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The densities in (12)—(14) can be obtained from p(Bx, .,

| Y»), p(Bx, | Y,), and p(Ax,,, | Y,). If B, is null, then
(13) reduces to

P(anl YN) = fP(an I Xn+1s YN)

X p(BXns1 | Yy) dBx, . @1s)
and (14) becomes
P(Bxy | Xns1, Yy) = p(A1Xpi1 | ) p(Bx, | )
+ p(Arxns1 | AxXni, Vo). (16)

If A, is null, then Kitagawa’s Equations (2.4) and (2.5)
apply.

It is quite easy to find suitable transformations of x,, and
y» for the aforementioned formulas. Suppose, for example,
that we want to find Ax,. If we assume for the moment
that v, and w, are Gaussian, then we can find the con-
ditional covariance matrix var(x, | Y,_;) with the Kal-
man filter. This has a Cholesky factorization in the form
var(x, | Y,-;) = LAL’, where L is lower triangular with
1s on the diagonal and A is diagonal with nonnegative
elements. Then a suitable choice for Ax, is the subvector
of L~'x, whose elements correspond to nonzero elements
of A. As a second example, we choose C,;y, and Gy, to
be subvectors of y, determined by examining the Cholesky
factorization of the covariance matrix of (x;, y,)’ condi-
tional on Y,_;. Although the densities in the model are
non-Gaussian, it is nevertheless a linear model, and the
procedure we suggest simply makes use of this fact.

Fixed-Point Smoothing. Using the results (9)—(16) it is
possible to find a generalization of the fixed-point smooth-
ing recursion formula for p(Bx, | Yy). Rather than give
full details, we consider only scalar y, and assume that G
has full rank and w, is nonzero so that the degeneracies
discussed previously do not occur. If they do, the following
steps can be modified along the lines discussed earlier.
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Similar to Kitagawa’s Equation (2.2), we have

P, 61 Y)) = pxi | x)p(xi | Y)),
andforn>1+1

(17)

P(Xn, X1 | Yooy) = fp(xnlxn-l)p(xz, Xno1 | Yoo1) dx,os.

(18)
Corresponding to (2.3), the updating equation is
Pns x| Y,) = p(yu | %) P(n, %1 | Y,o1)
+= P(Vn | Ya-1), (19)
and we obtain p(x, | Yy) from
plal Y) = [ plow x| V) dew. (20)

The recursions (17)-(19) followed by (20) may in some
cases be a more efficient way of finding p(x; | Yy) for a
single value of / than the generalized filtering and fixed-
interval smoothing formulas (2.2)-(2.5).
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Comment

Robustness, Computation, and Non-Euclidean Models
R. DOUGLAS MARTIN and ADRIAN E. RAFTERY*

1. INTRODUCTION

We would like to thank Kitagawa for an interesting ar-
ticle on the analysis of non-Gaussian time series. In the
introduction, Kitagawa puts forth the two objectives of

* R. Douglas Martin is Professor of Statistics and Adrian E. Raftery
is Associate Professor of Statistics and Sociology, both at the University
of Washington, Seattle, WA 98195. This work was supported by Office
of Naval Research Contract N00014-84-C-0169. The authors are grateful
to Andrew Bruce for computational assistance.

his article. The primary objective is to reveal the impor-
tance of non-Gaussian models in various problems of time
series analysis, and the secondary objective is to present
a methodology for non-Gaussian time series models.
The first objective is achieved through the treatment of
three examples of non-Gaussian models: an artificial ex-
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ample consisting of independent normal observations with
constant variance and switching mean; a real example for
which the transformed observations consist of signal plus
noise, with the signal being the logarithm of a variance
and the noise being distributed as the logarithm of an
exponential random variable; and a real example where
the problem is to estimate the mean of a nonstationary
binary process.

The second objective is achieved by showing that quite
reasonable results can be obtained through use of a prim-
itive piecewise linear approximation of the non-Gaussian
densities that specify proposed models. The importance
of non-Gaussian models in time series has hardly been
ignored in the statistical literature. It is true that some of
the kinds of behavior exhibited by Kitagawa’s example
deserve to be taken more seriously by practitioners. The
main statistical conclusions, however, are not surprising:
use of a correct probability model (or a sufficiently good
approximation thereto) for the problem at hand will usu-
ally produce good inference results using any one of a
number of well-known procedures, for example, quantiles,
mode, median, highest posterior density region for the
conditional filtering or smoothing densities, conditioned
on the observations.

The main difficulty in non-Gaussian state-space mod-
eling, whose importance has been recognized in some con-
texts for a long time, is the intractability of the conditional
filtering and smoothing densities. Although the author’s
approach to surmounting this difficulty produces pleasing
results for his three examples, its computational complex-
ity may prove to be a deterrent for all but simple problems.

Detailed comments follow. In Section 2 we discuss
Kitagawa’s results in the context of models of a general
type into which the first and second examples fall and point
out related work concerning outliers and robustness. Sec-
tion 3 deals with computational issues, and Section 4 con-
siders state—space modeling for general non-Gaussian time
series. Section 5 returns to Kitagawa’s rainfall example
and the general issue of categorical time series. Section 6
concludes with some brief comments concerning Kitaga-
wa’s use of the Akaike information criterion (AIC) and
the problem of comparing nonnested models.

2. NON-GAUSSIAN MODELS, OUTLIERS,
AND ROBUSTNESS

21 Non-Gaussian Distributions,
Outliers, and Prior Work

For linear state—space models of the form (2.1), one can
have non-Gaussian distributions in the state noise only,
the observation noise only, or in both. Suppose that the
non-Gaussian distributions for the state noise, the obser-
vation noise, or both are moderately Gaussian in the mid-
dle but have heavier tails than a Gaussian distribution that
fits the non-Gaussian distribution fairly well in the middle.
Then the data will contain outliers in the state noise, in
the observation noise, or in both observation and state
noises. Distributions that might be considered nearly
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Gaussian include some members of the Pearson family
used by Kitagawa, Student-¢ distributions, the logistic
distribution, and mixtures of Gaussian distributions of the
form

CN(y, o, 63) = (1 = y)N(0, 6}) + yN(0, 73),

where y is small and ¢} > ¢1. The nearly degenerate case
in which ¢} = 0 is also of frequent interest.

It is, by now, common to refer to outliers in the state
noise as innovations outliers (I0) and to outliers in the
observation noise as additive outliers (AO). We shall use
IO and AO in the exclusive sense and write AO + 10 to
refer to situations where outliers occur in both the state
and observation noise. Kitagawa’s first and second ex-
amples fall into this framework. The first example is of
1O type, with an appropriate state noise distribution being
of mixture type with degenerate central component, and
perhaps Gaussian contamination component, if one wants
to allow random values for the locations and sizes of the
jumps. The second example is of IO + AO type, since the
level shifts are reasonably well modeled by outliers in the
state noise and the negative outliers are accounted for by
the observation noise distribution r(x) in (5.6). Although
r(x) is not Gaussian in the central part of the distribution,
such an approximation is not too crude. Furthermore, the
heavy negative tail, which gives rise to the negative out-
liers, would seem to be the most troublesome feature of
r(x).

Given the framework into which these two examples fit,
it is unfortunate that Kitagawa’s introduction and list of
references create the impression that the problem of non-
Gaussian state-space modeling has received little atten-
tion since the early 1970s. This is hardly the case, as the
following partial list of work on particular subtopics in-
dicates: (a) non-Gaussian filters and robust filters for IO
and AO—Masreliez (1975), Masreliez and Martin (1977),
Ershov and Lipster (1978), West (1981), Guttman and
Pena (1985); (b) non-Gaussian smoothers and robust
smoothers for AO—Martin (1979); (c) model fitting for
AO—Martin (1981), Martin, Samarov, and Vandaele
(1983); (d) model fitting for IO + AO—Harrison and
Stevens (1976), Hillmer, Bell, and Tiao (1983), Smith and
West (1983), Tsay (1986). We note that much of the work
in (a) and (b) deals with the general non-Gaussian prob-
lem, and not just with the heavy-tailed, nearly Gaussian
case. It is also appropriate to mention the important work
of Box and Tiao (1975) in connection with “intervention”
modeling of additive structures.

We now turn to some small issues concerning Kitagawa’s
first two examples. As we suggested earlier, a mixture
model with degenerate central component and any one of
a variety of mixing components would be more appropri-
ate than the Pearson family for the state noise in the first
example. The very small scale estimate 2 = 2.2 x 107’
is essentially trying to model the qualitative behavior of
the mixture model, since it represents state noise that is
nearly 0 most of the time, while the heavy tail is needed,
correspondingly, to capture the large jumps of *1.
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One should recall the general behavior of sums of stable
random variables (and here we are talking, roughly, about
symmetric stable random variables with index .5). The
sums are dominated by an individual term because of the
infrequent occurrence of extremely large values. It is thus
not surprising that distributions in the domain of attraction
of stable laws (e.g., the Pearson family) are reasonable
surrogates for mixture distributions with degenerate or
nearly degenerate central components.

For the second example, it is not clear why the author
makes the assumption that the state noise is Cauchy, par-
ticularly in the light of the flexibility demonstrated by the
Pearson family in the first example. Again, a mixture fam-
ily might be more appropriate.

One of the lessons of Kitagawa’s work is that when there
is non-Gaussian behavior of an outlier-generating, heavy-
tailed form, a procedure based on almost any reasonable
non-Gaussian model will usually do much better than the
classical, Gaussian-based procedure. Furthermore, an ap-
propriately constructed, non-Gaussian-based approach
will usually suffer by only a small amount if it is used when,
in fact, the Gaussian model holds.

This is hardly a new theme, since it has been the mo-
tivation for certain robust procedures, with which the sta-
tistical literature abounds. The classic example is that of
Huber’s (1964, 1981) M-estimates. Some quite good M-
estimates are simply maximum likelihood estimates
(MLE’s) for a heavy-tailed distribution, Huber’s favorite
being the MLE for a distribution that is normal in the
middle and exponential in the tails. Furthermore, both the
robustness viewpoint and the construction of approxi-
mately optimal non-Gaussian filters and smoothers to deal
with outliers in time series are well-represented in the
references provided earlier. See, for example, Martin
(1981) or Martin and Yohai (1985) for an approximate
non-Gaussian MLE rationale for dealing with AO prob-
lems.

The latter reference also provides a technical definition
of robustness for time series, which is due to Boente,
Fraiman, and Yohai (1987). In the present discussion we
take robustness to mean the simple data-oriented notion
of resistance to outliers. The technical probability-oriented
definition alluded to is quite close in spirit to this simple
data-oriented notion.

22 |10 + AO

Returning to Kitagawa’s second example, it must be em-
phasized that this is indeed an important and interesting
example in that it involves both innovations and additive
outliers. The early work of Fox (1972) on testing for 10
and AO led to subsequent robustification of Fox’s tests
by Martin and Zeh (1977), and the successful use of non-
robustified Fox tests by Hillmer et al. (1983) and Tsay
(1986) for dealing with IO + AO situations. In addition,
Harrison and Stevens (1976) and Smith and West (1983)
used an attractive approach to such problems based on
limiting the computational complexity resulting from
Gaussian mixture models for the state and observation
noises, with a Bayesian flavor. For a remarkable early,
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and relatively unknown, treatment of the pure IO case
with normal mixture distributions for the innovations, see
Buxbaum and Haddad (1969).

The problem of dealing with IO + AO is a central one
in time series, which occurs in many fields. Proper treat-
ment of the problem is sometimes important for parameter
estimation and always crucial for forecasting/prediction.
To provide a reasonable forecast, one must really have a
good idea whether outliers near the end of the series are
IO, AO, or both. Thus Kitagawa’s demonstration that an
approximating non-Gaussian model will give a reasonable
answer for the IO + AO problem is most welcome. It is
not clear, however, that the results are any better than
those obtainable using the perhaps simpler approaches in
some of the references just cited.

We note that Kitagawa’s choice for the noise density
r(x) does not result in robustness. The reason is that,
although the left tail is sufficiently heavy (exponential
thickness) to provide protection against negative outliers,
the right tail is considerably lighter than Gaussian tails.
Thus the model will not provide protection against an
occasional unanticipated positive outlier. An easy fix is to
modify r(x) so that it has a right tail with (at least) ex-
ponential thickness.

Incidentally, it appears that use of the conditional me-
dian as a point estimate (bold curves) in Figures 5 and 9
might be considerably better than use of the conditional
mean for the posterior distribution. For the conditional
means will be affected more by the vagaries of the tails of
the conditional distributions. In this connection it is to be
noted that the 99.87 and 97.73 percent curves in Figure 5
exhibit wiggles (away from the jumps) that are very similar
to the wiggles associated with the linear conditional mean
(i.e., Gaussian model) estimates in Figure 3. This simi-
larity was brought to our attention by Andrew Bruce.

2.3 Non-Gaussian Core and Outliers

Our preceding comments have focused on non-Gaussian
situations where the central part, or “core,” of the distri-
butions are nearly Gaussian and heavy-tailed deviations
give rise to outliers. Similar comments apply to situations
where the core of the distribution is substantially non-
Gaussian. If the core is quite-non-Gaussian and the tails
are sufficiently heavy, then the optimal non-Gaussian
smoother and parameter estimates will often already be
robust toward outliers. On the other hand, a model with
a substantially non-Gaussian core but with light tails will
need to be suitably robustified—one way to do so being
to construct optimal or nearly optimal procedures for mod-
ified distributions with sufficiently heavy tails. For ex-
ample, consider the problem of estimating scale for an
exponential distribution with iid observations. To obtain
a bounded score function and thereby achieve robustness,
one needs to use a distribution with tails at least as heavy
as Cauchy tails. For a min—-max robust solution to this
problem, see Huber (1981) and Thall (1979). Incidentally,
inliers can also pose a robustness problem when estimating
scale parameters (see Martin and Zamar 1986).



Martin and Raftery: Comment

3. COMPUTATIONAL CONSIDERATIONS

31 Computational Complexity of
Kitagawa’s Method

One wonders, as does the author in his concluding re-
marks, whether the piecewise linear approximation
method he proposes is really practical. Andrew Bruce has
implemented Kitagawa’s procedure on the (quite fast)
Symbolics computer in our department. For the first ex-
ample, the running time, using 100 knots, was nearly 1
hour!

Furthermore, it appears that the computing time for
Kitagawa’s procedure is about O(m*), where k is the di-
mension of the state, and in the examples given, m is on
the order of 400. This is because the prediction, filtering,
and smoothing equations (2.2), (2.3), and (2.5) involve k-
dimensional integrals. Thus the method seems unlikely to
be of use in the real-time applications that arise in com-
munications and control theory. In addition, even if it can
be made to work on higher-dimensional problems where
the data analyst has the time to analyze the data many
ways, the run time may still be prohibitive. We hope that
the author will provide us with some guidance and running
time information in his rejoinder.

We also wonder how much approximation error occurs
when one includes both the linear approximation and ac-
cumulated round-off error. Since one is forced to work
with some degree of approximation, one may be much
better off using alternative approximations that are more
attractive computationally.

3.2 Approximations for AO Filters

Experience shows that for AO models, the computa-
tionally attractive conditional mean non-Gaussian filters
of Masreliez (1975) and Masreliez and Martin (1977) work
quite well in practice (Kleiner, Martin, and Thompson
1979; Martin et al. 1983; Martin and Thompson 1982). In
addition, see Martin and Su (1985) for a detailed com-
parison of robust filters and guidelines for selecting tun-
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ing constants. It is to be emphasized that the conditional
mean filters may be constructed for rather arbitrary non-
Gaussian observation noise [see, e.g., fig. 2 of Masreliez
(1975)].

It should also be emphasized that the result of Mas-
reliez (1975) contains essentially only the Gaussian case
and the Kalman filter as an exact result [see the proposition
in sec. 5 of Martin (1979)]. We believe, however, that use
of Masreliez’s theorem produces estimates that are quite
good approximations to the exact conditional mean in non-
Gaussian AO situations. Some evidence in support of this
claim may be found in the Monte Carlo results in figure
3 of Masreliez (1975) and in the theorem of section S in
Martin (1979).

The key approximation property used to construct these
filters is that the state prediction density is approximately
Gaussian. The discovery that this approximation yielded
intuitively appealing non-Gaussian filter recursions, with
data-dependent covariance (unlike the Gaussian case) was
due to Masreliez (1975), and his clever derivation also
provides one of the nicest ways of establishing the standard
Kalman filter recursions. Some theoretical justification for
use of the Masreliez approximation is provided by the
“continuity of state prediction densities” theorem in Mar-
tin (1979).

For somewhat different approximations, the reader is
referred to Ershov and Lipster (1978), West (1981, 1982),
and Guttman and Pena (1985). A thorough analysis of the
quality of all of the approximations suggested to date re-
mains to be carried out.

3.3 Approximations for AO Smoothers

It is possible to use Masreliez’s Gaussian approximation
for state prediction density to derive an approximately
optimal conditional mean smoother. This is done in the
approximate conditional mean smoother theorem of Mar-
tin (1979), where the resulting smoother has the ‘‘stan-
dard” form. One early derivation of the optimal linear
smoother in standard form may be found in Meditch

100 200 300 400

0

1 1 1

-100

0 10 20

30 40 50

Figure 1. Suspended Deposits (dots) and Robust Smooth (solid line), With Standard Error Bands.
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Figure 2. Suspended Deposits (dots) and Kalman Smooth (solid line), With Standard Error Bands.

(1967). A considerably simpler derivation was given more
recently by Ansley and Kohn (1982). In figure 2 of Martin
(1979), a robust smoother of this type is applied to “sus-
pended deposits” data, and the result indicates that certain
kinds of jumps in a process are handled rather nicely. Note
that the approximately optimal smoother may be con-
structed for any non-Gaussian observation noise distri-
bution, not just those that are nearly normal.

Actually, a “two-filter” form of approximate condi-
tional mean smoother [see Solo (1982) for the linear/Gaus-
sian case] is preferred, both with regard to ease of
interpretation and jump handling ability. This form of
smoother is constructed as a weighted sum of forward and
backward approximate conditional mean filters of Mas-
reliez type (or robust versions thereof), with the data-
dependent weights having a natural Bayesian interpreta-
tion. We illustrated the efficacy of a two-filter version of
robust smoother on the “suspended deposits” data. Figure
1 shows %, and £, * s,, along with the original data, where
£, is the robust smoother and s? is a data-dependent esti-
mate of mean squared error for £,, and we arbitrarily as-
sumed a Gaussian observation noise with mean zero and
standard deviation 20 (details will be provided in a forth-
coming technical report). We see that £, has reasonable
resistance toward outliers and handles the jump around ¢
= 12, 13 well. By way of comparison, results for the usual
linear Kalman smoother are shown in Figure 2, where
three outliers exert undue influence.

Following Kitagawa’s results, we are motivated to con-
struct a conditional median or conditional mode variant
of the approximate conditional mean type estimate £, used
in Figure 1. Even nicer point estimates may result.

3.4 Approximate Conditional Mean Filters and
Smoothers for Non-Gaussian State Noise

Masreliez (1975) and Masreliez and Martin (1977) pro-
vided theoretical results concerning exact conditional
mean and robust filters for the case of non-Gaussian state
noise. However, it turns out that, unlike the case of non-

Gaussian observation noise, these results do not appear
to immediately provide a filter structure via the simplifying
assumption of Gaussianity of the state prediction density.
When the state noise is non-Gaussian, the state prediction
density can be quite non-Gaussian, a fact we had over-
looked by not paying much attention to the non-Gaussian
state noise case in the past. Thus Kitagawa’s work moti-
vates us to study further the problem of obtaining com-
putationally attractive filters and smoothers for non-
Gaussian state noise problems and for simultaneous non-
Gaussian state noise and non-Gaussian observation noise.
For heavy-tailed nearly Gaussian distributions, such filters
and smoothers will, it is hoped, provide fast robust pro-
cedures for IO and IO + AO cases. Many practical sit-
uations make this an important area for study.

3.5 Special Approaches for Level Shifts,
Variance Changes, Etcetera

Kitagawa’s first two examples involve two basic kinds
of structural change that occur frequently in time series
and must be dealt with adequately: level shifts and changes
in variance that may or may not be abrupt. Robustness
deals with outliers but not, in general, with such structural
changes (other structural changes, such as change in slope
of trend, etc., may also need to be dealt with; see Smith
and West 1983). The best overall strategy is probably to
combine robustness with special methods for dealing with
other structural changes. Although, as Kitagawa demon-
strates, it may be possible to deal with both problems by
a single non-Gaussian model, this may not always be pos-
sible or desirable, from a computational point of view,
among others.

Box and Tiao’s (1975) intervention analysis indicates
that certain additive structures may be nicely dealt with
by dummy variables, when the time of onset is known.
Furthermore, Harrison and Stevens (1976) provided a nice
framework for dealing with a variety of structural changes,
including the types mentioned previously. Further devel-
opments are given by West (1986a) and West and Harrison
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(1986). Our question to Kitagawa is: Would it not be pref-
erable, from the computational point of view at the very
least, to develop an approach using parametric structures
for dealing with such special effects as level shifts, change
in variance? In addition, for slowly changing variances,
should one approach the problem nonparametrically [e.g.,
as did Carroll (1982) in the linear model setting)?

4. STATE-SPACE MODELING FOR GENERAL
NON-GAUSSIAN TIME SERIES

Kitagawa’s approach is restricted to situations where
both observation and state take values in Euclidean space;
in addition, the underlying model (2.1) is linear. Thus
there are many kinds of non-Gaussian time series that do
not fit easily into his framework. These include unordered,
or partially ordered, categorical time series; time series of
angles; time series of compositional data, defined on the
simplex; and time series of contingency tables.

We shall now discuss a class of non-Gaussian state—space
models that may be able to deal with such problems. We
first review the model of Raftery (1985a,b) for a stationary
time series {Z,} taking values in an arbitrary space Z. It
was introduced by Raftery (1985a) in the context of dis-
crete-valued time series as a model for high-order Markov
chains; however, the approach is much more general.

Suppose that (V;, W)) (i = 1, . . ., p) is a set of bivariate
random vectors taking values in Z X Z, with conditional
densities f;(v | w) with respect to some measure, where
the marginal distribution of V; is the same as that of W,
for each i = 1, . . ., p. Suppose that the conditional
density of Z, given Z,_,, . . . , Z,_, is given by

p(Z,, l Zp-15 + + Zn—p) = Z} ’lifi(zn l Zn-—i)a (1)

where 24, = 1. This is called a linear conditional prob-
ability (LCP) time series model. In the discrete-valued case
it fits data well, can be physically motivated, is flexible
and easy to generalize to other dependence patterns, and
is analogous in several ways to the standard autoregressive
model.

Consideration of (1) suggests the following system equa-
tion in the non-Gaussian state—space model as an alter-
native to Kitagawa’s (2.1). Suppose that x, = (x,;, . . .,
xx)T, where k is the dimension of the state, and that
g(x, | x,-1) (i =1, ..., k) are conditional densities,
with obvious meanings. Then we consider models having
state transition densities of the form

P(Xn | Xn—l) = Z ligi(xn l xn—l,i)’ (2)

i=1

where 2; = 1. The observation equation, which specifies
p(y. | x,), could have a similar form, but this is not nec-
essary. Transition densities of the form (2) clearly can
represent time series defined on a wide variety of spaces.
They also include all of the models that Kitagawa consid-
ers, with k = 1.

Another advantage of (2) is that it may render Kita-
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gawa’s numerical technique computationally feasible when
k exceeds 1. The reason is that the multiple integrals re-
quired by Kitagawa’s primitive technique now reduce to
sums of single integrals. For example, the prediction equa-
tion (2.2) becomes

p(xn | Yn—l)

k
= Z Ai f gi(x, | Xp-1,) P(Xn-1,i I Y1) dx,_1,,
i=1

which can be approximated using the one-dimensional
technique in Section 3 of Kitagawa’s article.

LCP state-space models other than (2) can be defined
and may be more useful. For example, a kth order Mar-
kovian model with observation error is obtained when the
right side of (2) is multiplied by (k — 1) singular measures.
This is analogous to the state—space form of the standard
kth-order autoregressive model with observation error
(Harvey 1981, chap. 4).

5. THE RAINFALL DATA AND CATEGORICAL
TIME SERIES

The analysis of the rainfall data in Kitagawa’s third ex-
ample is based on the assumption that, conditional on the
slowly changing p,,, which is essentially the seasonal effect,
the occurrence of rainfall on successive days is indepen-
dent. We wonder if this is, in fact, the case. Analyses of
rainfall data from many parts of the world indicate that
it is not [see, e.g., Stern and Coe (1984) and references
therein)].

If it is not, the dependence could itself be modeled,
perhaps using a Markovian assumption; the LCP model
might be helpful there. This would involve analyzing the
actual data, rather than the aggregated data in Kitagawa’s
Table 2. We conjecture that this would lead to smoother
estimates of p, and, perhaps, to broader confidence bands
as well.

Techniques for binary time series do not always gen-
eralize to unordered, categorical time series with more
than two categories. For example, the mean is well-defined
in the binary case but not in the general categorical case.
West, Harrison, and Migon (1985) and West (1986b) pro-
posed interesting new models for binary time series, which
are similar to those of Kitagawa. It is not yet clear, how-
ever, how such techniques carry over to general categorical
time series, for which the LCP approach may be useful.

6. MODEL COMPARISON

We are surprised to see that Kitagawa bases his model
comparisons in the first two examples on the AIC. He
justifies this by referring to Akaike’s interpretation of
likelihood from which the AIC is naturally derived, citing
Akaike (1973). This derivation of the AIC, however, is
based on the quadratic approximation to the likelihood,
which is precisely what Kitagawa’s article is trying to get
away from. In addition, use of the AIC seems proble-
matical, even asymptotically, when nonnested models are
being compared, as in the first example. This is because
the sampling properties of the minimum AIC procedure
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seem to be known only when the models being compared
are nested (see, e.g., Findley 1987, sec. 5).

Bayes factors, by contrast, provide an exact, finite-sam-
ple solution to the model-comparison problem and should
be available as by-products of the procedure proposed in
Kitagawa’s article. They have a precise inferential inter-
pretation, which applies whether or not the models being
compared are nested. Bayes factors have been used suc-
cessfully to compare nonnested models in different situ-
ations, including point processes (Raftery and Akman
1986), contingency tables (Raftery 1986), and problems
involving unknown population size (Raftery 1987).

Akaike (1983) pointed out that, asymptotically, model
comparisons based on the AIC are approximately equiv-
alent to those based on Bayes factors. This is true, how-
ever, only in the rather special situation in which the
information in the prior increases at the same rate as the
information in the likelihood. If prior information is small
relative to the information provided by the data, then
Bayes factors based on such priors, or approximating
vague priors, should be used, rather than the AIC. If this
is the case, an analysis based on Bayes factors will often
favor models simpler than those selected by the minimum
AIC procedure.
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