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Abstract

We consider the problem of multiband image clustering and segmentation. We propose a new methodology for doing this, called model-

based cluster trees. This is grounded in model-based clustering, which bases inference on finite mixture models estimated by maximum

likelihood using the EM algorithm, and automatically chooses the number of clusters by Bayesian model selection, approximated using BIC,

the Bayesian Information Criterion. For segmentation, model-based clustering is based on a Markov spatial dependence model. In the

Markov model case, the Bayesian model selection criterion takes account of spatial neighborhood information, and is termed PLIC, the

Pseudolikelihood Information Criterion. We build a cluster tree by first segmenting an image band, then using the second band to cluster each

of the level 1 clusters, and continuing if required for further bands. The tree is pruned automatically as a part of the algorithm by using

Bayesian model selection to choose the number of clusters at each stage. An efficient algorithm for implementing the methodology is

proposed. An example is used to evaluate this new approach, and the advantages and disadvantages of alternative approaches to multiband

segmentation and clustering are discussed.
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1. Introduction

Clustering and segmentation in an image analysis context

have a long history [19]. Objectives include: quantization of

data values for later use with a codebook in a compression

context; targeting delivery to display devices supporting

small, bounded pixel data value depth; as a preliminary to

object and feature detection and analysis in images; and as a

basis for other image processing operations such as image

registration and archiving.

We will use the terms clustering or quantization to refer

to determining clusters among image grayscale or pixel

values. In the case of multiband images, the grayscale pixel

values are multidimensional. This simply implies that in
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multiband data clustering we are dealing with clustering in

multidimensional space, i.e. we are dealing with a form of

vector quantization. Multiband images include the case of

color images, with bands associated with red, green and blue

colors, or a large number of alternative color formatting

schemes. As opposed to clustering or quantization, the term

segmentation is used when neighborhood or spatial

influence information is incorporated into the modeling.

Ideally, we could impose as a necessary objective that all

segments be spatially contiguous. In practice, we take this as

a sufficient objective. Multiband images are also referred to

as multispectral or multichannel or hyperspectral images.

In this paper, we propose a new method for multiband

image clustering, called model-based cluster trees. This

combines maximum likelihood estimation of finite mixture

models with Bayesian model selection. For segmentation, a

Markov neighborhood dependency model is used to include

adjacency or local influence. The model-based clustering

tree algorithm operates recursively on the image bands. First

it clusters or segments the pixels on the basis of the first
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band. Then, using the second selected band, it clusters each

of the clusters found in the first stage. Bayesian model

selection is used at each stage to determine the number of

clusters or segments, so that the data are used to decide

adaptively the extent to which the tree is pruned.

The resulting method allows the number of quantization

levels or numbers of segments to be chosen on the basis of

the data. If the number of quantization levels is predeter-

mined (see, e.g. [23]), the method can easily handle this as a

special case. Given that image bands are processed in

sequence, it is helpful if the image bands have some inherent

order. In chromaticity/luminosity color space, such an order

can make use of the fact that chromaticities convey far less

perceptual information than does the luminosity (see, e.g.

[32]). Such an order can be readily accommodated in our

approach. In more general cases, we impose an order on

image bands which will be helpful for interpretation or

further processing of the clustered or segmented output.

We can readily accommodate noise in our image data.

This is implied by image features taken as realizations of

distributional models. Explicit noise components are

incorporated into our modeling as discussed in earlier

work of ours [4]. Our MR software package [17] provides

multiband image noise filtering, together with compression,

functionality. See also chapter 6, ‘Multichannel data’,

in [30].

We can accommodate a very small number of classes

(clusters or segments) for the pixels, or a large number. A

small number of classes may be needed as a preliminary to a

data interpretation, or high-level vision stage of the analysis.

A large number of classes may be needed when high fidelity

to the original image is required.

A major motivation for a cluster tree results from use of

model-based clustering in cases like multiband segmenta-

tion in Earth observation [22]. Notwithstanding the Occam

razor parsimony principle of a small number of clusters, it

may be found that a larger number of clusters does greater

justice to the data. Then, however, it may be necessary to

further analyze the clusters found. A cluster tree approach is

an appropriate way to do this.

The simple tree structure given by a quadtree can be

valuable, in particular for permitting Markov modeling both

spatially and in scale [7]. However, two problems arise with

such a simple tree structure: firstly, there is a sharp

discontinuity at the boundaries between quadtree cells;

and secondly the quadtree is quite a crude data-driven

structure.

A further motivation for our cluster tree approach is that

model-based Gaussian fitting of arbitrary multiband data is

often unstable and algorithmically non-robust. The reason

for this is singularity brought about by the following: (i)

individual clusters or segments that are of small cardinality;

(ii) correlation, possibly local, between bands; and (iii)

relatively ‘flat’ background that is not covered by the

detector, in particular in medical imaging. Some of these

issues are discussed by us in [22].
In Section 2, we describe the model-based cluster trees

methodology. In Sections 3 and 4, we discuss aspects of

algorithm design and properties. In Section 5, we will

exemplify where the model-based tree approach is particu-

larly important, and show how this algorithm performs

exceedingly well in practice.
2. Model-based cluster trees

Our basic framework is that of model-based clustering,

as described, for example, by Fraley and Raftery [11,12]. In

this methodology, a finite mixture of normal distributions is

fit to the data by maximum likelihood estimation using the

EM algorithm, the number of groups is chosen using

Bayesian model selection, and if hard clustering is desired,

each pixel is assigned to its most likely group a posteriori.

Model-based cluster trees produces a clustering of multi-

variate data by clustering on each band or dimension

recursively.

We now briefly outline finite mixture modeling,

Bayesian model selection, and model-based cluster trees.

2.1. Univariate finite Gaussian mixture models

In the univariate finite Gaussian mixture model, one-

dimensional observations xi are assumed to be drawn from

G groups, each of which is Gaussian distributed. The gth

group has mean mg and variance s2
g. Given observations

xZ(x1,.,xn), let g be an unobserved n!G cluster assign-

ment matrix, where gigZ1 if xi comes from the gth group,

and gigZ0 otherwise. Our goals are to determine the

number of clusters G, to determine the cluster assignment of

each pixel, and to estimate the parameters mg and sg of each

cluster.

The probability density for this model is

f ðxijq; lÞ Z
XG

gZ1

lgfgðxijqgÞ; (1)

where qgZ ðmg; s
2
gÞ

T, fg($jqg) is a Gaussian density with

mean mg and variance s2
g, qZq1,.,qG, and lZl1,.,lG) is a

vector of mixture probabilities such that lgR0, gZ1,.,G

and
PG

gZ1 lgZ1.

We estimate the parameters by maximum likelihood

using the expectation-maximization (EM) algorithm [9,16].

For its application to model-based clustering, see [6,8,15].

This is a procedure for iteratively maximizing likelihoods in

situations where there are unobserved quantities and

estimation would be simple if these were known. In the

clustering case, the unobserved quantities are the cluster

assignments given by the matrix g.

The EM algorithm iterates between the E step and the M

step. In the E step, the conditional expectation, ĝ, of g given

the data and the current estimates of q and l is computed, so

that ĝig is the conditional probability that xi belongs to
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the gth group. In the M step, conditional maximum

likelihood estimators of q and l given the current ĝ are

computed.

The E step and the M step are both simple, so that the EM

algorithm as a whole is also simple. By contrast, direct

maximization of the likelihood for the mixture model is

complex in general. Although the EM algorithm has some

limitations (e.g. it is not guaranteed to converge to a global

rather than a local maximum of the likelihood), it is

generally efficient and effective for Gaussian clustering

problems.

This procedure is especially efficient for clustering image

pixels using single color bands or grayscale images. In

general, the EM algorithm requires O(n) time, where n is the

number of pixels. However, typically pixels can have one of

only a limited number, [, of intensities in each band, such as

256. If we first summarize the data by the counts of the

numbers of pixels with each intensity level, the EM

algorithm becomes an O([) algorithm rather than an O(n)

one. Since n, the number of pixels, is often very large, and [
is typically 256, this is a major speed-up and provides a

reason for clustering one band at a time if this can be done

without degrading performance too much.
2.2. Choosing the number of clusters via Bayesian

model selection

We use Bayesian model selection to choose the number

of clusters. For review of Bayesian model selection, see

Kass and Raftery [14] and Raftery [24]. Pioneering work in

this area was due to H. Jeffreys, I.J. Good and (according to

the latter) A. Turing.

We consider a range of candidate numbers of clusters,

GZGmin,.,Gmax. Each possible number of clusters, G,

implies a different statistical model for the data, MG. The

model MG has a vector of unknown parameters, jG,

consisting of the G means, the G variances, and the

(GK1) independently estimated mixture probabilities:

(3GK1) parameters in all. Our prior model probabilities

are p(MG) for GZGmin,.,Gmax, where
PGmax

GZGmin
pðMGÞZ1.

Often each number of clusters considered is taken to be

equally likely a priori, so that pðMGÞZ1=ðGmax KGmin C1Þ

for each G. The model parameters jG also have prior

distributions p(jGjMG), which are typically rather diffuse

and do not affect the final conclusions unduly. The data

produce posterior model probabilities, p(MGjx), where againPGmax

GZGmin
pðMGjxÞZ1.

By Bayes’ theorem:

pðMGjxÞ Z
pðxjMGÞpðMGÞPGmax

HZGmin
pðxjMHÞpðMHÞ

; G Z Gmin;.;Gmax:

(2)

In (2), p(xjMG) is the integrated likelihood of model MG,

which requires integration over the model’s parameter
space, as follows

pðxjMGÞ Z
Ð

pðxjjG;MGÞpðjGjMGÞdjG; (3)

by the law of total probability.

The integral (3) is intractable analytically and is not easy

to evaluate. However, twice the logarithm of the integrated

likelihood can be approximated by the Bayesian Infor-

mation Criterion, or BIC:

2 log pðxjMGÞw2 log pðxjĵG;MGÞK ð3G K1Þlog n Z BIC

(4)

See [14,24,26]. In (4)

pðxjĵG;MGÞ Z
Yn

iZ1

XG

gZ1

l̂gfgðxijq̂gÞ

is the maximized likelihood. In words, BICZ2(log

maximized likelihood)C(log n)(number of parameters).

The BIC measures the balance between the improvement

in the likelihood and the number of model parameters

needed to achieve that likelihood. While the absolute value

of the BIC is not informative, differences between the BIC

values for two competing models provide estimates of the

evidence in the data for one model against another. The use

of the BIC in choosing clusters in a mixture or clustering

model is discussed by Roeder and Wasserman [25] and

Dasgupta and Raftery [8]. Applications of ours using the

same Bayesian decision principles with different imaging

problems can be found in Campbell et al. [4,5] (machine

vision), Mukherjee et al. [18] (data mining), and in Murtagh

et al. [22] (remote sensing). An alternative derivation of BIC

as a minimum description length (MDL) criterion is

described by Hansen [13].
2.3. Model-based cluster trees algorithm

The algorithm can be summarized as follows where at

each level of the clustering tree we make use of the BIC in

order to allow for objective choice of number of model

components:
1.
 For the first image band, use BIC to choose the number

of clusters (we evaluate BIC for GminZ1,.,GmaxZ40).

Use the EM algorithm to estimate the parameters of the

mixture model, and assign each pixel to the group to

which it is most likely to belong a posterior. (In Section

6, below we will enhance this clustering step to a

segmentation step.)
2.
 For each cluster identified in step 1, carry out a separate

model-based cluster analysis, this time using only the

pixel intensities in the second image band. Each cluster

identified in step 1 is then itself subdivided into several

clusters.
3.
 On demand, for each (sub)cluster identified in step 2,

subdivide it further using the same procedure as in step 2,
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but this time using only the pixel intensities in the third

image band.

The univariate Gaussian mixture model fitting was

carried out using an algorithm initially developed by

Stanford [28]. As an indication of algorithm performance

on a Sun SparcStation 10, dependence on the number of

clusters, G, is approximately linear. (For a 768!512 image,

GZ3 required 20 s, and GZ39 required 131 s.) Depen-

dence on image dimensionality was found to be sub-linear.

(Dimensions 300!300: 11 s, 900!900: 87 s.)
2.4. Spatial segmentation and a modified Bayes information

criterion

Model fitting to the marginal density pays no attention to

two-dimensional image spatial information. We can take

such information into account using a hidden Markov model

(HMM). Background on the approach pursued here can be

found in Stanford [28] and Stanford and Raftery [29].

We consider an unknown, true pixel state, for pixel i, as

Xi2{1,2,.,K} for K states. The observed image pixel is Yi.

This can be taken either as a scalar, or instead as a vector for

color or multiband images. Consider an indicator function,

I(Xi,Xj)Z1 if XiZXj and otherwiseZ0.

We now use a Markov random field to define spatial

structure on X. We take p(X) as being proportional to

exp f
P

i;j IðXi;XjÞ
� �

. This is a Potts or Ising model. f is a

spatial homogeneity parameter, a small value implying

randomness, and a large value implying uniformity. A

negative value of f implies dissimilarity between neighbor-

ing pixels, and is not of interest here. Our model is a hidden

Markov model because the variables X are only known

through the observed Y.

Let N(Xi) be the neighborhood of Xi, e.g. 3!3 pixels. Let

U(N(Xi),k) be the number of neighborhood pixels with state

k.

From p(X) we have the conditional distribution:

pðXi Z jjNðXiÞ;fÞ Z
expðfUðNðXiÞÞ; jÞP
k expðfUðNðXiÞÞ; kÞ

(5)

Having looked at the latent space, we now return to the

observed data. We assume the following conditional

density model connecting the observed and hidden vari-

ables: f(YijXiZj) is Gaussian with mean mj and standard

deviation sj. In the multiband case, where y is a vector,

the mean vector is used, and the variance–covariance

matrix. The Yi are conditionally independent given the Xi

or, alternatively expressed, dependence among the Yi

only occurs via dependence among the Xi. Call qk the

set of parameters, (m,s2) for state k. We have

f ðYjXÞZ
Q

i f ðYijXiÞZ
Q

i f ðYijqXi
Þ.

Our solution algorithm is as follows. It is based on

Besag’s [3] iterated conditional modes (ICM) algorithm,

which reconstructs an image based on local properties
modeled as a Markov random field. This iterative

algorithm requires an initial estimate of X, X̂, and

proceeds to estimate the parameters of p(YijXi), as well

as f and X. To initialize X, we note that in taking

p(YijXi) as Gaussian, then the marginal density of Y is a

finite mixture of Gaussians. In the multidimensional case,

we either use a marginal density model on some selected

band, or alternatively use the marginal density model of

the eigen or principal component image. The EM-based

modeling of the marginal density discussed in Section 1

then applies.

Segmentation Algorithm:
Step 0:
 Initialize X̂ using a marginal segmentation.
Step 1:
 Update q̂Zargmax f ðYjX̂Þ based on maximum

likelihood estimates of mj and qj for each class, j.
Step 2:
 Update f using the maximum pseudo-likelihood:

f̂ZargminfðKlog PLðX̂jfÞÞ. The pseudo-likeli-

hood is given by PLðX̂jfÞZ
Q

i pðX̂ijNðX̂i;fÞÞ.
Step 3:
 Update X̂: for each pixel i, X̂iZargmaxj

f ðYijXiZ jÞpðXiZ jjNðX̂i; f̂ÞÞ.
Implementation details: in step 2, we initialize f̂ to 1.4

(which was found to work well with the golden ratio search

algorithm used, with overall search limits of K2 and 15)

and we constrain f̂ to be greater than zero. In all

calculations, we exclude boundary pixels from consider-

ation. Step 1 is one step of Besag’s ICM algorithm.
2.5. An information criterion with spatial interaction, PLIC

We now turn attention to model selection. This is

developed not for the homogeneity parameter, f, nor for

the neighborhood, but rather for the number of segments, K

(see [29]).

In the spatial (Markov) case, the likelihood (first term) in

the BIC, Eq. (3), is problematic for computational reasons.

The posterior distribution of X conditional on Y is:

f ðXjYÞZ f ðYjXÞf ðXÞ=f ðYÞf f ðYjXÞf ðXÞ. Since there is

conditional independence between Y and X, we have that

f ðYjXÞZ
Q

i f ðYijXiÞ which, it has already been noted, is

taken as Gaussian.

The density of x, f(X), is related to all possible states,

which is combinatorially explosive. Therefore, the pseudo-

likelihood, PL(X), is taken as a proxy for f(X). The pseudo-

likelihood, introduced in Besag [2], restricts where the

integrated likelihood is defined. We have:
PLðX;fÞ Z
Y

i

pðXkjNðXiÞ;fÞ Z
Y

i

expðfUðNðXiÞÞ;XiÞP
k expðfUðNðXiÞÞ; kÞ

(6)
The likelihood is made conditional on the neighborhood

of pixel i. Previously, we had



F. Murtagh et al. / Image and Vision Computing 23 (2005) 587–596 591
LðYijXiÞ Z
X

j

f ðYijXi Z jÞpðXi Z jÞ (7)

for state or label j.

Instead, denoting XKi the neighborhood of Xi not

including pixel i, and with X̂ denoting an estimate of X,

we use:

LðYijNðX̂KiÞÞ Z
X

j

f ðYijXi Z jÞpðXi Z jjNðX̂iÞÞ (8)

As already noted, the first part of the right hand side term

requires evaluation of a Gaussian; and the second part uses

the conditional distribution defined for p(X) in Eq. 5.

From the product of pseudo-likelihoods for all pixels, we

arrive at a modified BIC, modifying Eq. (3). This modified

criterion is termed the pseudo-likelihood information

criterion (PLIC) [28,29].
2.6. Model-based segmentation/clustering trees algorithm

The algorithm can be summarized as follows where

initially we use a segmentation, with use of the PLIC in

order to allow for objective choice of number of model

components:
1.
 For the first image band, use PLIC to choose the number

of segments (we evaluate PLIC potentially for GminZ
1,.,GmaxZ40). Use the ICM algorithm to estimate the

parameters of the mixture model, and assign each pixel

to the segment to which it is most likely to belong a

posteriori.
2.
 For each segment identified in step 1, carry out a separate

model-based cluster analysis, this time using only the

pixel intensities in the second image band. Given that

pixel intensities are used, the appropriate assessment

criterion here is the BIC. Each cluster identified in step 1

is then itself subdivided into several clusters.
3.
 On demand, for each (sub)cluster identified in step 2,

subdivide it further using the same procedure as in step 2,

but this time using only the pixel intensities in the third

image band.

The segmentation model fitting was carried out using an

algorithm initially developed by Stanford [28]. We can quite

straightforwardly carry out this segmentation on a number

of bands simultaneously in step 1. In this case, we are fitting

our Gaussian mixture and Markov model to the pixel

vectors in a multidimensional pixel space.

As an indication of algorithm performance, indicative

timings on a Sun SparcStation 10 relative to the number of

clusters, G, are as follows. For a 256!256 image, GZ2 and

20 required, respectively, 74 and 412 s. Indicative timings

relative to image dimensionality were as follows. For the

GZ2 case above we have 74 s for a 256!256 image, and

we have 317 s for a 768!512 image. Finally, indicative

timings as a function of number of bands are as follows.
For GZ2, from the foregoing result we have 317 s for a

768!512!1 image, and we find 535 s for a 768!512!3

image.
3. Some algorithm properties

3.1. Band ordering

In this section, we follow closely Tate [31] who considers

the band ordering problem for compression of multispectral

images.

We consider the problem of clustering on one band

coordinate, assuming that this band presents good clustering

properties, followed by clustering on a second band based on

the first band clustering, and so on. If c1i is the ith cluster from

the first band, then we seek clusters c2j such that

c1iZgj2Ji
c2j, i.e. Ji is a partition of cluster c1i. Similarly,

we proceed to a third band, based on available results for

bands 1 and 2.

The order in which we consider the bands is evidently

important. Let us define goodness of clustering as the

tightness of the clusters, i.e. the minimum sum of variances

of clusters for all bands. This is in line with the compression

objective of [31] and can be justified on minimal entropy

grounds also.

Clearly, a result of this definition is that when we find no

subclustering at bands 2 and 3, the corresponding subcluster

variances are equal to 0, and hence the contribution to the

overall sum of variances is thereby minimized.

Finding the optimal band ordering for clustering can be

tackled by exhaustively checking all orderings of bands. But

this can be computationally demanding.

Define graph GZ(V,E) such that an edge Eij has weight wij

representing the added clustering quality attainable by

clustering band i before band j. By design, band i is

partitioned, and the clusters of the i-partition are each

partitioned based on band j information. Define wij as the

improvement in the overall sum of posteriors (or sum of intra-

cluster variances: the criterion used to quantify clustering

quality is not important here) by taking band i before band j.

The problem of finding an optimal band order in the

general case of many bands is equivalent to finding an

optimal traveling salesman path in the graph, G. This

Hamiltonian path problem in NP-hard and the correspond-

ing decision problem of knowing whether we have or do not

have a Hamiltonian path in G is NP-complete.

3.2. Model component labels

For a Gaussian mixture model fit to a single grayscale

image, i.e. fitting a mixture model to the image’s marginal

density, we can impose the following label monotonicity

rule.

For clusters ci of means m(ci), and labels l(ci) we require:

lðciÞ! lðcjÞ5mðciÞ!mðcjÞ for all i and j.
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Next consider the level 2 analysis of cluster ci above. For

all pixels in band 2, which carry label l(ci) at level 1, we

form the marginal density, fit a mixture model to this, and

determine level 2 labels in accordance with the level 2

result: lðcð2Þi Þ! lðcð2Þj Þ5mðcð2Þi Þ!mðcð2Þj Þ.

Clearly, considering both the set of level 1 clusters, and

the embedded level 2 clusters, it is not difficult to impose a

clustering labeling which varies monotonically with cluster

means. We are, after all, dealing with scalar means, m,

throughout this processing.

In the case of segmentation, where neighborhood

influence is handled using a Markov model, the processing

of a single grayscale image reverts to an identical

perspective on model component labels as was seen

above. Scalar segment means imply monotonicity of cluster

labels, even in the tree-based or multilevel situation.

The tree-based approach thus offers a practical advantage

over the multidimensional segmentation alternative. In the

multidimensional segmentation case, i.e. segmentation of

multiply valued pixels, there is no immediate monotonicity

property for the segment labels. Therefore, in this case the

labeling which is established is arbitrary. This case of

multidimensional segmentation has the potential to make

life difficult for us in regard to comparative assessment and

evaluation of different result. In such a situation, we have

little alternative but to construct a cross-tabulation of pixel

assignments to all segments, taking pairs of analysis results

into consideration, and then select the best-match segment

associations between pairs of results.
Fig. 1. Digitized Sky Survey image of M82.
4. Discussion of alternative approaches

We will consider the characteristics of three different

case studies. The third one provides the theme of Section 5

to follow.

The first case study [7] relates to six Hubble Space

Telescope NICMOS (Near Infra-Red Camera and Multi-

Object Spectrometer) infrared images (0.8–2.5 mm) of the

M82 region. M82 will also be the focus of our third study

below. M82 is the nearest starburst galaxy at a distance of 11

million light years from Earth. M82, cigar shaped, is bright

(magnitude 6.9). In it, massive stars are forming and

expiring at ten times the corresponding rate in our Galaxy.

The six images were exactly registered. They were of

dimensions 256!256. The images were highly correlated,

with correlation coefficients between the six bands ranging

between 1.0 (near identity) to 0.83. Hardly surprisingly,

therefore, a segmentation carried out in six-dimensional

space, with use of the PLIC criterion to evaluate the optimal

number of segments, encountered cluster singularity

problems. This points to one limitation of a Markov

model-based mixture fit to multiband data: when the data

lie on a less than full dimensionality manifold, or when the

clusters have zero variance, then the approach does not work
and instead further enhancements of the approach are

needed.

The second case study [1] relates to AVHRR/2 and /3

imagery from the NOAA-14 satellite of the Atlantic Ocean

in the region of the Canary Islands. Five bands were used,

each of pixel dimensions 3313!2048. Again, correlations

between some of these images were very strong (1.00, 0.99)

and less so between others (K0.40, K0.43). A principal

component image, or eigen-band, was used as a starting

point for segmentation. This avoided the problem of

singularity, which otherwise was problematic. Further

work in [22] used data from the Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument, on the

Terra (EOS AM-1) spacecraft commissioned as part of

NASA’s Earth Observing System.

The study in Section 5, relates to images of the M82

galaxy, this time using the Palomar (California) Digitized

Sky Survey providing optical images; and the 2MASS near-

infrared (J-band or 1.25 mm band) survey, using telescopes

at either Mt Hopkins (Arizona) or the Cerro Tololo Inter-

American Observatory (CTIO, Chile). The images were

selected and obtained from [27]. Figs. 1 and 2, respectively,

show these images. These images are of dimensions

300K300, but are, respectively, of size 0.14166667 and

0.0833100078 square. Hence, Fig. 1 was rescaled to the size

spanned by Fig. 2, using cubic convolution interpolation

(which provides a good approximation to the theoretically

optimal sinc interpolation). Then extracting a 300!300

image from rescaled Fig. 1 yielded Fig. 3.

The multiband image set on which we will now continue

our work comprised a first band as shown in Fig. 3, and a

second band as shown in Fig. 2. We deliberately targeted a

small multiband set, here a two-band set, for expository



Fig. 2. 2MASS Survey image of M82.
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Fig. 4. PLIC values found for varying numbers of segments, arising from

segmentation of Fig. 3.
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convenience. The results we obtain here may be compared

with the similar results obtained in [7]. The latter work of

ours uses multiband data for the same region of the sky, but

taken with a different detector.
5. Appraisal

We took the band in Fig. 3 as our point of departure.

Segmentation of it was carried out for varying numbers of

segments. This segmentation used a Markov model and
Fig. 3. Digitized Sky Survey, rescaled and extracted, image of M82.
ICM-based component mixture fit, as described in Sections

2.4–2.6 above. The PLIC criterion provides a basis for the

selection of the best segmentation. This provides an

assessment of a number of segments GiC1 against the

alternative of Gi segments. The greater the value of PLIC for

Gi then the more favorable is the evidence for this

segmentation.

From Fig. 4 we observe the following. The best number

of segments is 1, which is not acceptable, so we exclude this

solution. The next best solution is given by two segments.

This we will use now, in order to proceed to the next level of

a tree- or level-based clustering. We also note that for a

number of segments greater than 2, the 8-segment solution

is best. We will compare this later to the cluster tree
Fig. 5. Result of segmenting Fig. 3 into two segments. Cf. PLIC value

corresponding to the 2-component solution in Fig. 4.



Fig. 6. Result of segmenting Fig. 3 into eight segments. Cf. PLIC value

corresponding to the 8-component solution in Fig. 4.
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solution. The 2-segment solution is shown in Fig. 5, and the

8-segment solution is shown in Fig. 6.

We now proceed to a level 2 clustering. A Markov spatial

model at level 2 is impossible: consider the fact that

contiguous zones are distributed throughout the image, with

irregular neighborhoods. Therefore, level 2 and later levels,

if required, make use of quantization or clustering, as

reviewed in Sections 2.1–2.3.

Figs. 7 and 8 show the BIC values, which motivate in

both cases a three-cluster result. In both cases, this is

essentially when the plateau is reached. In the case of BIC,

we can usually continue indefinitely with a greater number

of components to obtain a better fit. BIC values usually

stabilize on an approximate curve plateau as can be

observed in Figs. 7 and 8.
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To facilitate comparison with the direct 8-segment result

in Fig. 6, we show the results of Figs. 9 and 10 in one figure:

see Fig. 11. As always histogram-equalization is used in

these figures to show fine detail.

In the upper central regions, Fig. 11 seems to perform

better in demarcating plume-like structures. Similarly

towards the bottom, in left-of-center regions, the faint

plume structures are fairly well characterized by the clusters

or segments found.

In this work, we use Fig. 6 simply to demonstrate that the

tree cluster model, with final result in Fig. 11, performs very

satisfactorily. The most important argument in favor of

Fig. 11 is that it has allowed us to perform information

fusion, between the Digitized Sky Survey and 2MASS
Fig. 9. Class 1 from Fig. 5 further subdivided into three clusters or

quantization levels.



Fig. 10. Class 2 from Fig. 5 further subdivided into three clusters or

quantization levels.
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Survey image data, in obtaining our clustering result. On the

other hand, Fig. 6 uses the Digitized Sky Survey data only.

The cluster tree used in Fig. 11 has a two-way split at

level 1, followed by a three-way split at both nodes at level

2. Node splitting was determined by the PLIC criterion at

level 1, which corresponds to segmentation, and twice by

the BIC criterion at level 2, which correspond to grayscale

quantization.

The cluster tree analysis approach is justified when

image bands are sufficiently different. If, on the other hand,
Fig. 11. Figs. 9 and 10 are shown together in this figure. Here we see the full

level 2 clustering result, based on the level 1 segmentation result of Fig. 5.
they are not different (as expressed, for example, by high-

valued correlation coefficients), then a direct multiband

segmentation is appropriate, or a principal component

analysis. In all cases, of course, the pixel data must be

very carefully registered before any processing.
6. Discussion

We have shown how a Bayesian modeling approach,

model-based cluster trees, can lead to excellent results in the

area of multiband image clustering. Formal underpinnings

for such an algorithm facilitate choice of system parameters

(e.g. number of clusters) which in a general setting would be

set arbitrarily.

This approach allows us to carry out information fusion

from multiband image data in a fully integrated way. We

have discussed where and when this approach is particularly

appropriate.

The fitting of a tree of Gaussian components may be of

benefit in the exploration of general parameter spaces, since

we are not overly dependent on an analysis function or

kernel (here: Gaussian) of given morphology. The partial

order resulting from the tree of Gaussian components can

(at least in principle) accommodate arbitrary alignments or

curves in multidimensional clusters. Djorgovski et al. [10]

describe a burgeoning need for solving such problems in

the general area of data mining. In Section 1, we mentioned

large-scale multiband image segmentation as a further

domain of application. We can easily envisage application

to other applications also, such as signal quantization [20]

and image edge detection and processing [21].
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