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Inference for Deterministic Simulation Models: The
Bayesian Melding Approach

David POOLE and Adrian E. RAFTERY

Deterministic simulation models are used in many areas of science, engineering, and policy making. Typically, these are complex
models that attempt to capture underlying mechanisms in considerable detail, and they have many user-specified inputs. The inputs
are often specified by some form of trial-and-error approach in which plausible values are postulated, the corresponding outputs
inspected, and the inputs modified until plausible outputs are obtained. Here we address the issue of more formal inference for
such models. A probabilistic approach, called Bayesian synthesis, was shown to suffer from the Borel paradox, according to which
the results can depend on the parameterization of the model. We propose a modified approach, cailed Bayesian melding, which
takes into full account information and uncertainty about both inputs and outputs to the model, while avoiding the Borel paradox.
This is done by recognizing the existence of two priors, one implicit and one explicit, on each input and output; these are combined
via logarithmic pooling. Bayesian melding is then standard Bayesian inference with the pooled prior on inputs, and is implemented
here by posterior simulation using the sampling-importance-resampling (SIR) algorithm. We develop this initially for invertible
models, and then extend it to the more difficult and more common case of noninvertible models. We illustrate the methodology
using a number of examples. Simulation studies show that the method outperforms a simpler Bayesian approach in terms of mean
squared error. A number of open research problems are discussed.

KEY WORDS: Bayesian inference; Borel paradox; Logarithmic pooling; Population dynamics model; Sampling-importance-
resampling algorithm; Whales.

1. INTRODUCTION

Deterministic simulation models are widely used in ap-
plied scientific disciplines. Such models are found in the
study of climate, soil pollution, plant growth, epidemiology,
animal populations, and other fields. Given a set of inputs,
a simulation model produces a set of outputs. For exam-
ple, inputs to a biological population dynamics model may
include mortality and reproduction rates for various age
groups, habitat parameters, and harvest information. Out-
puts would then typically include current population abun-
dance and age structure.

Simulation models are usually designed to capture some
underlying mechanism or natural process. They differ con-
ceptually from many standard statistical models (such as
linear regression) whose aim is to empirically estimate the
relationships between variables. The deterministic model is
viewed as a useful approximation of reality that is easier to
build and interpret than a stochastic model. However, such
models can be extremely complicated with large numbers of
inputs and outputs, and they are often noninvertible; a fixed
single set of outputs can be generated by multiple sets of in-
puts. Thus taking reliable account of parameter and model

uncertainty is crucial, perhaps even more so than for stan-
dard statistical models, yet this is an area that has received
little attention from statisticians.

Edwards (1967) observed that there was a general need
for simulation-based methods of estimation in complex
models. Speed (1983) was perhaps the first to point out
the need for statisticians to get involved in the determinis-
tic modeling arena, noting that scientists at the Australian
national research organization (CSIRO) were increasingly
abandoning statistical models in favor of simulation mod-
els. He gave a model for sheep growth as an example.

Although little attention has been paid to formally quan-
tifying parameter uncertainty, simulation model validation
has received considerable attention. Caswell (1976), Gut-
torp and Walden (1987), and Sampson and Guttorp (1999)
discussed applications in ecology, geophysics, and atmo-
spheric science. Hodges (1987, 1991) discussed model un-
certainty in the context of simulation models.

Deterministic simulations have received attention in
the statistical literature under the general topic of com-
puter experiments (Currin, Mitchell, Morris, and Ylvisaker
1991; Morris, Mitchell, and Ylvisaker 1993; Sacks, Welch,
Mitchell, and Wynn 1989). Computer experiments are sim-
ilar to the models discussed earlier in that they are typically
mathematical simulations of complex systems, and they also
require a number of inputs. Often the experimenter wishes
to fit a cheap predictor of the output (using some stochastic
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process) because the model itself is computationally expen-
sive to run. Another common objective is to choose values
of inputs that optimize some function of the output. Sacks
et al. (1989) discussed experimental design issues and the
choice of the stochastic process, and they provided some ex-
amples. The objectives of computer experiments are some-
what different than those on which we focus here. In our ap-
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plications, the chief objective is to quantify and reduce the
uncertainty about key quantities, particularly the model in-
puts and outputs and functions thereof, using all the sources
of evidence available.

A common way of specifying the inputs to a simulation
model is an ad hoc trial-and-error, or “tuning,” approach.
This begins with an initial educated guess at appropriate
values of the inputs. If the corresponding outputs are plau-
sible, then this initial guess is used; otherwise, new val-
ues are tried until a satisfactory set of outputs is obtained.
Thereafter, a sensitivity analysis is often run to see whether
the final conclusions are sensitive to the precise values of
the inputs used. If the conclusions turn out to be insensitive
to the inputs, then all is well. However, if there is some
sensitivity, then it is not clear what should be done. One
option is to note it in the report and to attach a warning to
the conclusions. Another is to assume values that are con-
servative or that cater to the “worst-case” scenario. We feel
that sensitivity is a form of uncertainty, and that it should
be taken into account explicitly when drawing conclusions.

The present research was initially motivated by work
for the International Whaling Commission (IWC) on set-
ting quotas for aboriginal subsistence whaling of bowhead
whales, Balaena mysticetus, by Inuit peoples in Alaska.
This has been done traditionally using a deterministic age-
structured population dynamics model for the whales to as-
sess their current natural rate of increase. The model uses
information on the historic commercial catches and the cur-
rent population size, and requires as inputs parameters that
describe age-specific fertility and mortality rates, and ini-
tial population size. The results are quite sensitive to these
inputs, and until 1994 the inputs were set using the ad hoc
trial-and-error method described earlier, with the conserva-
tive assessment of natural increase rate taken as the lowest
value from a rather limited sensitivity analysis. Because the
key quantities of interest here depend crucially on model
inputs, it is important to reduce the uncertainty about the
model inputs as much as possible. In other simulation ex-
ercises (e.g. combat modeling), the simulation is intended
primarily as a means of obtaining inference about the out-
puts.

In 1991, the IWC decided that sensitivity analysis gave
too crude an assessment of uncertainty, and that the re-
sult might, for example, be too high, running the risk of
damaging the stock. They called for better methods to as-
sess uncertainty in whale population dynamics models. The
Bayesian synthesis method was a first attempt to meet this
call (Givens 1993; Raftery, Givens, and Zeh 1992, 1995—
hereafter, RGZ), and was used by the IWC to set the bow-
head quota in 1994. However, Wolpert (1995) showed that
Bayesian synthesis was subject to the Borel paradox, so that
the results could depend on the model’s parameterization.
A method that is subject to the Borel paradox is unsatisfac-
tory.

Here we describe a new approach, called Bayesian meld-
ing, that retains the desirable aspects of the Bayesian syn-
thesis method but is not subject to the Borel paradox. The
word “melding” is used because the method provides a
way of combining different kinds of information (quali-
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tative or quantitative, fragmentary or extensive, based on
expert knowledge or on data) about different quantities, as
long as the quantities to which they relate can be linked
using a deterministic model.

In Section 2 we give background on deterministic sim-
ulation models, the Bayesian synthesis approach, and the
Borel paradox. In Section 3 we review existing ideas of
pooling probability distributions to combine the opinions of
experts, and build on those to develop the Bayesian melding
approach, using a pair of simple examples. In Section 4 we
illustrate the method using a population dynamics model for
bowhead whales, and in Section 5 we compare the method
to a simpler standard Bayesian approach by means of sim-
ulation. We prove selected theorems in the Appendix.

2. BACKGROUND

2.1 Deterministic Simulation Models

A deterministic model is simply a function relating a set
of input variables to a set of output variables. We use the
notation

M : 80— ¢, # €0 CRY, o e dCRP,

to denote the situation in which the deterministic model M
relates a vector of input parameters 6 to a vector of outputs
¢, so that ¢ = M(6). We let ¢ denote the set of quanti-
ties of interest, which may be model inputs, model outputs,
or functions of both and typically will be functions of ¢
and/or 6. The model A may be noninvertible, and in many
applications the noninvertibility is due to the dimension of
¢ being less than that of 8; that is, p < n. In these cases,
a single value of the output vector may result from many
different values of the input vector.

Our motivating application is the study of population dy-
namics models (PDMs); Example 2 is of this type. A PDM
typically relates the population at time (¢ + 1) to the popu-
lation at time ¢. More complex age-structured PDMs relate
the population aged « at time (¢ + 1) to the population at
each age at time ¢. For the purposes of this article, we con-
sider the following two deterministic functions.

2.1.1 Example 1: Z = Y/X. This is an extremely
simple illustrative example. X and Y are the two inputs
to the model, whereas Z is the single output. Hence ¢ =
(X,Y) and ¢ = Z. This is an example of a case where a
given output can be generated by infinitely many values of
the inputs.

2.1.2 Example2. A model that underlies the commer-
cial revised management procedure of the IWC is a non—
age-structured PDM of the form

Pt+]_ :Pt—Ct+15(MSYR)Pt(1_(Pt/Po)z) (1)

In (1), P; is the population in year t, where ¢ = 0 cor-
responds to the baseline year before commercial hunting
started (1848 in the case of bowheads), Py is the initial pop-
ulation size, MSYR is the maximum sustainable yield rate,
and C; is the number of whales killed by hunting in year ¢.
MSYR is defined as the natural rate of increase when the
population is at an equilibrium known as the maximum sus-
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tainable yield level. At this equilibrium, the population can
indefinitely sustain an annual catch known as the maximum
sustainable yield.

This model is somewhat simpler than the PDM actu-
ally used by the IWC for bowhead assessment, which is
called BALEEN II, but it nevertheless captures several of
the major features of the bowhead population. The model is
viewed as having two inputs (P, and MSYR) and one out-
put (Pygg3); using given values of the inputs, (1) is applied
recursively until Pigg3 is obtained. The catch history is as-
sumed to be known exactly, so that the C;’s are viewed as a
set of constants. Although the population can be projected
further to the present year, 1993 is the latest year for which
independent abundance data are available. A related quan-
tity of interest is the recent (1978—-1993) rate of population
increase.

The model (1) is simple because it is not age-structured,
but it does feature density dependence, according to which
the population increases more slowly when it is larger.
The density dependence is introduced by the factor (1 —
(P,/P5)?) on the right side of (1). This model implies the
existence of a “carrying capacity,” usually denoted by &,
and here assumed to be equal to Py, postulated to be the
maximum number of animals that its environment could
sustain. If the size of the population goes above this level,
then the population is assumed to decrease until it reaches
the carrying capacity again.

In many applications, information on 8 and ¢ is available
independently of M. Data, statistical models, and prior be-
liefs can yield evidence about parameters that are either
inputs to or outputs of M. Such statistical models should
not be confused with the simulation model M.

2.2 Bayesian Synthesis and the Borel Paradox

RGZ (1995) described an approach to the bowhead whale
problem that became known as the Bayesian synthesis
method. As we did in Section 2.1, RGZ let § denote the
set of model inputs and let ¢ denote the set of model out-
puts about which we have information independent of the
simulation model A{. (RGZ used & rather than M to de-
note the deterministic model function.) They then denoted
by p(8. &) the joint premodel distribution of § and ¢, which
summarizes all available information about € and ¢ except
that embodied in the model itself.

The model defines a mapping from the set of possible
values of # to the set of possible values of ¢, denoted by
6 — M(6). RGZ defined the joint distribution of 4 and ¢
given the model to be simply the restriction of the premodel
distribution to the submanifold {(¢, ¢) : ¢ = M (6)}, namely

p(0,M(0)) if ¢ = M(0)
(. 0) x { 0 otherwise.

RGZ referred to w(6. @) as the postmodel distribution. The
marginal postmodel distribution of 8 is then

718 x p(8, M () (3)

(2)

or, equivalently,

=0(9) = p?°! (86 = M(6)). )
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Wolpert (1995), in a discussion of RGZ, pointed out that
a conditional distribution of the form (4) is ill-defined, and
as a result the Bayesian synthesis postmodel distribution is
subject to a phenomenon known as the Borel paradox. One
consequence of the Borel paradox is that the postmodel
distribution depends on how the simulation model A is pa-
rameterized. Schweder and Hjort (1996) pointed out that the
consequences of the paradox are far-ranging; by choosing
arbitrarily extreme parameterizations, one can in principle
obtain any density as the post-model distribution.

The Borel paradox manifests itself when a conditional
distribution is defined on an arbitrary null event (or a set of
probability zero). Such conditioning is indeterminate, and
the resulting conditional density depends on how the space
is parameterized and other irrelevant things (Wolpert 1995).
Billingsley (1986) also alluded to the phenomenon in his
discussion of conditional probability. Because the Bayesian
synthesis approach relies on a conditional distribution that
is ill-defined, it is not satisfactory. However, if it could be
reformulated as a standard Bayesian procedure, then the
Borel paradox would vanish. This is the motivation behind
Bayesian melding.

3. BAYESIAN MELDING: STANDARD BAYESIAN
INFERENCE VIA LOGARITHMIC POOLING

3.1 Priors and Likelihoods

In a Bayesian context, it is useful to decompose the pre-
model information into prior and likelihood components.
Under the assumption that premodel information about in-
puts is independent of that about outputs, we can decom-
pose the Bayesian synthesis premodel distribution as

p(8,¢) = pl?(0)p!)(¢)
x q1{0)q2(0)L1(8) L2(8), )

where ¢1(-) and gz(-) are the prior distributions of the inputs
and outputs, L, (8) = p(Dy|8) is the likelihood of the inputs,
and Lo(¢) = p(Dy|¢) is the likelihood of the outputs, where
Dy and D represent data. Sometimes, data relating to only
one of # and ¢, typically ¢, are available, in which case
only one likelihood is present. In considering the decompo-
sition (5), it becomes apparent that the Borel paradox does
not arise from the likelihood components. Likelihoods are
invariant to reparameterization, as pointed out by, for ex-
ample, Schweder and Hjort (1996). Thus the problem lies
with the prior distributions q; () and g2(¢).

Because € is a random variable with density ¢1{9),¢ =
M (#) is also a random variable, because it is a transforma-
tion of #. In other words, ¢;(#) and M together induce a
distribution on ¢, which we denote by ¢; (¢). If M ~! exists,
then we can write

ai(¢) = a(M~1(&)|T ()], (6)

where J(¢) = |df/d¢| is the associated Jacobian of the
transformation. For a complicated M, even when it is in-
vertible, the functional form of J(¢) may be very difficult
to calculate. When M is noninvertible and dim(®) is less
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than dim(@), it will be virtually impossible to obtain ¢} (¢)
analytically.

The Bayesian synthesis method does not account for the
existence of ¢;(¢). Allowing for this induced distribution
and the pre-existing g2(¢), there thus are two prior distri-
butions on the same quantity, ¢. Because these two priors
are typically based on different sources of information, of-
ten not including knowledge of A7, they may be different,
or incoherent. If they could be replaced by a single prior,
say §?1(¢), and then inverted to the input space to yield
¢(6), then we would be in a position to define

7%8) x % (6) L1 (6) Lo (M(6)), )
which is a standard Bayesian posterior distribution, and
standard Bayesian inference could then follow. The Borel
paradox would no longer arise. The concept of a joint pre-
model distribution, as in (5), is no longer considered; we
require only marginal prior distributions for ¢ and ¢; prior,
that is, to the likelihood components L;(-) and L(-).

As with the Bayesian synthesis method, Monte Carlo
methods would be used to obtain a random sample from
7l (#), and inference would be based on the distribution of
this sample. Inference about ¢ would follow by examining
the distribution of ¢ = M (#), where 6 is drawn from the
posterior in (7).

3.2 Combining Probability Distributions

The presence of two priors on one quantity occurs quite
naturally in a simulation modeling framework. One possi-
bility is to combine the two prior distributions into a single
one as in Section 3.1. We assume here that the two dis-
tributions are not completely incompatible, and thus that
there exists a region on which both have support. (If the
two priors place mass on completely conflicting regions of
the parameter space, this would indicate a problem with the
model or with at least one of the priors, and one would need
to place both the model and the sources of evidence under
careful review before proceeding.)

Coherizing two prior distributions on the same quantity
is related to another problem: that of reaching consensus
in the presence of multiple expert opinions. This topic has
received considerable attention in the statistical literature;
French (1985), Genest and Zidek (1986), and Givens and
Roback (1999) reviewed work in the area. Two pooling
methodologies that have received extensive study are

linear pooling: T'(¢1,...qx) = Zle ;i

and
logarithmic pooling: T(g1,...gx) x Hle q2,

where qi,...,q; are the individual priors; ai,...,0 >
0,3 a; = 1; and the pooling operator T" represents the sin-
gle combined probability distribution.

In a Bayesian framework, one must consider the order in
which pooling and updating of a prior (given a likelihood
from data) are performed. There are two possibilities. First,
each prior distribution is updated using Bayes’s theorem,
and then the combined prior distribution is formed. Alter-
natively, the combined prior distribution is first formed, and
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then this is updated using Bayes’s theorem. It seems rea-
sonable to insist that both procedures result in the same
combined posterior distribution. Madansky (1978) called
this property external Bayesianity. Genest (1984) and Gen-
est, McConway, and Schervish (1986) showed that under
mild conditions, the logarithmic pooling operator is the only
pooling operator that is externally Bayesian. This result pro-
vides an argument for using logarithmic pooling within a
Bayesian analysis framework. In terms of the output ¢, a
logarithmically pooled prior distribution has the form

%1 (¢) x g (9)%qa(9)' 2, (8)

where g7 (¢) is the prior on ¢ induced by ¢, (#) and M, q3(9)
is the existing prior on ¢, and « is the pooling weight. If
g% (¢) and g2(#) both exist, then §?l(¢) must also exist as
a consequence of the following result.

Theorem 1. If ¢ is expressed on a continuous scale and
[ qi(é) do = [ g2(¢) dp = 1, then there exists a constant
ko such that

ke / G w@) ds=1 YacD,1.

If ¢ is discrete valued and 3, qi(¢;) = >°;q2(8;) = 1,
then there exists a constant k. such that

k’a ZQI(C:)j)QQQ(qu)I_Q =1 Vace [07 1}
J

A major question of interest is how to choose the pooling
weight «. French (1985) argued that the choice is essentially
arbitrary. Here, in the case of two priors, a; = as =a = .5
assigns equal weight to each individual prior. We refer to (8)
with a = .5 as geometric pooling because (8) then amounts
to taking the geometric mean of the two prior densities.

In the bowhead whale application, we essentially have
one expert (the IWC Scientific Committee) placing prior
distributions on two different quantities, rather than the
originally envisaged situation in which two experts provide
opinions on the same quantity. This provides an informal
justification for the choice a@ = .5 in the bowhead case.
Because the two sources of prior information (although in-
dependent) are selected by the same expert, they can be
viewed as equally reliable and hence should be assigned
equal weight. Recall that it is only the prior distributions
that are pooled in this way; likelihoods enter the posterior
with full weight as in (7). We discuss the choice of « in
more detail in Section 6.

3.3 Logarithmic Pooling for Noninvertible Models

So far, we have considered inference about the model
outputs, ¢. If the model is one-to-one, then inference about
the model inputs, #, can be obtained by simple inversion of
the combined prior distribution of model outputs in (8). We
denote the resulting pooled prior on inputs by ¢l (4). When
the model is not one-to-one, the geometrically pooled prior
distribution of the model outputs is still unambiguously de-
fined, but that of the model inputs is not. Here we propose
a solution for the general noninvertible case.
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3.3.1 A Simple Discrete Noninvertible Example. Con-
sider the following very simple deterministic model. It has
one input and one output, each of which is discrete. The
input, 6, has three possible values (1, 2, 3), whereas the
output, ¢, has two possible values (1, 2). The model, M,
1Is1 = 1,2 — 2 and 3 — 2. It is noninvertible because
2 and 3 both map onto 2, and so M ~1(2) is not uniquely
defined, as it could be either 2 or 3. The prior densities are
as follows:

0 a(6) ¢ ga(0)
17 1 6
2 2 2 4
3 1

The pooled prior density of ¢ is derived from (8), and,
after renormalization, is as follows:

o @) qile) o)
1 6 i 652
2 4 3 348

Now, having obtained the pooled prior density on outputs,
q®l(), how should we invert it so as to obtain the pooled
prior density on inputs, §'/(6)? First, it seems clear that we
should have {?)(1) = ¢%/(1) = .652. This is because there
is a one-to-one relationship between § = 1 and ¢ = 1, in
the sense that M (1) = 1 and that 1 is the only value of ¢
for which M) =

By similar reasomng it seems clear that ¢ (2)+§%(3) =
§l®1(2) = .348. The question is: How should the §¢/(2) =
.348 be split between § = 2 and # = 3? Note that any
choice will give a solution that is technically an inversion
of §l°i(¢), so we have use other grounds to decide which is
the most reasonable of the possible splits.

We propose that the split be proportional to ¢,(6). The
reasoning is that prior information about ¢ tells us nothing
about the relative probability of § = 2 versus # = 3, because
they both map onto the same value of ¢, and so the ratio
of the prior probabilities of & = 2 and # = 3 should be
determined only by the prior distribution of the input. This

leads to
~[] QI(Q)
) (91(2> + Q1(3))

2
= .348
(+5)

= .232.

Similarly, ¢11(3) = .348(.1/(.2 + .1)) = .116.

3.3.2 Discrete Case: General Solution. The simple
example in Section 3.3.1 provides the intuition behind our
proposed general solution for the case where inputs and
outputs are all discrete. Suppose that the possible values
of @ are A;. Ao,..., and that those of ¢ are By, Bs,....
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Suppose further that m : N/ — A is a mapping induced
by M such that M(A;) = By, (i = 1,2,...), and that
C; = M~ (B;) = {A; : M(A;) = B;}. Then we derive
the pooled prior density of the outputs, d1?1(¢), as before,
using (8). Here we use ¢ to denote densities with respect to
a dominating discrete counting measure (i.e., probabilities).

We invert §l%(¢) using the two rules suggested by the
simple example in Section 3.3.1. First, we require that the
pooled prior probability of C; be the same as that of the
corresponding B,; that is,

QNCy) = ¢l(By), ©)

where Q¥1(C}) = T{§)(A,) : A, € C;} is the pooled prior
probability of the set C; or, equivalently, the pooled prior
measure of C;. We use capital () to denote a probability
measure. The second rule is that if C; has more than one
member, then its probability is split between its members
in proportion to their prior densities, q; (A;).

This yields the pooled prior density on inputs

. Y A
(A,) = 398, ( g ) (10)
q (A .
(Ai) = ¢ (Bm) G Conie)
We also have that
1(Cy) = q1(By). (11)
Combining (10) with (11) gives the alternative form
. N A;)
1A = ale(B.__. (-q_l(_l_) (12)
q i m(i - .
(A:) = ¢ (Bmy) 7 Boi)

It is easily verified that (12) yields the same solution as
before for the simple discrete model in Section 3.3.1. In
practice, (12) is more convenient than (10) because it does
not involve C,, ;. For a given A;, it may be difficult to de-
termine C,,(;) whenever the model M is complex. However,
it is easy to determine B,,;, by running the model using
A; as the input. In addition, we have the following result.

Theorem 2. The pooled prior given by (12) is a dis-
crete probability function with respect to the dominating
eountmg measure; that is, 0 < ¥1(4;) < 1 for all ¢, and

> d%(A) = L.

3.3.4  The Continuous Case. We now extend the gen-
eral solution for the discrete case, (12), to the case where the
inputs and outputs are continuous. We first use an intuitive
limiting argument similar to that used in defining probabil-
ity density functions as derivatives of cumulative distribu-
tion functions. We then show that the heuristic derivation
results in well-defined densities under certain conditions.

Suppose that A is a small hypercube contained in © with
side of length h.Let B = M(A) = {M() :6 € A} and
C=M1YB)=1{0: M) € B}). A, B, and C are shown
in Figure 1. We denote measures corresponding to prior
densities by writing ) in place of q.

For Q1!(-) to be an inversion of Q?!(-), we require that

QN(C) = Q¥¥(B). (13)
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M—l
M

Figure 1. The Sets A, B, and C in the Heuristic Derivation of the
Pooled Prior Density of the Inputs.

B = M(A)

Also, by the definition of C and @Q3(-), we have that
Q:1(C) = Q1(B).

The arguments we used in discussing the simple discrete
example suggest that the proportion of Q!?/(C) attributed
to A should be equal to the prior probability of A divided
by that of C. This leads to

(14)

(15)

by (13) and (14). Then we propose that the probability den-
sity function corresponding to (15), if it exists, be given
by

18] -10] 0(9)
0 = 00 ()

i @(M(8))'
= kaq1(6) (m) .

This corresponds to letting the length £ of the side of the hy-
percube A tend to 0. Looking at (16), we observe that gl (-)
is simply the original prior, ¢;(-), weighted by the ratio of
two (possibly lower-dimensional) densities in ¢ space, ¢a(-)
and g} (-), evaluated at M (6). The magnitude of the weight
is dictated by the value of «. Note also that the ratio is
never evaluated at arbitrary values of ¢, only at M(¢) for a
given value of § € O.

We now identify two different situations in which (16)
yields a well-defined probability density function that is
also an inversion of §\?l(¢). We first consider the case in
which the space of inputs can be divided up into disjoint
sets such that within each the model, M, is invertible. A
simple example would be ¢ = M(8) = 62, where © = R
and ® = R, U{0}. There M is noninvertible, but if we split
up the input space, ©, into disjoint sets A; and A; where
Ay =R, U {0} and A = R_, then M : 4; — & will be
invertible for each 7 = 1,2. The general result is as follows.

(16)

Theorem 3. Suppose that 8 = (6;,...,6,) and that ¢ =
(¢1,...,¢n); that is, the model M has the same number
of inputs as outputs. Suppose that ¢ and ¢ are assigned
proper prior densities ¢1(6) and g2(¢). Suppose also that
Ag, A1, ..., Ay form a partition of © such that (a) P(8 €
Ag) = 0, and Ay may be empty, and (b) the model map
® = M(#) is one-to-one from A; onto a set B for each
i = 1,...,k, so that for each ¢, the inverse map can be

1249

found. Then, for 0 < a < 1, the pooled prior on the model
inputs ¢ given by (16) is a proper density function and an
inverse of §%!(o).

We now consider the case where the model is noninvert-
ible because the output ¢ is of lower dimension than the
input 6.

Theorem 4.  Suppose that § = (6, ...,0,,) and that ¢ =
(¢1....,¢p) wWhere p < . Suppose also that there exists a
transform H : § — ~, where v € I' C R”7P, such that the
n-dimensional transform

(4)-(i)

v )\ H()

is one-to-one. Suppose that 6 and ¢ have proper prior den-
sities g1 (6) and ga2(¢). Then for 0 < & < 1, the pooled prior
on the model inputs 6 given by (16) is a proper density
function and an inverse of §l#l(¢).

Recall from the simple discrete example that we chose
to use ¢, (-) as the basis for inverting §/¢!(-) for each given
value of ¢. We picked a member of a class of priors P
that all induce 41?!(.); specifically, we chose p € P such
that p(-|¢) = ¢1(-|¢). This choice minimizes the Kullback—
Leibler distance to ¢ (-). For any p € P, we have

D(q1.p) = ED(q:(-¢), p("|9)) + D(a1,p"),

where the asterisks denote distributions induced through the
model as before. Now the second term is constant for every
p € P, and the first term is made to vanish by making our
specific choice.

3.4 Implementing Logarithmic Pooling via the

Sampling-lImportance-Resampling Algorithm

Using the pooled prior in (16), the posterior distribution
of #,7(6), is given by (7). A sample from this poste-
rior can be obtained via the following modified sampling-
importance-resampling (SIR) algorithm (Rubin 1987, 1988):

1. Draw a sample of size & values of ¢ from its prior
distribution g; (8). We denote the sample by (61, ...,0). (If
g1(6) has a standard form, then it often will be possible
to do this using packaged random number generators for
standard distributions.)

2. For each #; sampled in step 1, run the model to obtain
the corresponding ¢; = M (6;).

3. Use nonparametric density estimation to obtain an es-
timate of ¢7(¢), the resulting induced distribution of ¢. We
use kernel density estimation with a Gaussian kernel and
(whenever relevant) the maximal smoothing span of Terrell
(1990); this has the advantage of being easily applied in
higher dimensions.

4. Form the importance sampling weights

i — (Q2(M(9i))
to\g(M(6)))

5. Sample ! values from the discrete distribution with
values 6; and probabilities proportional to w;.

) h L1(6:)L2(M(6,)). (17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




1250

.6 0.7

0102 03%??%‘5 0

e
= S
=5 et
B s oo
e e o ST S
S e S S SO O ‘0’.‘% <
e e

s

Figure 2. The Pooled Joint Prior Distribution of X and Y in the Simple
Example. The shape reflects prior information on Z projected through the
deterministic relationship. The two superimposed solid lines represent
sets of points in the (X, Y) plane that map to two single points in Z
space. The prior on Z says that each z value is equally likely, and the
pooled prior accounts for this by increasing the density where such lines
are shorter.

The result is an approximate sample from the target pos-
terior distribution 7!?!(#), and it can be used to make infer-
ence about the various quantities of interest.

3.5 Example: A Simple Continuous Noninvertible Model

We now revisit Example [ from Section 2.1, the simple
model given by Z = Y/X. Let X ~ U[2,4],Y ~ U[6,9],
and let Z ~ U/]0, 5] be the mutually independent prior distri-
butions of the parameters. (For simplicity in this example,
we assume that no likelihoods are available.) It follows that

1
ql(at,y):é, for 2 <z <4, b<y<9
and
@(2)=<=, for 0<z<b5.

Recall that the model is noninvertible, because the output
has lower dimension than the inputs. Indeed, each unique
value of Z can be associated with an infinite number of or-
dered pairs (X,Y). This is a feature found in many of the
more complicated models used in real situations. The sim-
plicity of this example, however, allows an analytic solution
to be found.

The change-of-variable method can be used to find ¢ (2),
the distribution of Z induced by the model. Geometric pool-

08

Density
06
Density

04

02
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ing of ¢ (z) and ¢2(z) yields

’f——gl_:” 1.5 < 2 <225
§(z) = { BB £ 225<2<3
’“———W : 3 <2< 45,

where k£ ~ 1.4 is the appropriate normalizing constant. To
obtain the corresponding pooled prior on the inputs (X,Y),
we apply (16) to obtain

¢ (y/=)q1 ()

=[6]¢. _
¢z, y) = n
qi(y/z)
kv . 9L
Wi y < 2.25zx
= k4\/£y 0225 <y < 3x
ky Dy >3z

15(8122—4y?)

on © ={(z,y) : 2 <z <4,6 <y <9}, and 0 elsewhere.
This density integrates to unity on its support and is shown
graphically in Figure 2. The original flat prior on the inputs
has been modified to reflect the additional marginal prior
information on the output. Figure 3 shows the correspond-
ing marginal pooled prior distributions of X,Y’, and Z. The
exact marginals and the distributions simulated using SIR
are shown. The SIR method provides a good approximation
to the true distributions.

4. EXAMPLE: A POPULATION DYNAMICS MODEL
FOR BOWHEAD WHALES

We now apply the Bayesian melding procedure to Ex-
ample 2 from Section 2.1. This is the simple population
dynamics model underlying the revised management proce-
dure of the IWC. Here we use prior distributions that have
been used in previous illustrations using this model. These
are not necessarily priors agreed to by the IWC Scientific
Committee.

The model inputs are F, and MSYR. For F,, we have
a prior only, and we use the same prior as used by
Givens (1995), namely a shifted gamma distribution 6, 400+
gamma (2.8085, .0002886), where the mean is given by
2.8085/.0002886 = 9,731. For MSYR, we also have only
a prior. MSYR is the only productivity parameter in the
model, and our prior information about it reflects all our

04 05

03

Denssly

02

0.0

(a)

15 20 25 30 as 40 45
z

(0

Figure 3. Exact and Simulated Pooled Prior Distributions of (a) X, (b) Y, and (c) Z for the Simple Example. The simulated distributions are

generated using SIR, and approximate the exact distributions well.
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prior information about natural fertility and mortality. We
based this on a distribution of MSYR for bowheads re-
ported by Punt and Butterworth (1996), which had a mean
of .0220 and 95% confidence interval [.0082, .0335]. We
approximated this using a gamma (8.2, 372.7) distribution,
which has the same mean and the same .025 and .975 quan-
tiles. Punt and Butterworth (1996) obtained the distribution
from the BALEEN II model as a collection of values of
MSYR, which (in combination with values of other param-
eters of the larger model) were not rejected by the model
as being biologically unreasonable.

For the output Pig93, we have both a prior and a like-
lihood. We approximated both of these by normal distri-
butions {(a good approximation), and used the results of
Raftery and Zeh (1998) based on the 1993 census. The
prior distribution (go) is N(7,800, 1,3002), and the likeli-
hood (L3) is N(8,293, 6262). These choices correspond to a
posterior distribution that is N (8,200, 564?), matching the
mean and variance of the Bayes-empirical Bayes posterior
distribution (which is nearly, but not exactly, normal). The
prior for 1993 (g,) is based on data from a previous visual
and acoustic census carried out in 1988. Raftery and Zeh
(1993) described the 1988 census in detail. Because this
prior is based on a previous recent census, it is independent
of the priors on the inputs £, and MSYR. Neither of these
priors uses census information in any way.

Finally, we have a likelihood for the quantity of inter-
est ROI, the 1978-1993 rate of increase based on the cen-
suses from 1978 to 1993. This is defined by Pyges = (1+
ROI)!5Pig75. We use the likelihood derived by Raftery
and Zeh (1998), which is proportional to the density of
exp(.0302 + .0069tg) — 1, where ts is a random variable
that has a t-distribution with 8 degrees of freedom. This is
a likelihood only; there is no prior component. The catch
series, {C;}, for 1848-1993 used is the one accepted by the
Scientific Committee for bowhead whales.

0.0003

0.0002

Density

0.0001

15000
1993 Population

Figure 4. The Components of the Geometrically Pooled Prior Distri-
bution of the Output ¢ = Pigg3 in the Simple PDM. These components
are as follows: ---qy,; - qz2; — - \/q_;‘; - =/Qz; — \/q;qz. All of
the densities shown have been renormalized fo integrate to unity. The
final pooled prior density, ¢ ! (P19g3), is the solid line.
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Figure 4 shows the components of geometric pooling for
the simple bowhead whale model that we are using. It shows
the different prior distributions for the output, Pigg3, and
how these are modified and put together to obtain the final
geometrically pooled prior distribution. The distribution for
Pjg93 induced by the model from the priors on the inputs,
gi . is very spread out. It has a median of 17,400 and a 95%
probability interval of (5,340, 32,300). The existing prior,
g2, is far more precise. The resulting pooled prior is similar
to, but slightly more spread out than, g.

Table 1 displays posterior quantiles (medians and bounds
of the 95% Bayesian interval) and corresponding quantiles
of the premodel distributions described earlier in this sec-
tion. The premodel distributions of £, and MSYR are the
gamma priors, and the premodel distribution of ROI is the
transformed ¢-likelihood only. For Pjgg3, the premodel dis-
tribution is the normal approximation to the Bayes empir-
ical Bayes posterior from the 1993 census. In Table I, the
posterior distribution of Pjgg3 is almost identical to the pre-
model distribution. This is unsurprising, because the likeli-
hood (L») is dominant; this was the best piece of premodel
information, and the priors on other parameters affect the
inference very little. The posterior is very slightly more
spread out than the premodel distribution; this is due to the
influence of ¢}, the diffuse induced prior for Pjg93.

For Py, the posterior variance is considerably lower than
the prior variance; similarly, the posterior distribution of
MSYR is more precise than the prior. For ROI, the meld-
ing of information leads to a lower estimate than that sug-
gested by the premodel likelihood. The model maps each
draw from the priors on inputs to values of Pig7s and Piggs,
and hence to a value of ROIL The distribution of ROI ob-
tained from these draws suggests a slightly lower rate of
increase than the premodel likelihood. As a result, when
these draws are combined with the likelihood, we obtain
the observed posterior distribution. Histograms of the pos-
terior samples are shown in Figure 5. The joint posterior
also reveals relationships among parameters that were not
previously apparent; indeed, there is a fairly strong negative
correlation between Py and MSYR in the posterior sample.

Table 1. Posterior and Premodel Quantiles of Inputs and
Outputs of the Simple PDM

Results
Parameter Quantile Posterior Premodel
Pigga 025 7,072 7,095
5 8,196 8,200
975 9,322 9,305
ROI 025 .0105 .0146
5 .0204 .0307
975 .0318 .0469
Py 025 12,057 8,264
5 14,346 15,004
975 17,980 30,373
MSYR 025 .0113 .0096
5 .0213 .0211
.975 .0333 0394
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Figure 5. Histograms of the Bayesian Melding Posterior Distributions
for Parameters of the PDM for Bowhead Whales. The premodel distri-
butions are shown as solid lines.

5. COMPARISON VIA SIMULATION

We performed some simulations using the bowhead
whale model to compare the Bayesian melding approach
to a simpler Bayesian alternative where we placed priors
on the inputs only. With melding, the posterior distribution
of the inputs # = (P, MSYR) is

77[9](9) o~ q[gl(e)L(RI(g)),

where ¢l(-) is the pooled prior on inputs, and L(-) is the
joint likelihood for the output A(8) = (Piges, ROI). For
the simpler alternative, we used only the prior on the in-
puts Py, and MSYR and ignored the existing prior (gz) on
the output Pjgg3. This eliminates the need for logarithmic
pooling. Thus the corresponding posterior distribution for
the simpler alternative (“no melding”) is

where ¢;(+) is the original joint prior on inputs. The likeli-
hood is included in the same way in both cases.

We generated 100 true values of the triple (Fy, MSYR,
Pig93) from the posterior distribution in Table 1. For each
of these 100 truths, we generated 100 values of Pjgg3 (pseu-
dodata) from a normal likelihood centered at the true Pjgg3
and standard deviation equal to 626, the standard devia-
tion of the real Bayes—empirical Bayes likelihood. We then
applied the two estimation procedures to the pseudodata
by plugging in each pseudodata point as the center of the
likelihood with standard deviation again equal to 626. The
point estimates of parameters (the posterior medians) were
compared to the true values using the relative mean squared
error (MSE),

) 2

where 6; is the true value of the parameter # in truth set i
and §;; is the estimate of §; using the jth simulated data set
under truth set :.

The total relative MSEs for each parameter using the two
approaches are shown in Table 2. (The constant 1/(100)?

100

=1 j=1

1
relative MSE = W
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Table 2. Relative MSEs for Each of the Four Parameters in the PDM
Using Two Bayesian Estimation Procedures on Simufated Data

Total relative MSE

Parameter Melding No melding Ratio
Piogs 21.6 27.9 77
ROI 405.1 4147 98
Po 120.4 119.2 1.01
MSYR 415.1 410.9 1.01

was omitted for convenience.) For Pjg93, the melding ap-
proach outperforms the simpler alternative by about 23%
in total relative MSE. Although the likelihood is strongly
dominant in determining the posterior distribution for this
parameter in both cases, there appears to be considerable
gain in including the extra prior in the analysis. In other
words, inclusion of the existing prior for Pig93 improves
the estimates of this parameter across various data that may
have been observed. For the other parameters, the methods
perform very similarly.

Figure 6 shows the ratio MSE (melding)/MSE (no meld-
ing) for each of the simulated true values of each parameter.
Ratios less than 1.0 indicate superior performance for the
melding approach. The performance of melding for Piggs
is noticeably better than that of the simpler procedure.

These simulations are significant in that they represent
situations where the quality of the data differ (i.e., the ob-
served Plggs could be close to or far from the true value)
across a number of true states of the whale stock (from
highly productive to endangered). We are interested in how
the estimation methods perform in all of these situations,
because any one of them could represent the truth.

6. DISCUSSION

We have proposed a new approach to inference from
deterministic simulation models, called Bayesian melding.
This retains the desirable properties of the Bayesian syn-
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Figure 6. MSE (Melding)/MSE (No Meiding), the Ratio of Relative
MSEs, Across a Range of Simulated True Values for Each Parameter of
the PDM. Ratios below 1.0 indicate superior performance for the melding
approach. The y-axis is calibrated on the log scale.
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thesis approach of RGZ, but modifies it so as to avoid the
Borel paradox to which the latter approach is subject. This
exposition has focused on a PDM for whales, which is the
context within which it was developed. For ease of pre-
sentation here, we used a model simpler than the complex
BALEEN II model used by the IWC for bowhead assess-
ment. Bayesian melding has also been applied to the larger
model, and it was presented to the IWC Scientific Commit-
tee in the context of giving advice about bowhead hunting
quotas in its 1998 assessment of the stock. (At the previous
assessment in 1994, the Bayesian synthesis approach had
been used.) The method has also been applied to a model
for tree growth by Green, McFarlane, Valentine, and Straw-
derman (1999), and it has potential applications in epidemi-
ology and environmental risk assessment.

6.1  Model Uncertainty

We have assumed the form of the model M to be fixed or
agreed on. However, there may be uncertainty about this,
and taking it into account can be important. Although it is
not the main topic of this article, we indicate some possible
approaches.

A significant form of model uncertainty arises when there
are several model formulations, which cannot be distin-
guished between decisively on the basis of the available
information, but which may lead to different predictions
about quantities of interest. In the full BALEEN II model
used by the IWC, for example, density dependence is as-
sumed to operate on fertility, but it might equally well op-
erate on mortality rather than on fertility, or on both.

One approach to this problem is again Bayesian. It starts
by computing the posterior probabilities of the models con-
sidered; this is fairly easy to do using the SIR algorithm
(e.g. Kass and Raftery, 1995, eq. 10). Bayesian model aver-
aging is then used to compute the posterior density of the
quantity of interest, 7, taking into account model uncer-
tainty; this is a weighted average of the posterior densities
of ¢» under the different models, weighted by their poste-
rior model probabilities. (See Hoeting, Madigan, Raftery,
and Volinsky 1999 for a review of Bayesian model averag-
ing.) If one model has a posterior model probability that is
close to 1, or if the posterior distributions of ¢ are similar
under all the models with substantial posterior probabilities,
then choosing a single model rather than averaging over the
models will give a good approximation to the full Bayesian
model-averaging solution.

An application of this approach arises in a policy- or
decision-making context when the best decision depends
on a model assumption about which there is disagreement.
Then the weighted average of the resulting posterior distri-
butions from Bayesian model averaging may give a result
that is acceptable to both sides in the debate. An example
from the IWC was given by Raftery and Schweder (1993) in
the contentious context of the assessment of North Atlantic
minke whales.

A second form of model uncertainty flows from the more
general concern that the approach here assumes the model
M to be true (at least approximately), and this may not be
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the case. Perhaps the most common approach to this prob-
lem in statistics is to check the model in various ways and
change it if there seem to be systematic discrepancies (e.g.,
Box and Jenkins 1976). We discussed some approaches to
model checking for deterministic simulation models in ear-
lier work (Poole and Raftery 1998). Another approach is
via model expansion, in which a neighborhood of the cur-
rent model is defined, and uncertainty about model form
within this neighborhood is propagated through to final in-
ference about quantities of interest in the standard Bayesian
way, via integration (e.g., Draper 1995; Perrichi, Sansd, and
Smith 1993; Smith 1983).

A third, little discussed, source of model uncertainty is
the possibility that the model itself, the algebra specify-
ing it, or the computer implementation is in serious error
without the user being aware of it. A formal way of taking
this into account may be available, based on the following
thought experiment, modified from a proposal of RGZ.

Imagine first that we did not know about the model. Then
our conclusions about the inputs, §, would be based only on
the prior and likelihood for 4 alone, and would be summa-
rized by the distribution

7”[6] (9) X q1 (0)L1(0)~

which we call the premodel posterior distribution of 6. Now
suppose instead that we did know about the model, but
that just before we had to make a decision we learned that
the model was seriously flawed, with no time to revise the
model or build a new one. Then it might well be reasonable
to revert to the premodel posterior distribution and base de-
cisions on that. If such errors occur with probability ¢, then
this suggests using the “hyperposterior distribution,”

,/T[B]* (9) — (1 _ E)?T[G] (0) + 57«[9:‘ (0)’

a mixture of the premodel and postmodel posterior distribu-
tions of the inputs, where 7®!(#) comes from (7). Inference
about the quantities of interest, ¢», would then be made by
using the induced distribution of 3 corresponding to the
hyperposterior distribution of the inputs, 7[%" (6).

In the bowhead case, the issue of formally accounting for
model uncertainty was not a critical one at the IWC. This
is because agreement that the model used was reasonable
for management purposes had developed over a period of
perhaps 20 years of studies, sensitivity analyses, presented
papers, and Scientific Committee debates.

6.2 Choice of

An issue that remains unresolved is how best to choose
a, the pooling weight. In the original context in which log-
arithmic pooling of prior distributions was developed, that
of combining the opinions of two experts, o was viewed as
reflecting the weight to be attached to the first expert vis-
a-vis the second, although a formal basis for specifying its
precise value does not seem to have been developed (Gen-
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est and Zidek 1986). Our context is somewhat different, in
that we are combining prior distributions about different
parameters and based on different bodies of evidence, but
assessed by the same “expert” (in our case the IWC Scien-
tific Committee). As noted earlier, we have used this fact
as the basis for our choice of a = .5 in the examples. Note
that « does not reflect the precision of the prior informa-
tion about the inputs relative to that about the outputs, but
rather its reliability; precision is accounted for by the vari-
ances of the respective distributions. It seems reasonable
to assume that the information about inputs and outputs
will be equally reliabie, because they are both assessed and
expressed quantitatively by the same expert. Figure 4 il-
lustrates how even when a = .5, the pooled prior will be
dominated by the more precise source of information.

However, values other than o = .5 might well be reason-
able. In particular, values at or near the extremes, a = 0,1,
might be of interest. A case of particular interest arises
when priors on the inputs were specified for formal rea-
sons to make Bayesian inference possible in the absence of
much prior information, but the priors on the outputs did
correspond to real information. Then setting o- = 0 or close
to it could allow the (uninformative) prior distribution about
the inputs to be given little or no weight, while still having
a proper prior on the inputs (induced by the prior distribu-
tion on the outputs). One could also think of estimating o
as a parameter of the model in the usual Bayesian way.

6.3 Density Estimation and Computation

Another open issue is that of how best to do nonparamet-
ric density estimation in the present context. We have cho-
sen to use kernel density estimation with a Gaussian kernel.
This is an “off-the-shelf” approach, not crafted specially for
our present purpose, and so it should be possible to do bet-
ter. Givens and Roback (1999) have developed an adaptive
method that involves direct numerical approximation of Ja-
cobians. Their method has led to improved accuracy and
efficiency in some examples.

We have developed our methods for a family of simu-
lation models that can be run reasonably fast on a com-
puter. Many simulation models take much longer to run,
however, and methods that require very large numbers of
runs will remain infeasible for such models for a long time.
Efficiency is a major issue, and methods that make each
run of the model count much more will be required. One
such approach is the adaptive SIR algorithm of Givens and
Raftery (1996). Quadrature methods also seem promising.
One possibility is the three-point iterated Gauss—Hermite
quadrature of Raftery and Zeh (1993, app. 4) (see also Levy,
Clayton, and Chesters 1998). Another is the Bayes—Hermite
quadrature of O’Hagan (1991). A different possibility is
Latin hypercube sampling, mentioned in the present con-
text by Schweder (1995).

Our approach involves simulating from a posterior distri-
bution, and Markov chain Monte Carlo (MCMC) methods
have been much developed in recent years for this purpose
(e.g. Gilks, Richardson, and Spiegelhalter 1996). We have
not used MCMC because it requires the availability of code
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to compute the (unnormalized) analytic posterior density,
which is not available here. Pooling can be implemented
in a natural way via the SIR algorithm but not, as far as
we can see, with MCMC. A further difficulty with MCMC
in this context is that our posterior distributions tend to be
concentrated near nonlinear submanifolds of the parameter
space, and it is known that designing MCMC algorithms for
this kind of situation can be extremely delicate. The design
of an algorithm that overcomes these obstacles would be a
worthwhile topic for further research.

APPENDIX: PROOFS

Here we give the proofs of Theorems 1 and 4. Proofs of the
other results have been given in an earlier work (Poole 1999).

Proof of Theorem 1

We first consider the continuous case. For ¢« = 0 and o = 1,
the result is trivially true from the assumptions. For a € (0, 1),
the function h(z)} = x* is concave on [0, oc), because h''(z) =
a(a — 1)2®~? < 0. Noting that the ratio g} (¢)/q2(#) has range
[0,00) for ¢ € @\ {¢ : g7 (@) = g2(¢) = 0}, and applying Jensen’s
inequality, we have

/qi‘((.b)“qQ(é)l'“ do

IA Il
= Iy
& ]
L&)
=S TN
L]
[
ol
N
[
R

because

al@)_ [, -
92 <q2(¢))-/QI(¢)d¢—l-

So [qi(#)*q2(9)' ™ d¢ < 1 < oo, and the normalizing constant
ko can be found. Note that the proof proceeds analogously in
the discrete case, except that the integrals are replaced by the
appropriate sums.

Proof of Theorem 4

Let 7 = (¢,7) and denote 7 = G(6) so that § =
Consider the integral of §°/(6) in (16) over ©,

18] _ . @A)\ "
/@q (6)do = Q/ 71(6) <——(u(9))> 4o

//ql(G (6.7 (qij)) (7| dvy do

by a change of variable within the integral, where J = |d8/dr|.
Let ¢*(¢,+) denote the joint density of (é,~) induced by ¢1(6)
and G, and observe that

G (1),

il

CRNINE

) d~, substitution into the integral

¢ (@,7) = qlG
Ja (o

e (@) "
kaA /Fq (¢.7) <_¢JI(¢)> dvy do
Q2((D) - )
[b 7 () ( (@)> do

ko / a1 (6)%q2(0) '~ do
L]
= 1

Noting that ¢j (¢) =
above yields

/ @9y do =
o

i
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by Theorem 1. Under the conditions of the proposition, 7% (8) is
a density on ©, and it induces §*(¢) under the model transform
o= M(6).

[Received April 1999. Revised February 2000.]
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