/10. In Figure 1, the estimated log fertility
rate is shown together with the fitted curve given by equation (3). The
curve fits well.

We were also able to find a good parametric coding of the duration
since previous birth variable, which we denote byt. Figure 2 shows a
plot of the empirical fertility rate in the Iranian data set, calculated
using the method just described for age. Starting in the third year fol-
lowing a birth, the empirical fertility rate declines almost exactly
exponentially (R2 = .99 in a weighted logarithmic regression). Hence,
it makes sense to use four covariates to code duration: one dummy
variable each for durationst = 0, 1, and 2, and the remaining variable
defined as
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to represent the exponential portion of the density, where the two con-
stants in the argument to the logit function were found empirically
from the Iranian data set.

4.3. WAS THE FERTILITY DECLINE A PERIOD EFFECT,
A COHORT EFFECT, OR BOTH?

Table 1 contains log likelihoods and BIC values for logistic regres-
sion models containing various subsets of the clock variables. It is
clear that mother’s age, duration since previous birth, and parity
belong in the model.

Models 4 and above include birth cohort variables and period vari-
ables. Six indicator variables, one for each 5-year interval between
ages 20 and 50, were used to code cohort; women younger than 20
were the baseline cohort. Similarly, six indicator variables, one for
each 5-year interval between 1943 and 1972, were used to code
period; exposure years between 1973 and 1977 were the baseline
period. BIC becomes more negative when either the cohort variables
or the period variables are added, so that one or the other should be
included. However, BIC becomes less negative when both sets of vari-
ables are included, showing that cohort and period shouldnotboth be
kept in the model. Because BIC for model 5 is less than BIC for
model 4, we concluded that keeping period in the model is preferred
over keeping cohort in the model. In other words, when the period
effect is in the model, the cohort effect accounts for very little
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additional variability (for additional discussion of this finding, see
Raftery, Lewis, and Aghajanian 1995).

In Table 1, we used six variables to code the period effect. In Raf-
tery, Lewis, and Aghajanian (1995), we detailed how we were able to
find a more parsimonious and substantively meaningful way to code
the period effect. We found that the period effect was well represented
by a piecewise linear function with a change point in 1959. We coded
the period effect using just two variables. The first was coded as the
calendar year for those exposure years before 1959 and as constant for
years after 1959. The second was coded as constant for years before
1959 and as the percentage primary school participation for years after
1959. We considered several other variables besides primary school
participation for representing the post-1959 period effect. Some of the
variables were justified by the classical theory of the demographic
transition, whereas others were justified by appealing to ideational
explanations of reduced fertility rates. Among the variables justified
by the theory of the demographic transition were gross domestic prod-
uct (GDP), primary school participation (PRIM) and secondary
school enrollments (SEC). We considered two variables associated
with ideational changes that took place in Iran. The official Family
Planning Program (FPP) started in 1967, and the Iranian Family Pro-
tection Act (FPA) became law that same year. We found that of the three
demographic transition variables, PRIM explained the period effect
best. Neither GDP nor SEC fit the period effect as well as a simple lin-
ear predictor (i.e., calendar year). Neither of the ideational variables
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TABLE 1: Logistic Regressions Using Different Demographic Clock Variables

Model Clock Variables c2 P BIC

0 Null 0 0 0
1 A 1,243 2 –1,220
2 A D 12,587 6 –12,519
3 A D B 12,678 8 –12,588
4 A D B C 12,761 14 –12,603
5 A D B Y 12,839 14 –12,682
6 A D B C Y 12,850 20 –12,625

NOTE: The preferred model is shown in italics. The independent variables are as follows: A =
age effect (equation (3)), D = duration since previous birth (equation (4)), B = parity (number of
previous births) and parity 1 indicator, C = cohort (seven levels), Y = period (seven levels).χ2, P,
and BIC are defined by equation (2).



(FPP, FPA) didmuch better than a model consisting of only anintercept,
and a simple linear predictor was much better than either variable.

4.4. CODING OF INDEPENDENT VARIABLES USING ACE

We had no reason to believe that all of the independent variables
considered for use in our initial linear regressions contributed to the
model in a linear fashion. Perhaps the effects of one or more of the
variables were nonlinear. We used the ACE technique of Breiman and
Friedman (1985) to check for nonlinear effects of independent vari-
ables in the IFS data.

A number of the independent variables were categorical on either
an ordered or interval scale; these included the educational attainment
variables and the size of place of current residence variable. Variables
such as these are often found to contribute in a nonlinear fashion in lin-
ear regression models. In this section, we show how ACE was used to
find an improved coding, taking as an example the size of place of cur-
rent residence variable.

Size of place of current residence was originally coded in eight
categories ranging from Tehran (1) to isolated farm dwellings (8). The
ACE transformation is shown in Figure 3. This is fairly linear between
categories 1 and 5, but there is almost no change between categories 5
and 8. Categories 6 through 8 are all rural, whereas category 5 consists
of small towns. In fact, most of the small towns in category 5 are more
rural than urban and are actually large villages, with more than 5,000
inhabitants. We amalgamated categories 5 to 8 to form a single cate-
gory. This indicates that there are no systematic differences in marital
fertility between rural and small-town residents in terms of the size of
their place of residence, but for city dwellers the size of the place
where they live does have an effect. This resulted in coding the size of
place of current residence linearly as a variable taking on values 1
through 5.

4.5. ACCOUNTING FOR UNOBSERVED HETEROGENEITY USING MCMC

In previous studies, several researchers have observed that event
history analysis results can be misleading unless any unobserved het-
erogeneity is accounted for in the estimation (Heckman and Singer
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1984). It has been argued by Heckman and Singer and other research-
ers that it is safer to assume the presence of unobserved heterogeneity
unless it is shown that there is none. To do so requires adding parame-
ters to the logistic regression model (equation (1)) to account for any
unobserved differences between units of observation. In the IFS, the
units of observation were the individual women. So, to check for any
unobserved heterogeneity, we fitted models of the form

logit( )π β β αit p

p

P

pit ix= + +
=

∑0

1

,
(5)

whereαi were unobserved woman-specific random effects represent-
ing unmeasured characteristics that affect fertility, such as fecundabil-
ity and coital frequency. We assumed thatαi were independent ran-
dom variates from a normal distribution with a mean of zero and a
common variance,σ2. Addingαi captures sources of unobserved het-
erogeneity that may induce correlation across spells for the same
person.

Models of the form of equation (5) can no longer be estimated using
standard logistic regression. In addition to the fixed effects,β0, . . .,βP,
we also needed to estimate allαi andσ2. These can be estimated simul-
taneously using a Bayesian estimation procedure, such as Markov
chain Monte Carlo (MCMC) (Hastings 1970; Smith and Roberts 1993).
To use MCMC for this purpose, we had to find an appropriate set of
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univariate posterior conditional distributions for the parameters, at
least up to an unknown normalizing constant.

We assumed that the prior distribution of the fixed effects was a dif-
fuse, but proper, multivariate-normal distribution, with its mass well
spread out over those parts of the parameter space that were at all prob-
able (see Raftery 1996). We assumed that the prior distribution of the
random effects was also normal. In the usual mixed-effects model
(i.e., one containing both fixed and random effects), it is common
practice to assume that the variance of the random effects,σ2, has an
inverted gamma prior distribution. We followed this practice. These
prior distributions are detailed in Appendix A, which also provides a
rationale for the values of the prior hyperparameters used.

It is straightforward to combine the logistic likelihood with the
prior distributions to arrive at univariate posterior conditional distri-
butions for each of the parameters. These are shown in Appendix B.
These actual posterior conditionals, not normal approximations, were
then used in MCMC to estimate all of the parameters simultaneously.

5. RESULTS

5.1. ADDING INDIVIDUAL CHARACTERISTICS TO THE MODEL

So far, we have looked only at models containing different subsets
of the demographic clock variables. But to address our original goal of
comparing alternative explanations for changes in human fertility, we
had to consider various variables reflecting these alternatives. In other
words, we needed to compare models in which variables such as
mother’s and father’s education, child mortality, use of contraception,
and so on were added to the model. In Table 2, we compare several of
these models.

Models including use of contraception were not as good as the
models shown in Table 2. Although it is conceivable that use of contra-
ception is not predictive of reduced fertility, other explanations are
available. The contraception variables collected during the IFS asked
only whether the women were knowledgeable about various contra-
ceptive methods and whether they hadeverused different methods.
Just knowing about contraception may not have much of an
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association with a drop in fertility. Also, whether a woman ever used
contraception is probably not precise enough to be predictive. It would
have been helpful to know how regularly the women used contracep-
tion and whether the requisite contraceptive guidelines were adhered
to, but this information was not available.

Up to this point, no allowance for any unobserved heterogeneity
had been made. We estimated the model that allows for the presence of
any unobserved heterogeneity (equation (5)) by running MCMC for
18,500 iterations. The last 18,000 iterations were retained, discarding
the first 500 iterations for burn-in. These MCMC control parameters
were selected using thegibbsit method and software developed by
Raftery and Lewis (1992, 1996). This consists of computing the
number of iterations needed to achieve a given level of precision in
estimating specific posterior quantiles, such as the .025 and .975
points that define a 95% Bayesian confidence interval for a regression
coefficient. This is done by reducing the chain to a two-state (binary)
sequence and applying standard Markov chain theory. Note that this
method provides answers to questions of when the algorithm has con-
verged to the region of parameter space favored by the posterior distri-
bution and how long it should be runafter it has reached the right
region. These are quite different questions, although they are often
confused with one another. We also tried a number of different starting
values but found that the results were not noticeably affected by these.

The model consisted of the same fixed effects as model 4 in Table 2
and a random effect parameter for each woman in the sample. Table 3
shows the posterior means of the fixed-effect parameters (found from
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TABLE 2: Logistic Regressions Using Different Individual Characteristic Variables

Model Other Variables c2 P BIC

0 Only clocks 12,893 11 –12,769
1 E 13,447 12 –13,311
2 E F 13,532 13 –13,386
3 E F S 13,647 14 –13,490
4 E F S M 14,544 15 –14,375

NOTE: All models include age, duration, parity, and period. The preferred model is shown in
italics. The independent variables are as follows: E = mother’s completed education (five catego-
ries), F = father’s completed education (five categories), S = size of the place in which the woman
resides (five categories), M = child mortality (1 if the previous child was alive, 0 if not).χ2, P, and
BIC are defined by equation (2).



MCMC), their posterior standard deviations, the associatedt values
(i.e., the posterior mean divided by its posterior standard deviation),
and 95% highest posterior density intervals. The null deviance was
81,427 on 77,278 degrees of freedom. The deviance for the model was
65,253, soχ2 = 16,174. All of the variables retained in the model were
highly significant. Both of the education variables, the size of the
place of current residence and child mortality, were found to be impor-
tant predictors of human fertility behavior.

What was the effect of including heterogeneity in the model? For
the model with fixed effects alone, the deviance was 66,883 on 77,263
degrees of freedom, soχ2 was 14,544 on 15 degrees of freedom. The
increase inχ2 when heterogeneity was added was 1,630. There were
4,912 women in the sample, so the effect of unobserved heterogeneity
in our analysis of the IFS data was not large. The posterior means in
Table 3 are close to fixed-effect parameter estimates found using
logistic regression alone (not shown), which is consistent with our
finding of minimal effect of unobserved heterogeneity in the IFS data.
Thus, our conclusions were relatively insensitive to any unobserved
heterogeneity. This is not guaranteed always to be true, however.
Indeed, it is generally agreed among demographers that unobserved
heterogeneityis present in data such as these, due to factors such as
biological differences and differences in marital coital frequency.
Thus, it is wise to account for unobserved heterogeneity explicitly
when modeling such data.

There is another benefit to using MCMC to get a sample from the
posterior distribution. The sample can be used to examine marginal
posterior distributions of the fixed effects graphically, permitting the
researcher to check for any asymmetry or nonnormality of any of the
marginal distributions. This can be done using a nonparametric den-
sity estimation technique such as the one described by Terrell (1990).
We did so for all of the fixed effects in Table 3 and found that the mar-
ginal posterior distributions were symmetric and approximately nor-
mally distributed.

We then considered models with interaction variables. We found
the best model (based on BIC) to be a model with 10 interaction vari-
ables in addition to the variables in Table 3. All of the duration vari-
ables had significant interactions with mother’s education. Duration 0
interacted with parity. The exponential transformation of durations
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longer than 2 years (see Section 4.2) interacted with post-1959 pri-
mary participation. Post-1959 primary participation also interacted
with the size of place of current residence and with father’s education.
Parity 1 interacted with mother’s education. Also, there was a signifi-
cant interaction between the size of place of current residence and
father’s education.

5.2. MODEL COMPARISONS USING BAYES FACTORS

The standard method for comparing models within the Bayesian
framework is to calculate Bayes factors (for a survey, see Kass and
Raftery 1995). The Bayes factor,B01, for comparing modelM0 with
modelM1 for observed data,Y, is the ratio of the posterior odds forM0

againstM1 to the prior odds, which reduces to

B
f M

f M
01

0

1

=
( | )

( | )

Y

Y
.
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TABLE 3: Estimates for the Preferred Model from Table 2

95% Interval

Variable Estimate SE tValue Lower Upper

Intercept –2.70 0.20 –13.5 –2.99 –2.33
Age (linear) –0.37 0.03 –14.3 –0.42 –0.32
Age (quadratic) –0.31 0.02 –17.9 –0.34 –0.28
Duration 0 –2.39 0.07 –33.3 –2.53 –2.25
Duration 1 0.34 0.05 6.4 0.24 0.45
Duration 2 1.22 0.05 23.1 1.12 1.32
Duration 3+ 2.42 0.10 24.2 2.23 2.62
Parity 1 0.23 0.03 7.4 0.17 0.29
Parity –0.08 0.01 –10.3 –0.10 –0.07
Pre-1959 linear trend 0.04 0.003 11.3 0.03 0.04
Post-1959 primary

participation –0.40 0.08 –4.9 –0.56 –0.24
1977 –0.25 0.05 –4.7 –0.35 –0.14
Woman’s education –0.18 0.02 –10.2 –0.22 –0.15
Husband’s education –0.06 0.01 –4.9 –0.09 –0.04
Size of place of residence –0.07 0.01 –8.6 –0.08 –0.05
Child mortality –0.76 0.03 –29.6 –0.81 –0.71



In other words, the Bayes factor is the ratio of the integrated (or mar-
ginal) likelihoods of the two models being compared. Hence, calcula-
tion of Bayes factors boils down to computing integrated likelihoods,

f M f M f M d mm m m m m m( | ) ( | , ) ( | ) ,Y Y= =∫ θ θ θ 0 1,

whereθm is the vector of parameters in modelMm andƒ(θm | Mm) is its
prior density. Dropping the notational dependence on the model, this
can be rewritten as

f f f d( ) ( | ) ( )Y Y= ∫ θ θ θ. (6)

Calculating exact Bayes factors for comparing hierarchical models
is difficult in general. Instead, it is necessary to estimate integrated
likelihoods under each of the alternative models. The output from
MCMC can be used to do this. Lewis and Raftery (1997) described
how MCMC output can be used to estimate log-integrated likelihoods
for logistic hierarchical models, such as those presented in this article,
using the Compound Laplace-Metropolis estimator. For logistic hier-
archical models, the estimator may be written as

LM L
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whereθ* is the value ofθ at whichh ≡ log{ƒ(Y | θ)ƒ(θ)} attains its
maximum,H* is minus the inverse Hessian ofhevaluated atθ*, and
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X it is the vector of covariates for theith woman at hertth exposure
year;~η and~σ 2 are the estimated fixed-effect parameters and variance
of the random effect parameters, respectively, at the joint mode of the
posterior distribution; andα i

* is the mode of
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for theith woman with random effect parameterαi. For logistic hierar-
chical models, this Compound Laplace-Metropolis estimator pro-
vides very good estimates of the integrated likelihoods.

In Table 4, we show Compound Laplace-Metropolis estimates of
integrated likelihoods under models 0 and 4 from Table 2 and for a
model with FPP added to model 4. The standard errors of the Com-
pound Laplace-Metropolis estimates shown in Table 4 were found
using the method of batch means (Lewis and Raftery 1997). By taking
differences between Compound Laplace-Metropolis estimates, we
computed log Bayes factors for comparing the models in Table 4. The
choice of which model to use as the baseline is arbitrary. In Table 4,
model 0 was used as the baseline. The log Bayes factor for comparing
model 4 to model 5 is readily determined from the numbers in Table 4.
It is (–765 – (–757)) = –8, showing that model 4 fits better than either
of the other two models. This happens to be the same model as was
preferred in Table 2, but here we have accounted for any unobserved
heterogeneity that might have been present. In particular, it is note-
worthy that the FPP variable added in model 5 led to a model that did
not fit as well as model 4.
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TABLE 4: Using Compound Laplace-Metropolis to Compute Bayes Factors

Model Other Variables LM
^

c SE (LM
^

c) log(B0m)

0 Only clocks –34,275 1.24 0
4 E F S M –33,510 2.49 –765
5 E F S M FPP –33,518 2.34 –757

NOTE: All models include age, duration, parity, and period. The preferred model is shown in
italics. The independent variables are as follows: E = mother’s completed education (five catego-
ries), F = father’s completed education (five categories), S = size of the place in which the woman
resides (five categories), M = child mortality (1 if the previous child was alive, 0 if not), FPP =

official family planning program (1 if yes, 0 if no).LM
^

c is defined by equation (7).



6. DISCUSSION

In this article, we have presented a successful application of
MCMC in a practical application where it had not been previously
used. We found that MCMC worked well for estimating discrete time
event history models with unobserved heterogeneity included.
Although we found only a small amount of unobserved heterogeneity
in the Iran data, it is reassuring to know that it was accounted for and
that the significance of the main effects was real. This permits us to
confidently discuss the conclusions these main effects imply.

We found that the death of a previous child was the most significant
individual characteristic leading to an increased probability of having
another child (Table 3). The next most significant individual charac-
teristic was how educated the woman was. Her husband’s level of edu-
cation was also important, but thet value associated with husband’s
education was only half that associated with the woman’s education.
The other significant individual characteristic we found was how large
the city or town where the woman currently resided was. These results
provide additional support to prior research findings such as Coale
and Watkins (1986) and D’Souza (1974). In particular, D’Souza’s
most significant finding was the importance of the death of a previous
child. Also in D’Souza’s book is an extensive discussion of a model
for fertility rate by duration assuming a combined normal-exponential
distribution for fertility, as compared to the empirically derived
method we used in Section 4.2.

During our investigation, we explored many models including
other possible covariates. We fitted models using variables such as
knowledge and use of various forms of contraception, duration of
breast-feeding, or kind of work the woman was employed in (if she
was employed), as well as a number of different family-planning vari-
ables. Inclusion of one or more of these variables did not improve the
model, based on the Bayes factor comparing the model presented in
Section 4.5 with any larger model.
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APPENDIX A
Prior Distributions

We assumed that the prior distribution of the fixed-effect parameters,β, was multi-
variate normal with mean vectorm and covariance matrixV, whereV =QUQT, with
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K . This form of prior was sug-

gested by Raftery (1996), who proposed settingψ2 to 1 andφ2 to 1.65. We followed
this suggestion here.

In other words, we assumed that the joint prior distribution for the vector of fixed-
effect parameters,β, was

f T( ) exp ( ) ( )β β β∝ − − −













−1

2

1
m V m .

The random effect parameters,αi, were assumed to be independent normals with a
common variance parameter,σ2. So, the prior distribution of a single random effect
parameter would be simply
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The prior distribution for the variance of the random effects,σ2, was assumed to be
an inverted gamma distribution. It is clearer expressing this distribution in terms of the
precision parameter,τ2 = 1/σ2. The prior may then be written as

f Ir( ) ( ) exp{ } ( )( )

( , )
τ τ ζτ τ2 2 1 2

0

2∝ −−
∞ ,

wherer andζ are hyperparameters. Thus, the precisionτ2 has an ordinary gamma
distribution.
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What values should be used for the two hyperparameters? Lewis (1994) found that
the empirical 99% quantile of the number of children ever born to women who were at
least 45 years old in the IFS was 13; the same result was found if all women who were
at least 40 years old were included. Raftery, Lewis, and Aghajanian (1995) found the
empirical mean birth rate in the IFS was about 0.22 births per woman exposure year.
Hence, over an average length reproductive lifetime of about 30 years, the average
Iranian woman would be expected to have about 30× 0.22≈ 6.6 children. So, at least

approximately, we would expectlogit logit
13

30
022 09974





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− =( . ) . to be aboutΦ–1

(0.99) = 2.3263 standard units from the mean, whereΦ is the cumulative distribution
function of a standard normal random variable. In other words, standard deviations of
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09974
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= units on the logit scale, or equivalently a

variance of about 0.184, would be rather unlikely based on what we know about hu-
man fertility behavior. So, a reasonable upper limit for the variance wasU ≡ 0.184;
that is, roughly 1/5.

Obviously, zero was a lower limit for the variance. However, if the variance of the
random effects was only negligibly greater than zero, it would not be of any substan-
tive interest, and so we did not want the prior to assign too much probability to these
negligible variances. We wanted to be able to detect random deviations of even as little
as 3/10 child per woman. In other words, we wanted to be able to detect differences as
small as
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which is equivalent to a variance of only 1/256. Because we wanted the prior distribu-
tion of the variance of the random effects to not exclude the possibility of a variance as
small as 1/256, a reasonable lower limit wasL ≡ 1/256. So we wanted a prior that as-
signed nearly all of its probability to values ofσ2 between 1/256 and 0.184.

Between these two limits, we wanted the prior to be as flat as we could make it. We
operationalized this by bounding the ratio between the maximum and minimum ordi-
nates of an inverted gamma density over the interval between the two limits. Follow-
ing arguments made by Jeffreys (1961), we bounded this ratio byB≡ 10. We used this
upper bound for the ratio to derive two nonlinear inequality constraints for the two hy-
perparameters. Appropriate values for the two hyperparameters were found by locat-
ing the largestr andζ satisfying these constraints. Lewis (1994) provides details on
how this was done. For the case in whichL = 1/256,U = 0.184, andB= 10, we found
r = 0.47 andζ = 0.0226. Figure 4 shows what an inverted gamma distribution with
these shape and scale parameters looks like.
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APPENDIX B
Univariate Posterior Conditional Distributions

At least up to the normalizing constant, each of the univariate posterior conditional
distributions may be found by combining the logistic likelihood and the appropriate
prior (for derivations of the following results, see Lewis 1994).

The joint posterior conditional distribution of the fixed-effect parameters is
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whereY is a vector of the observed outcomes,mr is therth element of the mean vector
m, andvr,s is the entry in therth row and thesth column of theinverseof the hyperco-
variance matrix,V.

During the MCMC run, we needed the univariate posterior conditional distribu-
tion for a single fixed-effect parameter. This may be derived from equation (8) after a
fair amount of algebra. For thepth fixed effect, the univariate posterior conditional
distribution is
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Figure 4: Inverted Gamma Density With Shape Parameter,r = 0.47, and Scale
Parameter,z = 0.0226



( )
f

e

e

p p

yit

i t

pit p i

pit p i

( | , , )

,

β β α
β α

β α

−

+

+
∝

+






− −

− −
∏

Y

X

X
1











− − − + −





∈
∑exp ( ) ( ) ( ), ,β β βp p p p p p p s

s

s sm v m v m
1

2 P













,

whereβ–p is the vector of fixed-effect parameters excluding the fixed effect whose
conditional distribution is being calculated;X–pit is theitth row of the covariate matrix
X, with thepth column excluded; andP = − +1 1 1, , , , ,K Kp p P.

The univariate posterior conditional distribution for a random effect parameter is
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and the univariate posterior conditional distribution for the precision of the random ef-
fects is
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