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Man-Suk OH and Adrian E. RAFTERY

Choice of Dimension

Multidimensional scaling is widely used to handle data that consist of similarity or dissimilarity measures between pairs of objects. We
deal with two major problems in metric multidimensional scaling—configuration of objects and determination of the dimension of object
configuration—within a Bayesian framework. A Markov chain Monte Carlo algorithm is proposed for object configuration, along with
a simple Bayesian criterion, called MDSIC, for choosing their dimension. Simulation results are presented, as are real data. Our method
provides better results than does classical multidimensional scaling and ALSCAL for object configuration, and MDSIC seems to work

well for dimension choice in the examples considered.
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1. INTRODUCTION

Multidimensional scaling (MDS) is concerned with data that
are given as similarity or dissimilarity measures between pairs
of objects. Its goal is to represent the objects by points in
a (usually) Euclidean space. MDS has its roots in psychol-
ogy, specifically psychophysics, as it is based on the analogy
between the psychological concept of similarity and the geo-
metrical concept of distance. Subsequently. it has been widely
used in other social and behavioral sciences. Recently, inter-
est in MDS has increased further because of its usefulness in
some rapidly developed subjects, such as genomics (Tibshirani
et al. 1999) and information retrieval for the Web and other
document databases (Schutze and Silverstein 1997).

One of the main applications of MDS is visualization,
where the user wants to represent a complex set of dissimilari-
ties in a form that is easier to see. One reason for this is to see
if visually apparent clusters are present in the data. Another
application is exploration, where the user wants to understand
the main dimensions underlying the dissimilarities. For exam-
ple, the objects in MDS might be political candidates, and the
data might consist of subjective similarity judgements. MDS
might help to suggest which political positions or characteris-
tics are important in forming similarity judgements (e.g., posi-
tion on Social Security, age, tendency to tell jokes). A third
application is hypothesis testing. Monographs on MDS include
Davison (1983), Young (1987), Borg and Groenen (1997), and
Cox and Cox (2001).

An important issue in MDS is configuration of objects, i.c.,
estimation of values for attributes of objects. A commonly
used MDS method for pairwise dissimilarity data was devel-
oped by Torgerson (1952, 1958). Object configurations are
easy to compute with this method, now called classical MDS
(CMDS). It gives complete recovery (up to location shift) of
object configurations when the given dissimilarities are exactly
equal to the Euclidean distances and when the dimension is
correctly specified.
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Another commonly used MDS method is ALSCAL (Takane
et al. 1977), which minimizes the sum of the squared dif-
ferences of squared dissimilarities and squared distances. The
attraction of ALSCAL is that it can analyze data in various
forms. In many practical situations, however, there are mea-
surement errors in the observed dissimilarities and no clear
notion of dimension.

Maximum likelihood MDS methods have been developed
for handling measurement errors; see, for example, Ramsay
(1982), Takane (1982), Takane and Carroll (1981), MacKay
(1989), MacKay and Zinnes (1986), Groenen (1993), and
Groenen, Mathar, and Heisser (1995). However, justifica-
tion of maximum likelihood relies on asymptotic theory, and
computation requires nonlinear optimization. The number of
parameters to be optimized over typically grows as fast as the
number of objects, so that the asymptotic theory may not apply
in high dimensions, as pointed out by Cox (1982). Moreover,
the likelihood surface will tend to have many more local min-
ima when there are more dimensions, and finding a good ini-
tial estimate will be correspondingly more difficult.

Another important issue in MDS is dimensionality, i.e.,
the number of significant attributes. Despite its importance in
many applications, there is no definitive method for determin-
ing dimension for dissimilarity data. The most commonly used
method is to search for an elbow, that is, a point where a mea-
sure of fit or a measure of contribution to the dissimilarity lev-
els off, in a plot of the measure versus dimension (Spence and
Graef 1974; Davison 1983; Borg and Groenen 1997). How-
ever, it is often difficult to find an elbow—especially when
there are significant errors—and visual inspection of a plot
may be misleading, because its appearance often depends on
the relative scale of the axes.

In this article, we deal with these two important issues in
MDS within a Bayesian framework. We use a Euclidean dis-
tance model and assume a Gaussian measurement error in the
observed dissimilarity. Under the model, we propose a simple
Markov chain Monte Carlo (MCMC) algorithm with which
to obtain a Bayesian solution for the object configuration.
We found that the proposed method, which we call Bayesian
MDS (BMDS), provided a much better fit to the data than did
CMDS and a moderately better fit than did ALSCAL in all
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the examples we tested. Moreover, the improvement in perfor-
mance of the proposed BMDS scheme relative to CMDS or
ALSCAL was more pronounced when there were significant
measurement errors in the data or when the Euclidean model
assumption was violated or the dimension was misspecified.

On the basis of the BMDS estimate of object configuration
over a range of dimensions, we propose a simple Bayesian
criterion with which to choose an appropriate dimension. This
criterion, called MDSIC, is based on the Bayes factor, or ratio
of integrated likelihoods, for the BMDS estimated configu-
ration under one dimension versus a different dimension. In
simulated data, we found that the criterion works well for
Euclidean models with measurement error that is not too large.
In real examples, we found that the criterion gave satisfactory
results. We also give an example of cluster analysis on real
dissimilarity data in which the BMDS estimates of object con-
figuration are used in conjunction with model-based clustering
(Banfield and Raftery 1993; Fraley and Raftery 1998).

In our approach, observed dissimilarities are modeled as
equal to Euclidean distances plus measurement error. In this
sense, what we do here can be viewed as a Bayesian analy-
sis of metric MDS, and here being Bayesian seems to con-
fer the benefits of yielding good estimated configurations and
provides a formal way to choose the dimension and provide
measures of uncertainties in estimations. A great deal of MDS
research, however, has focused on nonmetric MDS, in which
the relationship between dissimilarity and underlying distance
is modeled as nonlinear. One could use the basic ideas here
to do Bayesian nonmetric MDS, and we suggest some ways
of doing this in Section 6.

The article is organized as follows. Classical MDS and
ALSCAL are briefly reviewed in Section 2. Bayesian MDS
is described in Section 3: Section 3.1 defines the model and
the prior, Section 3.2 presents an MCMC algorithm, and
Section 3.3 describes the estimation of object configuration
from the MCMC output. Based on the BMDS output, a simple
Bayesian dimension selection criterion, MDSIC, is described
in Section 4. Some simulated and real examples are given in
Section 5. We conclude with discussion in Section 6.

2. CLASSICAL MULTIDIMENSIONAL SCALING
AND ALSCAL

2.1 Classical Multidimensional Scaling

Let §; denote the dissimilarity measure between objects i
and j, which are functionally related to p unobserved
attributes of the objects. Let x; = (x;y,...,x;,) denote an
unobserved vector representing the values of the attributes pos-
sessed by object i.

Torgerson (1952, 1958) developed a technique for multidi-
mensional scaling, now called CMDS. Assume that the dis-
similarity measure, §;;, is the distance between objects i and
j in a p-dimensional Euclidean space, i.e.,

P
aij = Z(-";k - xjk)2’ (1)
k=1

where x; is the kth element of x;. The elements x;, are
unknown, and the goal of MDS is to recover them from the
dissimilarity data.
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Construct a double-centered matrix A with elements
a; defined by a; = —5(8} — 87 — &% +87), where &} =
%Z;';l dizj’ 5.2,- = % PR d?j, & = ,,L pIED B di It was
shown by Torgerson (1952, 1958) that

P
a; =y xy-x; foralli,j, ie,A=XX, (2)
k=1

where X is the n x p matrix of object coordinates. The coordi-
nates of X can be recovered from the spectral decomposition
of the matrix A in (2). If the observed dissimilarities, d,-}-, sat-
isfy the Euclidean distance assumption and there is no mea-
surement error, then the Euclidean distances computed from
the matrix X satisfying (2) will be exactly equal to the given
dissimilarities. However, when the model assumption is vio-
lated or when there are significant measurement errors in the
data, CMDS estimates of object configuration may not be very
useful.

Because Euclidean distance is invariant under translation,
rotation, and reflection about the origin, the matrix X can be
centered at the origin and rotated to its principal axes orienta-
tion (Borg and Groenen 1997, p. 62).

There is no definitive method for choosing the effective
dimension of x;, the number of object attributes that contribute
significantly to the dissimilarities. A common way to assess
dimension is to look at the eigenvalues of the scalar prod-
uct matrix A. The kth eigenvalue is a measure of contribu-
tion of the kth coordinate of X to squared distances. Hence,
only the first p coordinates of X corresponding to the first p
significantly large eigenvalues suffice to represent the objects.
To determine significantly large eigenvalues, one may draw
a plot of the ordered eigenvalues versus dimension and look
for a dimension at which the sequence of eigenvalues levels
off. If each 6;; is equal to a p-dimensional Euclidean distance
between objects i and j as given in (1), then the plot should
level off precisely at dimension (p+1).

A measure of fit, called stress, is commonly used to deter-
mine the dimensionality. Several definitions of stress have
been proposed; the one we use here, and perhaps the mostly
commonly used one, is

Zi>j(dij _61'j)2
Zi>j dlzj

STRESS =

where SU is the Euclidean distance obtained from the esti-
mated object configuration (Kruskal 1964). A plot of STRESS
versus dimension will level off at the true dimension p if
d; =38, and §; is given by (1). Note that the squared
STRESS is proportional to the sum of squared residuals,
SSR= Zi>j(dij - 8ij)2-

Both methods rely on detecting an elbow in a sequence of
values, that is, a point where the plot levels off. However,
in real data that do not conform exactly to the model or in
which there is a significant amount of measurement or sam-
pling error, an elbow may be difficult to discern.

2.2 ALSCAL

ALSCAL (alternating least squares scaling) was developed
by Takane, et al. (1977). It is very general in that it can analyze
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data given in various forms. In metric MDS, ALSCAL mini-
mizes S-STRESS, where

S-STRESS =3 (8, —d)".

i>j

Note that S-STRESS differs from STRESS in that it uses
squared distances and dissimilarities, which is done for com-
putational convenience. However, squaring dissimilarities and
distances causes S-STRESS to emphasize larger dissimilarities
over smaller ones, which may be viewed as a disadvantage of
ALSCAL (Borg and Groenen 1997, p. 204). The minimization
process can be done by using the Newton—Raphson method,
possibly modified. ALSCAL is one of the most commonly
used MDS techniques, and it is available in the statistical com-
puter packages SAS and SPSS. For details, see Cox and Cox
(2001).

3. BAYESIAN MULTIDIMENSIONAL SCALING

3.1 Model and Prior

Dissimilarity data can be obtained in various forms. How-
ever, because Euclidean distance is easy to handie and is rela-
tively insensitive to the choice of dimension compared to other
distance measures, it tends to be used in cases in which the
dimension is unknown unless there are strong theoretical rea-
sons for preferring a non-Euclidean distance (Davison 1983).
Thus, for Bayesian MDS, we model the true dissimilarity mea-
sure §;; as the distance between objects i and j in a Euclidean
space, as given in (1).

In practical situations, often there are measurement errors
in observations. In addition, dissimilarity measures are typi-
cally given as positive values. We therefore assume that the
observed dissimilarity measure, d;, is equal to the true mea-
sure, 6,-j, plus a Gaussian error, with the restriction that the
observed dissimilarity measure is always positive. In other
words, given §,;, the observed dissimilarity measure d;; is
assumed to follow the truncated normal distribution

d,j~N(6,j,crz)I(d,.j>0), i#j. i, j=1....n (3)
where 8, = \/Zf:,(xik —x,)?%, and x; are unobserved. From
this, the likelihood function of the unknown parameters
X = {x;} and o is

(X, 0%) x (a?) " exp[—ﬁSSR - Zlogcb(%)], (4)

i>j

where m = n{rn — 1)/2 is the number of dissimilarities, SSR =
Yi.;(d;—8;)* is the sum of squared residuals, and ®(-) is
the standard normal cdf.

For Bayesian analysis of the model, we need to specify
priors for X and o?. For the prior distribution of x;, we
use a multivariate normal distribution with mean O and a
diagonal covariance matrix A, ie., X; ~ N(0, A), indepen-
dently for i = 1,...,n. For the prior of the error variance
o?, we use a conjugate prior o ~ IG(a, b), the inverse
Gamma distribution with mode »/(a + 1). For a hyperprior
for the elements of A =Diag(A,,...,A,), given dimension p,
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we also assume a conjugate prior, A; ~ IG(a, ;). indepen-
dently for j=1,..., p. We assume prior independence among
X, A, and 02, ie., (X, 02, A) = 7(X)7(c?)7m(A), where
7(X), m(o?), and 7(A) are the priors given earlier.

When there is little prior information, one may use either
the results from a preliminary run or the results from other
MDS techniques, such as CMDS or ALSCAL, for parame-
ter specification in the priors. For instance, one may choose
a small a for a vague prior of ¢? and choose b so that the
prior mean matches with SSR/m, where SSR is obtained from
CMDS or ALSCAL. Similarly, for the hyperprior of A;, one
may choose a small « and choose B; so that the prior mean
of A; matches with the jth diagonal element of the sample
covariance matrix S, = + 3" | x/x; of X obtained from CMDS
or ALSCAL. As noted above, the MDS solution can be trans-
formed to have zero sample mean, ie., > [, X; =0, and a
diagonal sample covariance matrix.

Such a prior is mildly data dependent, and it might be
argued that this violates the definition of a prior distribu-
tion. However, we view this prior as an approximation to the
elicited data-independent prior of an analyst who knows a lit-
tle, but not much, about the problem at hand. Because this
prior is diffuse relative to the likelihood, the estimation results
are unlikely to be sensitive to its precise specification.

3.2 MCMC

From the likelihood and the prior, the posterior density
function of the unknown parameters (X, o2, A) is

P
W(X,UZ,AID) o (0_2)—(m/2+a+l] I‘I/\j—n/Q

j=1

1 8,
x eprZ—EEESSR—ZlogCD<—O_’—)

i>j
—1ifo—'x.—i—i—f (5)
20 b oo? j=|)‘j ’

where D is the matrix of observed dissimilarities. Because
of the complicated form of the posterior density function (5),
numerical integration is required to obtain a Bayes estimate
of the parameters. In particular, the posterior is a complicated
function of X’s, which in most cases is of high dimension.
We therefore use an MCMC algorithm (Gilks, Richardson,
and Spiegelhalter 1996) to simulate from the posterior distri-
bution (5). Our algorithm proceeds by iteratively generating
new values for each object configuration x,, the error variance
o2, and the hyperparameter A, given the current values of the
other unknowns.

We first suggest initialization strategies for the unknown
parameters that are needed for the MCMC algorithm. For ini-
tialization of x;, one may use the output, xfo), of x; from
CMDS or ALSCAL, because it is easy to obtain. The result-
ing X can be centered at the origin and then transformed by
using the spectral decomposition so as to have a diagonal sam-
ple covariance matrix, thus conforming to the prior. From the
adjusted xfo)’s, one can compute the sum of squared residuals
SSR® and o*® = SSR”)/m, which can be used as an initial
value of o in the algorithm. In addition, diagonal elements
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of the adjusted sample covariance matrix of X can be used as
initial values for the A;’s.

We now describe the details of sample generation in the
MCMC algorithm. At each iteration, we simulate a new value
of A; from its conditional posterior distribution given the other
unknowns. From (5), the full conditional posterior distribu-
tion of A; is the inverse Gamma distribution /G(a+n/2, B;+
5;/2), where s5;/n is the sample variance of the jth coordinates
of x;’s.

We use a random walk Metropolis—Hastings step (Hastings,
1970) to generate x; and o in each iteration of the MCMC
algorithm. Specifically, a normal proposal density is used in
the random walk Metropolis—Hastings algorithm for genera-
tion of x;. To choose the variance of the normal proposal
density, we note that the full conditional posterior density
of x; is m(x;]--) « exp[—%(Ql +Q) Y logfb(%)],
where O, = 53, (8, —d;)* and Q, = X;A'x,. Because
(8, —d;;)*/0? is a quadratic function of x; with leading coef-
ficient equal to 1/0%, and Q, has n— 1 of this kind whereas
0, has only one quadratic term with coefficient A, 0, would
dominate the full conditional posterior density function of x;
unless there is strong prior information. Thus, we may con-
sider Q, only, approximate the full conditional variance of x;
by a?/(n—1), and choose the variance of the normal proposal
density to be a constant multiple of o?/(n—1).

From a preliminary numerical study, we found that the full
conditional density function of o? is well approximated by
the density function of /G(m/2+ a,SSR/2+ b). When the
number of dissimilarities, m = n(n — 1)/2, is large, which
is often the case because m is a quadratic function of n,
the inverse Gamma density function is well approximated
by a normal density. Thus, we propose a random walk
Metropolis—Hastings algorithm with a normal proposal den-
sity with variance proportional to the variance of /G(m/2+a,
SSR/2+b) distribution.

3.3 Posterior Inference

Tterative generation of {x;}, 0%, and {A;} for a sufficiently
long time provides a sample from the posterior distribu-
tion of the unknown parameters, and Bayesian estimation of
the parameters can be obtained from the samples. However,
because the model assumes a Euclidean distance for the dis-
similarity measure &, the posterior samples of {x;} would
be invariant under translation, rotation, and reflection about
the origin, as in other MDS, unless there is strong prior
information to the contrary. We can retrieve only the relative
locations of the objects from the data, not their absolute loca-
tions. Hence, the convergence of §; rather than X needs to
be checked to verify the convergence of MCMC. The near
lack of identifiability in X also suggests the use of sample
averages as Bayes estimates to be inadvisable, because the
MCMC samples of X may be unstable even when the dis-
tances 8;; are stable. Thus, we take an approximate posterior
mode of X as a Bayes estimate of X, i.e., the BMDS solution
of the object configuration. The posterior mode provides rela-
tive positions of x;’s corresponding to the maximum posterior
density. A meaningful absolute position of X may be obtained
from an appropriate transformation, if desired.

Journal of the American Statistical Association, September 2001

To obtain the posterior mode of X, one may compute
the posterior density for each MCMC sample. However, this
can be time consuming, because the posterior is complicated.
However, we observed that the likelihood dominates the prior,
and that in the likelihood (4), the term involving SSR is dom-
inant, so that the posterior mode of X can be approximated
by the value of X that minimizes the sum of squared residu-
als SSK.

Because the center and direction of X can be arbitrary,
we postprocess the MCMC sample of X at each iteration
by using the transformation x; = D' (x; —X), where X is the
sample mean of x,’s and D, is the matrix whose columns
are the eigenvectors of the sample covariance matrix S, =
Ly (%, —X)'(x; —X) of x;’s. This transformation does not
solve the nonidentifiability problem, but the new x;’s have
sample mean 0 and a diagonal covariance matrix to correspond
to the prior specification.

Although samples of x;’s are unstable because of lack of
identifiability, samples of §,;’s are stable after convergence,
and hence they can be used to measure uncertainties in quanti-
ties that are functions of §;’s. For example, one may be inter-
ested in whether object i is more closely related to object j
than to object k, which can be answered by looking at the pos-
terior distribution of 8,, —§,;, as approximated by the MCMC
sample.

4. CHOICE OF DIMENSION

As described in the previous section, BMDS gives object
configurations in a given dimensional Euclidean space. In
most cases, the dimension of the objects (the number of sig-
nificant attributes) is unknown. In this section, we propose a
simple Bayesian dimension selection criterion based on the
BMDS object configurations.

Consider the dimension p as an unknown variable, and
assume equal prior probability for all values of p up to some
maximum value, p,.... Then the posterior is given by

m(X,a% A, p|D)
x (X, %, pID)m(X|A, p)ym(a®)m(Alp)

5 1
- (ZW)—m/-O.fm exp[_FSSR - Z]Og (D(SU/U')]
a

i>j

/2 ? -n/2 ” 1
<Gy 1 o] - g |
J= = J
x T(a)~'b%(0?) "V exp[—b/0o”]
P
x ()™ [1B2AT " exp[-B;/A,]
j=1
= A(p)-h(a*,X) g(A, X, p).
where

5= lez] 6)

A(p) = 2m) "I (@) b T (a) 7 T] B, (7

j=1
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h(O’Z,X) — (0.2)7(m/2+a+1)

xexp[ (SSR/2+b)/U —Zlogfb(&,/o)] ®)

i>j

p
gAX, p)=T]A7 " Vexp[—(s;/24B)/1,]. (9)

J=1

Note that, because of the postprocessing described in
Section 3.3, the x;’s have sample mean 0 and a diagonal sam-
ple covariance matrix.

We adopt a Bayesian approach to choosing the dimension.
We view the overall task to be that of choosing the best config-
uration, and hence we view the choice between dimension p
and dimension p’ as being between the estimated configuration
with dimension p and the estimated configuration with dimen-
sion p’. Thus, we consider the marginal posterior, 7(X, p|D),
of (X, p) with X equal to the BMDS solution and choose the
value of p that gives the largest value of 7 (X, p|D). Choos-
ing between dimension p and dimension p’ is based on the
posterior odds for the estimated configuration of dimension p
versus that of dimension p'.

Now, note that 7 (X,p|D)=c[I(X,o? p|D)m(0?)do?
Jm(X, A, pydA~c-I(X,p|D)m(X, p), where c¢ is a constant
independent of X and p,/(X,p|D) is the marginal likeli-
hood of (X, p), and 7 (X, p) is the marginal prior of (X, p).
The marginalized likelihood term increases as p increases.
However, the marginal prior term decreases as p increases,
because we are using a diffuse (but proper) prior, and so this
term penalizes more complex models. The approach has the
simplicity of a maximum likelihood method as well as the
advantage of a Bayesian method in penalizing more complex
models.

Integrating the function g(A,X,p) given in (9) with
respect to A gives [g(A, X, p)dA=T"(n/2+a)[1}_ (s;/2+
B;)~"***) The integral of the function A(c?,X) given in (8)
with respect to ¢? is approximately equal to

/h(UZ,X)dO'2%(27;)1/2(m/2)~1/'2
x (SSR/m)™"/** exp[—m/2]. (10)

This formula is justified in the Appendix. From these,

7(X,p|D) = c-A(p)-/h(az,X)dUZ-fg(A,X,p)dA

= c-A"(p)-(SSR/m)~"/*"!

xl_pl(sj/2+Bj)_("/2+a)s (11)
j=1

where
A"(p)=A(p)-(2m)'*T7(n/2+a)(m/2)""* exp[—m/2].

To clarify the dependence of X on p, let X'” denote the
BMDS solution of X when the dimension is p. There is a
difficulty in directly comparing (X”’, p) and (X*V p+1).
The marginal posterior (X, p|D) is dependent on the scale
of X, because it includes the term [T}, (s;/2+8,)~"/>**.
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Note that s5;/n is the sample variance of the jth coordinate
of X. However, without improvement in the fit, the scale
of X may change with the dimension p. Given the same
Euclidean distances, the coordinates of X would get closer
to the origin as p increases, unless all the extra coordinates
are equal to 0. For instance, the Euclidean distance between
—1 and 1 in one-dimensional space is equal to the Euclidean
distance between (1/+/2,1/+/2) and (—1/4/2,—1/+/2) in
two-dimensional space, and hence the variance in each coor-
dinate is smaller in two-dimensional space. This would give
a smaller s5; and hence a larger 7 (X, p|D) in a higher dimen-
sion, although there is no change in the distance and the fit.

To circumvent this scale dependency, a dimension selection
criterion should compare X’s in the same dimension. For this,
let X*P+) =(X":0) in (p+ 1)-dimensional space, which has
the first p coordinates equal to X' and the last coordinates
all equal to 0. Then X*»*Y provides the same Euclidean dis-
tances and the same fit as X”) and may be considered an
implantation of X! in (p+ 1)-dimensional space. Ideally, if p
is the correct dimension, then the optimal solution X”*" in
(p+1)-dimensional space would be X**Y, Thus, we com-
pare X*"*1) and X"*! and choose p to be the dimension if
X*P+1) has a larger marginal posterior density than X#+",

From (11), the ratio of the marginal posteriors of X*7+!
and X+ s

R = 7T(X(p+”,p+1|D)
P W(X*([)+1)’p+1|D)

(SSRP+1 >-m/2+l (ﬁ S}/2+ﬁ.)—(71/'2+0{)
SSR:_, 218,

3 SSRP+1 —m/2+1 lf-[ ([7+])/2+B —(n/2+a)
~\ SSR,

j=1 (p)/2+3
( ’(71:1)/24_‘3 )A(n/?_-f-a)
x - 4 k4
Bp+l

where 5,7’ is s; given in (6), computed from X' Clearly, the
ratio R, depends on the choice of the hyperparameters a and
B; of A.

When there is no strong prior information, a reasonable
choice for (a B;) in (p+ 1)-dimensional space might be a =1
and B, = p +1f /n, so that the prior information roughly cor-
responds to the information from one observation. This is
close to the unit information prior, which was observed by
Kass and Wasserman (1995) to correspond to the Bayesian
information criterion (BIC) approximation to the Bayes factor
(Schwarz 1978) and by Raftery (1995) to correspond to a sim-
ilar approximation to the integrated likelihood. Raftery (1999)
argued that this is a reasonable proper prior for approximating
the situation where the amount of prior information is small.

This yields the ratio

R SSRP,H —m/2+1 ﬁr€p+1)(n+l) —(n+1)/2
77\ SSR,

=t (et ™)

(p) .

X (n+ 1)‘(n+1)/2’
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(p+1) _
where r; =s;

the ratio gives

sy s;p ). Taking minus twice the logarithm of

LR,=-2log R,

= (m—2)log(SSR,./SSR,) (12)
d rP 0 (n
+{(n+ 1)210,«;[’——%]
j=1 (n—i—rjp )
+(n+1)10g(n+l)}. (13)

Note that the term (12) in LR, is roughly the log-likelihood
ratio and would be negative because higher dimension results
in a smaller SSR. The term (13) plays the role of penalty
on the increase of dimension by 1 and would be positive
if I'[j’f:,(n/r;”+l)+l)<(n+1)1’+'. When there is no signifi-
cant change in X between p- and (p+ 1)-dimensional spaces,
then r;p D21, and the penalty term is approximately (n+
Dlog(n+1).

A positive LR, would prefer the dimension p to (p+1) and
a negative value would prefer the dimension (p+1) to p, and
hence one can select the dimension where the value of LR,
turns positive. Alternatively, if we define MDSIC as

MDSIC, = (m—2)logSSR,.

p—1
MDSIC, = MDSIC,+ Y LR,

j=1

(14)

then the optimal dimension is the one that achieves the mini-
mum of MDSIC,,.

5. EXAMPLES

BMDS requires that prior parameters be specified. For all
the examples given in this section, we chose 5 as the degrees
of freedom a for the prior of o2, and we chose b to match the
prior mean of o with SSR/m obtained from the CMDS or
ALSCAL. Note that a smaller a would not make much differ-
ence because m=n(n—1)/2 is large. For the hyperprior of A,
we chose a=1/2 and szésﬁo)/n, where sj(-o)/n is the sam-
ple variance of the jth coordinate of X obtained from CMDS
or ALSCAL, which roughly corresponds to information from
one observation as described in Section 4.

For the multiplicity constant of the variance of the normal
proposal density in the Metropolis—Hastings algorithms for
generating x; and ¢, we chose 2.38” for both x; and o* as
suggested by Gelman, Roberts, and Gilks (1996). We found
reasonably fast mixing in MCMC with this choice of multi-
plicity constant.

In all the examples, we ran 13,000 iterations of MCMC and
observed very quick convergence in ¢ and the §;;’s. Here we
are interested in an approximate posterior mode of X rather
than its full posterior distribution, so that convergence require-
ments are less stringent than if one seeks the full posterior
distribution, and all the iterations may be used for the purpose
of obtaining the x,’s that give minimum STRESS.

Journal of the American Statistical Association, September 2001

5.1 A Simulation

As an illustrative example, we generated 50 random samples
of x; from a 10-dimensional multivariate normal distribution
with mean 0 and variance /, the identity matrix. We used the
Euclidean distances between pairs (X;,X;) as dissimilarities §,;.
Given these §,;’s, we generated the observed distances d,; from
a normal distribution with mean §,; and standard deviation .3,
truncated at 0. Thus, the data consist of a 50 x 50 symmetric
matrix of dissimilarities computed from Euclidean distances
with Gaussian errors.

Using the results from ALSCAL for initialization, BMDS
as described in Section 3 was applied for various values of the
dimension p. With minimum STRESS and x; obtained from
BMDS, we applied MDSIC described in Section 4 to select
the dimension of x;. The results are summarized in Table 1.

The table presents values of STRESS from CMDS,
ALSCAL, and BMDS. It also presents the likelihood ratio
term of (12), the penalty term of (13), and the MDSIC given
in (14). It can be observed that BMDS shows significant
improvement over CMDS, providing a smaller STRESS, and
a moderate improvement over ALSCAL when the dimension
is low. When the dimension is close to the true dimension
10, BMDS shows a moderate improvement over CMDS and
the same results as ALSCAL. It is interesting to observe
that the better performance of BMDS is more pronounced
when the dimension is low because, for visualization purposes,
dimension p=2 is often chosen.

The table shows that the log-likelihood ratios computed
from the BMDS solution for X decrease monotonically as p
increases up to 10, that there is no significant change after
dimension 10, and that the penalties stay about the same for
various p. Moreover, the MDSIC assumes a minimum at the
correct dimension, namely, 10.

We also applied BMDS with initial values obtained from
the CMDS results. It provided about the same results as before
except that it gives slightly larger STRESS (with the difference
less than .01) when the dimension is larger than or equal to
5. MDSIC with the BMDS results chose the same dimension,
10, as in the previous case.

Table 1. Analysis of Simulation Data in Example 1, x,~N,,(0,1)

CMDS  ALSCAL BMDS
dim STRESS STRESS STRESS LRT Penalty ~ MDSIC
1 .6622 5079 4813 —-1105.8 173.0 10647
2 .4943 3198 .3063 —828.7 170.3 9714
3 .3720 .2250 2182 —695.5 169.5 9056
4 2751 .1648 .1642 -699.3 165.3 8530
5 .2037 1234 1234 —554.6 170.8 7996
6 1580 .0984 .0984 -593.2 172.6 7612
7 .1092 .0772 0772 —-414.2 177.9 7191
8 .0809 .0652 .0652 -267.2 179.0 6955
9 0672 .0584 .0584 -252.8 181.0 6867
10 .0614 0527 .0627 ~72.4 187.2 6795
11 .0658 .0511 .0511 —53.2 186.5 6910
12 .0715 .0500 .0500 -14.4 186.7 7043
13 .0784 .0497 .0497 -11.3 187.2 7216
14 .0855 .0495 .0495 -9.4 185.9 7391

*Minimum MDSIC.
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5.2 Airline Distances Between Cities

Hartigan (1975, p. 192) provided airline distances between
30 principal cities of the world; these are shown in
Figure 1. Cities are located on the surface of the earth, a
three-dimensional sphere, and airplanes travel on the surface
of the earth. Thus, airline distances are not exactly Euclidean
distances and we may expect the dimension of x; to be
between 2 and 3.

The BMDS was applied to the data. In this example, initial
values from CMDS and ALSCAL yielded almost the same
BMDS results. The BMDS results from CMDS initial values
are shown in Table 2.

BMDS yielded much smaller SSR than did CMDS and
moderately smaller SSR than did ALSCAL in all cases. The
estimated SSR from BMDS dropped very quickly until dimen-
sion 3 and then increased slightly at dimension 4. MDSIC
selected dimension 3. We observed that the last coordinates
of x; in dimension 4 are almost equal to 0, indicating strong
evidence for dimension 3.

1037

Table 2. Analysis of City Data

CMDS  ALSCAL BMDS
dim  STRESS STRESS STRESS LRT  Penalty  MDSIC
1 6782 4007 3617 7042 95.7 5336
2 4682 1795 1604 5485 91.4 4727
3 .3811 .0903 .0851 47 108.0 4270"
4 .4006 .0902 .0856 —-2.4 88.9 4383
5 4139 .0902 .0854 41 143.9 4469

*Minimum MDSIC.

Figure 2 is a plot of the observed airline distances ver-
sus the estimated Euclidean distances. A perfect fit would
yield a 45-degree line, as shown in Figure 2. The estimated
Euclidean distances from BMDS are represented as red dots,
those from CMDS as blue dots, and those from ALSCAL as
green dots. One can see that BMDS provided points very close
to the 45-degree line, except for some points corresponding to
large distances. The fit gets worse as the distance gets larger,

NY 22 36 48 43 26 51 24 73 100 68
Azores AZ PY 54 33 59 33 31 37 93 88 84
Bagdad 39 BD PS 57 7 56 72 50 57 105 61
Berlin 22 20 BN RO 57 66 18 69 113 84 115
Bombay 59 20 39  BY RE 63 74 57 57 101 61

Buenos Aires 54 81 74 93  BS SF 59 7 61 74 52
Cairo 33 8 18 27 73 CO {e] 64 117 71 107
Capetown 57 49 60 51 43 45 CN SE 57 ked 48
Chicago 32 64 44 81 56 61 85 CH sI 49 11
Guam 89 63 71 48 104 71 88 74 GM sy 48
Honolulu 73 84 73 80 76 88 115 43 38 HU TO
Istanbul 29 10 11 30 76 8 52 55 69 81 IL
Juneau 46 61 46 69 77 63 103 23 51 28 55 JU
London 16 25 6 45 69 22 60 10 75 72 16 44 LN
Manila 83 49 61 32 111 57 75 81 16 53 57 59 67 MA
Melbourne 120 81 99 61 72 87 64 97 35 55 91 81 105 39 ME
Mexico City 45 81 61 97 46 77 85 17 75 38 71 32 56 88 84 MY
Montreal 24 58 37 75 56 54 79 8 77 19 48 26 33 82 104 23 ML
Moscow 32 16 10 31 84 18 63 50 61 70 11 16 16 51 20 67 4 MW
New Orleans 36 72 51 89 49 68 83 8 77 42 62 29 46 87 93 9 14 58 NS
New York 25 60 40 78 53 56 78 7 80 50 50 29 35 85 104 21 3 47 12
Panama City 38 78 59 97 33 71 70 23 90 53 68 45 53 103 90 15 25 67 16
Paris 16 24 5 44 69 20 58 41 76 75 14 a7 2 67 104 57 34 16 48

Rio De Janeiro 43 69 62 83 12 61 38 53 116 83 64 76 57 113 82 48 51 72 48

Rome 21 18 7 38 69 13 52 48 76 80 9 53 9 65 99 64 11 15 55

San Francisco 50 75 57 84 64 75 103 19 58 24 67 15 54 70 79 19 25 59 19

Santiago 57 88 78 100 7 80 49 53 98 69 81 73 72 109 70 41 54 88 45

Seattle 46 68 51 77 69 68 102 17 57 27 61 9 48 67 82 23 23 52 21

Shanghai 72 44 51 a1 122 52 81 70 19 49 19 19 57 12 50 80 70 42 77

Sydney 121 83 100 63 73 90 69 92 33 51 93 77 106 39 4 81 100 90 89

Tokyo 73 52 56 42 114 60 92 63 16 39 56 40 60 19 51 70 65 47 69
Figure 1. Airline Distances Between Cities (100 miles, .62 mi=1 km) (Hartigan 1975).
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Figure 2. Observed and Estimated Distances for the Airline Distance Data (in Units of 100 mi). Red dots represent the estimated distances
from BMDS, blue dots in (a} from CMDS, and blue dots in (b} from ALSCAL.

because when cities are farther apart, there is a greater discrep-
ancy between airline distance and three-dimensional Euclidean
distance.

Figure 3 shows plots for the locations of cities, obtained
from BMDS with dimension p=3 and rotated manually to fit
the true locations of the cities approximately. One can observe
that the cities are located approximately on the surface of a
sphere with the radius of the earth and that the locations of
the cities are well recovered.

5.3 Careers of Lloyds Bank Employees, 1905-1950

Sociologists are interested in characterizing and describing
careers, to answer questions such as, What are the typical
career patterns in a given period in a particular society? Have
they been changing over time? Have people become more
mobile occupationally?

One approach to doing this views a career as a sequence
of occupations held, for example, in successive years and
then seeks to measure the similarity or dissimilarity between
careers and, hence, to find groups of similar careers. Abbott

and Hrycak (1990) proposed measuring the dissimilarity
between the careers of two individuals by counting the min-
imum number of insertions, deletions, and replacements that
would be necessary to transform one career into another. Costs
are associated with each kind of change, and the dissimilarity
between the two careers is then measured as the total cost of
transforming one career into another. This approach, known
as optimal alignment, is borrowed from molecular microbiol-
ogy, where it is applied to the comparison of DNA and protein
sequences (Sankoff and Kruskal 1983; Boguski 1992).

Here we reanalyze some data considered by Stovel, Savage,
and Bearman (1996), consisting of the careers of 80 randomly
selected employees of Lloyds Bank in England, whose careers
started between 1905 and 1909. This is part of a much larger
study aimed at discovering how career patterns in large orga-
nizations evolved over the course of the twentieth century.
The more immediate goal here is to discover what the typi-
cal career sequences are, for data reduction and exploratory
purposes, and also as a basis for further analysis. For each
employee, information about his work position is available for
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Figure 3. Estimated Locations of the Cities From BMDS. (a) View from the North Pole. (b) Hemisphere I. (c) Hemisphere II.

each year he was at Lloyds. The information consists of the
nature of the position (four categories, from clerk to senior
manager) and the kind of place they were in (six categories,
from small rural place to large city).

From the sequence data, an 80 x 80 matrix of dissimilarity
measures was obtained, by using the method of Abbott and
Hrycak (1990); for details, see Stovel et al. Clearly, the dissim-
ilarities are not Euclidean distances, and they may not satisfy
certain geometric properties that hold for Euclidean distances,
such as the triangle inequality. Our approach is to model the
dissimilarities as before, with the idea that the non-Euclidean
nature of the dissimilarities can be modeled at least approxi-
mately as part of the error. As we show, this supposition turns
out to be reasonable in practice.

We applied BMDS to the dissimilarity data with initial val-
ues from CMDS. (Initial values from ALSCAL gave almost
the same results.) Table 3 presents the results of the analy-
sis along with STRESS from CMDS and ALSCAL. Again,
BMDS performed much better than did CMDS and moder-
ately better than did ALSCAL, especially when the dimension
was too small. The improvement in performance of BMDS
is more pronounced in this example than in the two previ-
ous examples. This suggests that BMDS is more robust than

CMDS or ALSCAL to variations in the alleged dimension and
to violations of the Euclidean model assumption.

Dimension 8 is chosen as optimal because MDSIC attains
its minimum at 8. Thus, the estimated configuration X when
p=2_8 can be used as a final estimate of X. Figure 4 shows
the fitted and observed dissimilarities for the three MDS
techniques. The BMDS fitted dissimilarities fit the observed
ones very well, considerably better than the CMDS ones and

Table 3. Analysis of the Lloyd Bank Data

CMDS  ALSCAL BMDS
dim STRESS STRESS STRESS LRT Penalty = MDSIC
1 .5357 4648 .3545 —4228.1 325.8 26924
2 .3390 .2228 1815 —3380.3 315.7 23022
3 .2190 1297 1063 29249 3108 19957
4 .1280 .0853 .0669 —1540.1 3175 17343
5 .0891 .0623 0524 —941.2 3305 16120
6 .0725 .0530 .0452 -600.9 326.7 15510
7 .0619 .0472 0411 -392.7 3303 15236
8 .0558 .0414 0386 —-221.8 3305 15173
9 0547 .0384 .0372 27.8 367.6 15282
10 0556 .0374 .0374 7.7  396.1 15677
11 .0600 .0370 .0375 -17.3 3103 16081
12 .0637 .0363 .0374 —212 4445 16374

*Minimum MDSIC.
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Figure 4. Fitted and Observed Dissimilarities for the Lloyd Bank Data. Red dots represent the estimated distances from BMDS, blue dots in

(a) from CMDS, and blue dots in (b) from ALSCAL.

moderately better than the ALSCAL ones; the sum of squared
residuals for BMDS is 48% of that for CMDS and 87% of
that for ALSCAL.

Figure 5 gives pairwise scatterplots of the first four dimen-
sions of the BMDS estimates of X. The fourth dimension
clearly separates two outliers. On closer inspection of the data,
it turned out that these were individuals who had very short
careers at Lloyds. They spent only a few years there, whereas
all the other employees were at Lloyds for at least 10 years.

The sociologists’ interest in these data is primarily to char-
acterize the typical career patterns at Lloyds in this period. To
try to answer this question, we applied model-based clustering
(Banfield and Raftery 1993; Fraley and Raftery 1998) to the
BMDS estimate of X, after removing the two clear outliers.
This models the data as a mixture of multivariate normals,
allowing for possible geometrically motivated constraints on
the covariance matrices of the different groups. The number of
groups and the clustering model are chosen by using approx-
imate Bayes factors, approximated via BIC.

Model-based clustering clearly identified three groups.
These are shown in Figure 6, which displays the first two
components of the BMDS solution. The three groups selected
make clear substantive sense: Group 1 consists of 16 employ-
ees who had shorter careers (22 years or fewer) and spent all
or almost all of their career at the lowest clerk rank. Group
2 consists of 30 employees with long careers (40 years or
more), almost all of whom ended their careers at the lowest
clerk level. Group 3 consists of 32 employees, most of whom
were promoted and ended their careers as managers.

Another interest in these data would be in whether the
career pattern of individual { is more similar to that of individ-
ual j than to that of individual &, or whether the difference in
the career patterns between individuals / and j is significantly
different from that between individuals i and k. This can be
answered by considering the posterior distribution of §;,— 8.
Because BMDS generates posterior samples of 8’s after con-
vergence, one can easily perform the test by using the MCMC
samples of 8’s. To illustrate this, we picked some individuals
i,j,k and compared §,;; with 6,. Empirical 2.5%, 5%, 50%,
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Figure 5. Pairwise Scatterplots of the Estimated Object Configuration From BMDS for the Lloyd Bank Data.

95%, and 97.5% posterior percentiles of 8,;,—&,, and its stan-
dard error, obtained from the MCMC samples, are presented
in Table 4 for some selected values of (7, j,k). One can see
that the career pattern of individual 21 (72) is significantly
closer to that of individual 38 (79) than to that of individual
75 (24). On the other hand, individual 29 is not significantly
closer to either 79 or 80 in terms of career patterns. Note that
individuals 21, 38, and 75 are in the first group, individuals
72 and 79 in the second group, and individuals 24, 29, and 80
in the third group.

6. DISCUSSION

In this article, we proposed a Bayesian approach to
object configuration in multidimensional scaling and a simple
Bayesian dimension choice criterion, MDSIC, based on the
results from BMDS. Key advantages of the proposed Bayesian
multidimensional scaling are as follows. First, it provided a
significantly better fit than classical MDS and a moderately
better fit than ALSCAL overall. This implies that BMDS
explores the posterior distribution quite well compared to the
other MDS methods. The improvement in performance of
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Figure 6. Lloyds Bank Data: First Two BMDS Dimensions, With
the Three-Group Model-Based Clustering Classification Shown. The
ellipses show the one-standard-deviation contours of the densities of
each of the component multivariate normal distributions, and the dotted
lines show their principal axes.

BMDS is more pronounced when the dissimilarities are dif-
ferent from Euclidean distances and the effective dimension
is ambiguous. This sort of robustness is useful in practice,
because in applications dissimilarities often are not Euclidean
distances, and the concept of dimension may not even arise
in their formulation. Another consideration is that one may
often want to use two or three dimensions for visual display,
although the true dimension may be much higher. Second,
the proposed dimension selection criterion, MDSIC, is easy
to compute and gives a direct indication of optimal dimen-
sionality. In this article, we based MDSIC on the Bayesian
object configuration. However, it may, in fact, be nsed inde-
pendently of MDS techniques, and any good MDS solution
can be used for MDSIC for choosing the dimension. In our
three examples, MDSIC based on ALSCAL solutions gave the
same dimension choices as those based on BMDS solutions.
Finally, BMDS used MCMC to generate posterior samples of
unknown parameters. Thus, unlike other MDS methods, it can
provide estimation errors of the distances, as illustrated in the
analysis of careers of Lloyds Bank employes.

Compared with CMDS, a key feature of BMDS is that when
the dimension increases, the coordinates for lower dimensions
are changed, whereas in CMDS the coordinates for a lower
dimension are always a subset of those for a higher one.
The coordinates obtained from the lower dimensions are not
necessarily an optimal choice when the dimension increases,

Table 4. Posterior Percentiles and Standard Error of 8, — 8,

(i,j.K) 2.5% 5% 50% 95% 97.5% SE
(21,38,75) 1609 -1568 —-1331 -1.076 -~1.033 .151
(72,24,79) .037 .065 222 .390 419 .098
(29,79,80) —.265 —.228 —.028 .168 198 21

Journal of the American Statistical Association, September 2001

and retaining them in higher dimensions may adversely
affect the performance of CMDS. Compared with ALSCAL,
BMDS gives an object configuration that minimizes STRESS,
whereas ALSCAL gives one that minimizes S-STRESS—
the sum of the squared difference in the squared dissimilar-
ities and the squared distances. Squaring dissimilarities and
distances causes S-STRESS to emphasize larger dissimilari-
ties more than smaller ones (Borg and Groenen 1997).

A common reason for doing MDS is to cluster the objects.
In our third example, we showed how model-based clustering
can be used to do this, providing a formal basis for choosing
the number of groups. The results were substantively reason-
able and useful. Combining BMDS and model-based cluster-
ing thus provides a fully model-based approach to clustering
dissimilarity data, including ways to choose the dimension of
the data and the number of groups.

A more comprehensive approach to this problem would be
to build a single mode] and carry out Bayesian inference for
it. This could be done by using a prior distribution of X that
is based on a mixture of multivariate normal distributions,
rather than on a single one as here. Then MCMC could be
used to estimate both object configuration and group mem-
bership simultaneously. This approach could provide a way
to choose the dimension and the number of groups simulta-
neously, rather than sequentially, as we did in our example.
This seems desirable because there may be a trade-off between
dimension and number of groups. A maximum likelihood
approach to the problem of clustering with multidimensional
scaling of two-way dominance or profile data was proposed
by DeSarbo, Howard, and Jedidi (1991), but this is somewhat
different from the present context, where the data come in the
form of dissimilarities.

We modeled dissimilarities as being equal to Euclidean dis-
tances plus error. This corresponds to metric scaling, and so
our approach would perhaps best be called Bayesian metric
multidimensional scaling. There is a great emphasis in the
MDS literature on nonmetric scaling, however. In nonmetric
scaling, dissimilarities are modeled as equal to a nonlinear
function of distance plus error. This could be incorporated in
the present framework by replacing (3) by

d;~N(g(8,),0)1(d;>0), i#j, ij=l.....n, (I5)

where g(-) is a nonlinear but monotonic function. One could
postulate a parametric model, or a family of parametric mod-
els, for g; one such family of models was proposed by Ramsey
(1982). Then standard Bayesian inference via MCMC would
again be possible, leading to Bayesian nonmetric multidimen-
sional scaling.

We used the truncated normal distribution for the observed
distance because it is approximately a conjugate form for the
normal prior distribution of X, if the restriction is ignored,
and this makes it easy to find a reasonable proposal density
in the Metropolis—Hastings algorithm for generating X. The
truncated normal distribution seems to work well in practice,
as illustrated in the examples. Other distributions, such as the
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log-normal and noncentral chi-squared, may be used instead
of the truncated normal distribution (Suppes and Zinnes 1963;
Ramsay 1969; Ramsay 1977). The use of other distributions
would require only a slight modification of the Metropolis—
Hastings step for generating X in the proposed algorithm.

We assumed equal variances for objects but different vari-
ances for coordinates. When there are replicated measures on
each pair of objects, one may further assume different vari-
ances for different objects to incorporate the object variation.
The proposed BMDS can be easily modified to handle the
case of both object and coordinate variations.

Apart from the present work, we do not know of any
Bayesian analyses of multidimensional scaling for dissimilar-
ity data. DeSarbo, Kim, and Fong (1999) proposed a Bayesian
approach to multidimensional scaling when the data are in the
form of binary choice data, but this is rather different from the
present context, where the data take the form of dissimilarities.

A Fortran program implementing the proposed method is
freely available through StatLib.

APPENDIX: JUSTIFICATION OF (10)

Integration of h(o?,X), where

5 R P SSR/2+b o,
ho,X)= (o-')*“""*“*”exp[— SSR/2+h —Zlogcb(—J):l
o

B
o i>j

is not straightforward. However, in most cases, m=n{(n—1)/2 is
very large and the likelihood of > dominates the prior and hence
h(o*,X) is approximately proportional to the likelihood

. v SSR 3,
I(U',X)E(o-')“””"exp[— oy —Zlog¢>(;’>].

i>j

(A.1)

In addition, because of the large m, the likelihood !(c?,X) is well
approximated by a normal density function. Thus, applying a Laplace
approximation to the integral of /(¢*,X) gives

fh(orz,X)da'z%fI(UZ,X)dcrz%(Zw)"”zH"/zl(X.&z), (A2)
where H is the minus Hessian of the log-likelihood and &7 is the
MLE of a?.

We now argue that the probability ®(§,;/c) is unlikely to have
much effect on the model comparison and can safely be ignored. Sup-
pose we are comparing dimension p with dimension (p+1). We dis-
tinguish between two situations. Suppose first that the true dimension
is (p+1). Then, asymptotically, the term (—SSR/20%) will dominate
the exponent on the right side of (A.1), dimension (p+1) will be
preferred, and the term ", log®(8;;/0) will be immaterial. Second,
suppose instead that the true dimension is p. Then, the fitted J;
will be the same, asymptotically, for dimension p as for dimension
(p+1), and so the term ¥, ;log®(§;;/a7) will be the same for both
dimensions. Thus, it will cancel in the comparison and can again be
ignored.

Thus, we ignore the term 3, log®(d,/0) and use the
approximation

: : 2 SSR
I(o? X)~1" (0, X)=(07) ’/“exp{_ﬁ]'

Replacing ! by I* and H by the minus Hessian H* of /* in (A.2) and
letting 62 =SSR/m, which maximizes {*, gives the formula (10).

[Received July 2000. Revised February 2001.]
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