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Inference from a Deterministic Population Dynamics
Model for Bowhead Whales

Adrian E. RAFTERY, Geof H. GIVENS, and Judith E. ZEH*

We consider the problem of inference about a quantity of interest given different sources of information linked by a deterministic
population dynamics model. Our approach consists of translating all the available information into a joint premodel distribution on
all the model inputs and outputs and then restricting this to the submanifold defined by the model to obtain the joint postmodel
distribution. Marginalizing this yields inference, conditional on the model, about quantities of interest, which can be functions of
model inputs, model outputs, or both. Samples from the postmodel distribution are obtained by importance sampling and Rubin’s
SIR algorithm. The framework includes as a special case the situation where the pre-model information about the outputs consists
of measurements with error; this reduces to standard Bayesian inference. The results are in the form of a sample from the postmodel
distribution and so can be examined using the full range of exploratory data analysis techniques. Methods for comparing competing
population dynamics models are developed, based on a generalization of the Bayes factor idea. A key quantity used by the International
Whaling Commission (IWC) in making decisions about bowhead whales, Balaena mysticetus, is the replacement yield, RY. Information
about the species is of three main types: recent census information, historical catch records, and evidence about birth and death rates.
These are combined using a special case of the Leslie matrix population dynamics model. Our method yields full inference about
RY and also sheds light on other, sometimes controversial, questions of scientific interest. These ideas are also applicable to many

simulation models in other areas of science and policy making. Software to implement these methods is available from StatLib.

KEY WORDS: Bayes factor; Bayesian synthesis method; Importance sampling; Leslie matrix; SIR algorithm.

1. INTRODUCTION

The bowhead whale, Balaena mysticetus, is a large baleen
whale. The Western Arctic (Bering-Chukchi-Beaufort Seas)
stock of bowheads is the largest remaining one. It has been
the object of subsistence hunting on a small scale by the
Eskimo peoples of the area for many centuries. The stock
was discovered by Yankee whalers in 1848, and the ensuing
massive commercial hunt greatly reduced its numbers. Over
time, the increased difficulty and cost of whaling due to de-
pletion of the stock, the replacement of whale oil by kerosene,
and the decreased use of baleen corset stays discouraged
commercial whaling and led to its de facto end in 1915.
Since 1946, the stock has been legally protected from com-
mercial whaling by the International Convention for the
Regulation of Whaling.

The Convention does, however, allow continued limited
aboriginal subsistence whaling, with a quota to be set by the
International Whaling Commission (IWC) at a level low
enough to allow the stock to recover from the effects of com-
mercial whaling. A key quantity for setting the quota in a
given year is the replacement yield (RY ) in that year, namely,
the greatest number of whales that could be taken without
the population decreasing. This is unknown and is subject
to considerable uncertainty. Because it is important that the
quota not exceed this unknown value, a conservative value
or “lower bound” is sought. The IWC Scientific Committee
(SC) has interpreted this to mean the lower 5% point of a
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posterior distribution of RY given available information
(IWC 1992); this should reflect all important sources of un-
certainty.

There are three main types of information relevant to RY:
recent surveys, historical whaling records, and biological in-
formation. Recent surveys yield current and recent estimates
of abundance and rates of increase, historical whaling records
yield a time series of whaling kills, and the biological infor-
mation provides knowledge about birth and death rates. We
now describe these three sources of information.

The recent surveys started in 1978. Since then, there has
been an effort to count the whales every spring as they migrate
from the Bering Sea to the Beaufort Sea. At Point Barrow
they pass close to shore, and this is where the counting takes
place. From 1978 to 1984 there were only visual counts by
ice-based observers. From 1985 onwards these counts were
supplemented by data on times and locations of bowhead
vocalizations, recorded using hydrophones, throughout the
migration period. The data from these censusing efforts have
yielded a posterior distribution for the 1988 population size
(Raftery and Zeh 1993) and an estimate of the rate of in-
crease in the bowhead population from 1978 to 1988, which
we denote by ROI (Zeh, George, Raftery, and Carroll 1991).
The historic kill record has been validated by the IWC (IWC,
1992).

The biological information about birth and death rates
comes from photoidentification (Miller et al. 1992); ex-
amination of dead animals (George, Philo, Suydam, Tarpley,
and Albert 1992); photogrammetric data on the proportions
of mature animals and calves in the population (Withrow
and Angliss, 1992); photogrammetric data on growth rates
(Koski, Davis, Miller, and Withrow 1992); estimates of age

. derived from variations in §'3C carbon isotope ratios in ba-

leen (Schell, Saupe, and Haubenstock 1989; Withrow, Burke,
Jones, and Brooks 1992), which provide information about
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age at sexual maturity; and knowledge of other whale species
(Best 1991). Most of this biological information is very im-
precise.

It is common practice to combine all this information
using a population dynamics model (PDM), which itself em-
bodies additional biological information. The PDM’s used
by the IWC are deterministic accounting models in which
births are added and natural deaths and kills are subtracted
(Sec. 3). They require as inputs age-specific natural mortality
and fertility rates that may be density-dependent, the kill
record, and the initial population size, and they output the
population for each year, broken down by age and sex.

Assigning values to a PDM’s many inputs is hard, and
taking account of the uncertainty associated with them is
even harder. A typical approach is informal, as follows. A
first guess at the input parameters is made and the model is
run. If the corresponding outputs seem implausible, then the
inputs are adjusted and the model rerun; this is repeated
until a satisfactory set of inputs has been found. Finally, a
sensitivity analysis is performed in which the inputs are var-
ied; this involves several runs of the model with different
combinations of “central,” “high,” and “low” values of the
inputs. If the outputs of primary interest are relatively in-
sensitive to the inputs, then all is well. This is often not the
case, however, and sometimes the range of values of the
outputs of interest is used informally as a rough confidence
interval.

There is little justification for such an interpretation. At
the 1991 IWC SC meeting, the bowhead whale subcommittee
proposed a lower bound for RY based on this approach, but
this was rejected by the full SC on the grounds that it was
not statistically valid. As a temporary measure, the SC based
its recommendations on an estimate of the lower bound for
RY that ignored the biological information and took account
only of the current abundance information. Recognizing this
to be unsatisfactory, the SC recommended the development
of new methods that would enable statistically valid infer-
ences about RY to be based on all the available information.
This article describes our effort to carry out this recommen-
dation.

Our approach starts by expressing available information
about both model inputs and outputs as a joint probability
distribution which we call the premodel distribution. The
model restricts the premodel distribution to a submanifold;
the restricted distribution is called the postmodel distribution.
Inference about any quantity of interest is made by margin-
alizing the postmodel distribution, from which a sample is
drawn by importance sampling (Sec. 2). This yields inference
about the main quantity of interest, RY, as well as other
quantities of biological interest, in the process shedding some
light on recent controversies (Sec. 5). The approach provides
informal ways of checking that the model is not in conflict
with the other available information. Competing models may
also be compared using Generalized Bayes Factors (Sec. 2.4).

The approach may be viewed as a generalization of stan-
dard Bayesian inference to deal with deterministic simulation
models. It includes standard Bayesian inference as a special
case; see Section 2.3. Givens, Raftery, and Zeh (1993) dis-
cussed the advantages of the present approach relative to the
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ways of drawing conclusions from deterministic models that
have been standard in past work of the IWC SC. Software
to implement the methods is available from StatLib; see Sec-
tion 6.4.

Special attention is paid to the specification of the pre-
model distribution. At its 1991 meeting, the IWC SC carried
out a comprehensive assessment of the status of bowhead
whales. The resulting report (IWC 1992) describes current
scientific beliefs about model inputs and outputs in consid-
erable detail, together with the basis for them. The report is
remarkable in documenting how reasonable agreed prior
distributions can emerge from often conflicting expert opin-
ions; see Section 4.

This article is just one example of the general problem of
inference from simulation models, which statisticians only
recently have begun to consider seriously. Simulation models
are different in concept from standard statistical models such
as linear regression: they attempt to capture the underlying
mechanisms explicitly, are often deterministic, and tend to
involve large numbers of inputs and outputs and complex
relationships between them. Thus properly taking account
of parameter and model uncertainty is even more crucial
than with standard statistical models, but it is rarely done.

Speed (1983) was the first to point out the importance of
this area for statisticians, spurred by his observation that
scientists at CSIRO (Australia’s national research organi-
zation) were using simulation models more often, abandon-
ing statistical models in the process. In addition to PDM’s,
he gave as examples a sheep growth and production simu-
lation model, a model for predicting the nitrogen fertilizer
requirement of wheat crops, a water-balance model, and a
model describing the effects of light and vapor on apple
leaves. There Aas been much work on model validation (see,
for example, Caswell 1976 for applications in ecology,
Hughes 1984 for military applications, and Guttorp and
Walden 1987 for applications in geophysics).

Far less attention has been paid to formally taking account
of uncertainty about inputs, although Hodges (1987, 1991)
and Bankes (1991) have argued strongly that it is vital to do
so, based on extensive experience with simulation models at
the RAND Corporation. Bankes (1991) has emphasized and
deplored the tendency of such models to be large and to
continue growing throughout their history; our suggestion
at the end of Section 5 indicates how the present approach
may be used to simplify a complex model.

2. INFERENCE FROM DETERMINISTIC
SIMULATION MODELS

2.1 The Premodel and Postmodel Distributions

We denote by 6 the set of model inputs and by ¢ the set
of model outputs about which we have information inde-
pendent of the model. We denote by ¢ the set of quantities
of interest, which may be model inputs, model outputs, or
functions of both and may or may not be included in ¢ or
0. We denote by p(6, ¢) the joint premodel distribution of 0
and ¢, which summarizes all available information about 6
and ¢ except that embodied in the model itself. In the bow-
head whale application, model inputs include birth and death
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rates, model outputs include current population size, and a
main quantity of interest is the replacement yield; see Sec-
tion 3.

The model defines a mapping from the set of possible
values of 6 to the set of possible values of ¢; we denote this
mapping by § = ®(0). Thus given the model, the joint dis-
tribution of 6 and ¢ is simply the restriction of the premodel
distribution to the submanifold { (8, ¢): ¢ = ®(8) }, namely

(0, ¢) oc p(6, B(0)) if ¢ = ¥(6),
oc 0 (1)

We refer to #(0, ¢) as the postmodel distribution. The mar-
ginal postmodel distribution of 4 is then

wU(0) o p(6, B(0)).

otherwise.

(2)
For marginal and conditional distributions, we use super-
scripts in square brackets to show to what the distribution
applies. Thus, for example, p!® (- ) denotes the marginal pre-
model distribution of the inputs, 7{¢)( - ) denotes the marginal
postmodel distribution of the outputs, and p'¢!?(- | -) de-
notes the conditional premodel distribution of the outputs
given the inputs.
Inference about ¢ is based on its postmodel distribution,
Proosl¢ € B] = f 1%(0) db, (3)
H(B)
where H(B) = {6 : ¥(0, ®(0)) € B} for any set B and
6 — ¥(6, ®(8)) denotes the mapping from 6 to ¢ induced
by the model.

2.2 AnImportance Sampling Approach

We evaluate the integral in Equation (3) by importance
sampling. In general, importance sampling provides a way
of evaluating the ratio of integrals

I=J;h(u)du/fh(u)du,

where £ is a function whose integral over its domain is finite
and nonzero and I' is a set. We choose a random variable
with the same domain as 4 and probability density function
g such that g(u)/h(u) exists for all u in the domain. We
simulate k points u,, ..., u from g and form importance
sampling weights r; oc h(u;)/g(u;). We then estimate I by

(4)

k
f=2r,- Zr,-.

EuEeET i=1

()

Under quite general regularity conditions, 1 is a consistent
estimator of I in the sense that [ — I in probability as
k— oo.

We apply this to Equation (3) by replacing u by 6, replacing
h by 7%, and replacing T' by H(B). We use the premodel
marginal distribution of § as the importance sampling func-
tion, so that we replace g(u) by p'®(8); this often will be
easy to simulate from, especially if most of the components
of § are premodel independent. Thus the importance sam-
pling weights are r, = pl*!%1($(6;)|6;). These will generally
be easy to calculate; for example, if § and ¢ are premodel
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independent, then r; = pl®}(®(6;)), which is just the premodel
density of ¢ evaluated at ®(6;). Then Pry«[¢ € B] can be
evaluated using Equation (5).

The discrete distribution with values { §; } and associated
probabilities proportional to 7; is an estimate of the postmodel
marginal distribution of 8, #{%1(#). An approximate sample
from =!%(#) may be obtained by drawing a second-stage
sample of size / from this discrete distribution. Proposed by
Rubin (1987, 1988), this is known as the SIR algorithm.
The approximation becomes exact as k// = 0.

The premodel distribution of 6 is usually much more dif-
fuse than its postmodel distribution, and so p!?(#) is not a
good importance sampling function. Because of this, many
draws from p!®!(6) are needed to yield a good estimate, and
each value drawn requires a separate run of the model. For-
tunately, our PDM runs quickly, so this is not a problem.
We have had good results with k = 200,000 first-stage samples
and / = 5,000 second-stage samples.

2.3 Use as an Estimation Tool
There are several points to note about this approach:

1. It enables one to take into account information about
model outputs as well as model inputs, and the information
about model outputs need not be independent of the infor-
mation about model inputs.

2. It includes as a special case the situation where the
premodel information about ¢ consists of observations of ¢
with measurement error, denoted by D. Then p(0, ¢)
oc pP1N(D|$)p'?(0), where p'®(6) denotes the premodel
evidence about 6 and 7'?(8) oc p!?1*Y(D|®(6))p'?(8). This
falls within the framework of standard Bayesian inference,
in that p'®(0) may be regarded as the prior distribution of
6, D as the data, p!P'¥)(D|®(0)) as the likelihood of 6§, and
w1%1(0) as the posterior distribution of 6. OQur framework is
more general, in that prior information about the model
outputs or predictions, ¢, can also be included by replacing
P 8) by p(6, ¢), and the prior information about the out-
puts ¢ is not constrained to be independent of the infor-
mation about the inputs 6.

As an example, consider the highly simplified (and un-
realistic) PDM where the population increases at a known
rate r per year, so that P, = (1 + r)'P,. The only input is 6
= P,. Suppose that evidence exists only about the single
output ¢ = P, and that the quantity of interest is y = P,.
Then the model specifies that ¢ = af, where a = (1 + r).
The premodel information consists of biological information
about § = P, represented by the distribution p'®(6), and a
survey that led to an estimate D of ¢ = P, such that D = ¢
+ ¢, where ¢ ~ N(0, ¢2). The premodel information about
6 is independent of that about ¢. The premodel distribution
is then p(8, ¢) oc pl(O)N(D; ¢, ¢2), and the postmodel
distribution is the restriction of this to the subspace { (6, ¢)
: ¢ = ab}, namely (0, ¢) oc p'Y(O)N(D; ab, o?).

If this were treated as a standard Bayesian inference prob-
lem with parameter 6, data D, and likelihood given by D
~ N(a#, ¢?), then the prior for § would be p!®(6) and the
posterior density of § would be proportional to pl®’(§) N(D;
af, ¢%). Thus the posterior distribution is equal to the post-
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model distribution. But the premodel distribution is not the
same as the prior distribution; rather, it is a version of the
prior times the likelihood that is unrestricted by the model
structure.

3. Changing the premodel distribution: Suppose that one
has carried out this procedure for one premodel distribution,
p1(0, ¢), and wants results for another, p,(6, ¢). One may,
of course, rerun the procedure from scratch, replacing p,; by
D>. As suggested by Smith and Gelfand (1992), one may
also resample from the final sample of size / obtained the
first time with p;, using weights p,(6, ®(0))/p,(0, &(0)).
This is more convenient, because it does not require any
new runs of the model. It will work well if p, is less diffuse
than p, and is “covered” by it. This can be used to investigate
sensitivity to the premodel distribution, because if the whole
procedure is carried out initially with a more diffuse premodel
distribution, then results for any more concentrated pre-
model distribution within its range can be calculated easily
without requiring any more model runs. Software to do this
for the bowhead whale PDM has been developed, as de-
scribed by Givens et al. (1994). The software is available
from StatLib; see Section 6.4.

2.4 Model Comparison Using Generalized
Bayes Factors

Suppose that we have two competing PDM’s. We will
generalize the standard Bayes factor to compare such models.
The standard Bayes factor (Jeffreys 1961) for comparing two
models M, and M, given data D is p(D|M,)/p(D|M,), the
ratio of the (predictive) probabilities of the data under the
two models. Thus the Bayes factor compares how well the
two models predict the data.

With PDM’s, we compare competing models on the basis
of how well they predict the outputs. If we knew the outputs
exactly (i.e., if we knew that ¢ = ¢*, say), then the corre-
sponding ratio would be g, (¢* )/ q.(¢* ), where g;(¢* ) is the
predictive probability of ¢* under the PDM M; (j = 1, 2).
This is

g, (¢%) = L( ., p(0) b, (6)

j
where C;(¢*) = {0 : ®;(0) = ¢* }; the subscript j denotes
the PDM M, forj = 1, 2.

But we do not usually know ¢ exactly; rather, we have
uncertain information about its value, represented by its
premodel distribution. Let E denote the marginal premodel
information about ¢ represented by the distribution
p‘}"’](d)). Then g;(¢*) is replaced by

pi(E) = f g, ()P (¢) d¢

- [P onpifo) a, (7)
by Equation (6) and the fact that pi'(8) = [ p(6, ¢) d¢. For
this comparison to be valid, it must be based on the same
outputs for the two PDM'’s, but not necessarily on the same
inputs. The marginal premodel distribution of the outputs
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should also be the same for the two models. It can be shown
that py(E) = fqp(ﬂ, ¢) dd do, where C; = {(6, ¢) : ®;(0)
= ¢}, so that p;(E) is just the total joint premodel probability
of inputs and outputs given the model. This implies that we
compare models on the basis of how precisely we can state
their inputs and how well they predict the outputs.

We call the ratio G, = p,(E)/p.(E) the Generalized Bayes
Factor for the PDM M, against the PDM M,. By analogy
with widely used rules of thumb for standard Bayes factors
(Jeffreys, 1961, Appendix B), we may view the comparison
as providing evidence for M, against M, not worth more
than a bare mention if G, is between 1 and \/E, positive
evidence if G, is between V10 and 10, strong evidence if
G, is between 10 and 100, and very strong evidence if G,
exceeds 100.

A simple Monte Carlo estimate of the integral in Equation
(7)1s

(8)

-

k
Bi(E) =7 2 pi(2,(6),
i=1

where the 6, form a sample from the marginal premodel
distribution of # under the PDM M;. Other estimates based
on more general importance sampling numerical integration
algorithms for the integral in Equation (7) may be obtained
by analogy with the estimates of (ordinary) Bayes factors
from posterior simulation of Newton and Raftery (1991;
1994, sec. 7). Some of these are given explicitly by Raftery
et al. (1992).

Raftery et al. (1992) described how to compute Gener-
alized Bayes Factors from Equation (8) for comparing M,
the Leslie matrix PDM considered in this article, with M,
a general-purpose PDM called Hitter-Fitter often used by
the IWC (de la Mare 1989). The Generalized Bayes Factor
is G, = 1.5, indicating that the data favor the Leslie matrix
model over the Hitter-Fitter model, but only to a very small
extent.

Givens, Zeh, and Raftery (1993) used this the approach
to compare M, with a third model M3, in which the original
Western Arctic bowhead whale population in 1848 consisted
of two subpopulations with different summer feeding
grounds. Commercial whaling would have annihilated one
subpopulation by about 1870. Their result was G;; = 1.7,
providing some (but very weak) support for the two sub-
population hypothesis.

Generalized Bayes Factors can be used to take account of
uncertainty about model structure, as distinct from the un-
certainty about model inputs with which we are mainly con-
cerned in this article; see Section 2.5.

2.5 Model Uncertainty

In this article we focus on accounting for uncertainty about
the inputs of a PDM conditionally on its structure. But un-
certainty about its structure may also be important. At least
three kinds of uncertainty about model structure may be
important: uncertainty about which of several competing
PDM’s is most appropriate, uncertainty about a particular
assumption of the model, and uncertainty about whether
there might be some unsuspected but serious error in the
model or the calculations.
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If there are two competing PDM’s, we have shown in Sec-
tion 2.4 how they may be compared using Generalized Bayes
Factors. If this comparison is not decisive, a combined in-
ference can be based on a weighted average of the postmodel
distributions from the two models, with the ratio of the
weights equal to the Generalized Bayes Factor. This accounts
for uncertainty about the structure of the PDM and carries
over to the case where there are more than two models. It is
analogous to the standard Bayesian way of accounting for
model uncertainty in standard statistical models (Kass and
Raftery 1995); this often has better out-of-sample predictive
ability than inference based on a single selected model
(Madigan and Raftery, 1994; Raftery et al. 1993).

An important special case of this arises when there is un-
certainty, or disagreement, about a particular model as-
sumption and when the results are sensitive to that assump-
tion. Then a weighted average of the resulting postmodel
distributions can lead to a generally acceptable combined
postmodel distribution. (For an example of this in the IWC
context, see Raftery and Schweder 1993.)

A major, but little discussed, source of uncertainty is the
possibility that the PDM itself, or the calculations based on
it, may be in serious error for currently unsuspected reasons.
This may be of particular concern if the PDM is relatively
new or untested; Wade (1994) gave several striking recent
examples from other fields of science. Policy makers may
wish to take account of this possibility when making deci-
sions; a simple way of doing so is based on the following
thought experiment. Suppose we learned that the model was
seriously flawed, but that there was no time to build a new
model before a decision had to be made; then it might well
be reasonable to revert to the premodel distribution and base
decisions on that. If such errors occur with probability e,
then this suggests using the “hyper-postmodel distribution,”
(0, ¢) = (1 — e)m(0, ¢) + ep(0, ¢). Samples from
m*(0, ¢) are available from our importance sampling method
with little additional effort.

A similar argument can be applied to standard statistical
models, yielding a “hyper-posterior” distribution that is a
mixture of the posterior and prior distributions. Schnute and
Hilborn (1993) have suggested a different, non-Bayesian way
of accounting for this source of uncertainty.

3. THE POPULATION DYNAMICS MODEL
3.1 Definition of the Model

The PDM that we consider was developed for bowhead
whales by Breiwick, Eberhardt, and Braham (1984) and is
a special case of the well-known one-sex age-structured Leslie
matrix population projection model (Leslie 1945, 1948;
Lewis 1942). A fairly general form of this model is as follows.
Let n,, be the number of females aged x next birthday on
January 1 of calendar year ¢, where ¢ = 0 is the initial year,
here 1848. Then the model is specified by the equations

2 fu(My = €x)

x=1

(9)

i1 =

and
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Aeripet = Sxa(Mg — Cxr) (x=1,2,3,..)), (10)

where f, is the average number of female calves that survive
to age 1 born in year ¢ to a female aged x, s,, is the natural
survival rate of females aged x in year ¢, and ¢, is the number
of females aged x killed by hunting in year ¢.

This can be written in matrix form as

Nt = A(N, - C), (11)

where N, = (ny, ny, .. -)T, C = (¢, ¢, - -)T, and A,
= (A x,y=1,2,...)is a doubly infinite square matrix
defined by

Ay =fp ifx=1,
=5, fx=y+1,
=0 otherwise. (12)

As it stands, the model has an infinite number of param-
eters, and Breiwick, et al. (1984) proposed the following re-
strictions for the bowhead whale case.

Mortality. 1t is assumed that an immature survival rate,
So, prevails from age 1 to age a and that a mature (adult)
survival rate applies from age a + 1 onward. To approximate
senescence, it is assumed that all individuals aged w at time
t die before time ¢ + 1. Mortality is assumed to be constant
over time and in particular to involve no density dependence,
so that s,, does not depend on ¢. Thus we have

Sy = So x=1,...,a,
=g x=a+1,...,w—1,
=0 = w. (13)

Calf mortality is accounted for in. the specification of fertility.

Fertility. Fertility is assumed to be constant with respect
to age between the age at sexual maturity, m, and age
w — 1. It is assumed to be density dependent with a functional
form corresponding to a modified logistic growth curve. First
parturition is assumed to occur one year after the age at
sexual maturity. This yields

Sa=0 x=1,...,m,and w,
=ﬁ=f0+(fmax-ﬁ))[1 —(Pt/PO)z]
x=m+1,...,w—1, (14)

where P, is the female population size at the beginning of
year /; fax 1s the maximum fertility, attained when the stock
is near extinction; and z is the density dependence parameter.
Assuming that the population was in equilibrium in 1848
(¢t = 0), before the start of commercial whaling, yields a
value for f, by solving the matrix equation AjN, = N,
namely

Jo=(1—5)/[(s0/5)°(s™ = s*"H]. (15)

One estimate of f; is shown in Figure 1 with f; = .0057 (cor-
responding to s = 98, 5o = .94, a = 6, m = 20, and
w = 60), fmax = .1, and z = 5. Note that f,, is the product of
the number of female calves per mature female with the calf
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Figure 1. A Typical Estimate of the Fertility Rate f, as a Function of
Current Population Divided by Initial Population, P,/P,.

survival rate. We have no information that would enable us
to separate fertility from calf survival. By including calving
rate and calf survival in a single term, we acknowledge that
density dependence may occur through changes in repro-
ductive rate, changes in first-year survival, or both.

Hunting mortality. The tabulation of hunting kills by
year adopted by the IWC is given in table 1 of annex E (IWC
1992). It is shown in Figure 2; note the very heavy mortality
in the first five years of commercial whaling.

The lengths of whales killed in the past three decades sug-
gest that the recent subsistence harvest has selected predom-
inately immature whales. Historically, the commercial catch
was probably biased toward larger, mature animals. The
model assumes that from 1848 through 1914, 80% of the
annual harvest was from sexually mature whales and 20%
from immature whales. From 1915 to the present, the model
reverses these proportions. It is assumed that half of those
caught in each year and age class were females.

With these assumptions, the original model of Breiwick
et al. (1984) first divides the catch into two shares: one for
immature whales and one for mature whales. It then dis-
tributes each share among its corresponding age classes in
proportion to the relative abundance of each class at the
beginning of the year. With this distribution of the annual
catch, it is possible to obtain negative age class counts without
population extinction. We have modified the original model
so that the number removed from each age class is never
more than the current class size, and what remains of the
mature and immature catch shares is redistributed propor-
tionally as before but among nonempty age classes.

The model requires values of the eight input parameters,
S0, S, @, Wy M, fmax»> Z, and Py, as well as hunting mortality
by year. Given these, it outputs a full age distribution of the
female population for each year. It is assumed that the sex
ratio is 1:1, so doubling this gives the total population.

3.2 Yield Quantities and their Relationships
to the Model

Several quantities used by the IWC for making policy de-
cisions are related to the inputs and outputs of this PDM
(Allen 1976; Butterworth and Best 1990; Cooke 1987). One
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is maximum sustainable yield (MSY ). Once an unexploited
stock of size P, begins to be exploited, it can sustain indef-
initely any level of catch less than the MSY. The MSY level
(MSLY) is the lowest population level at which MSY is at-
tained, expressed as a proportion of P,. Under the assump-
tion of density dependence in reproductive rate and/or calf
survival, the population increases at a higher rate when it
has been reduced below P, than when it is at or near its
carrying capacity and thus prevented by environmental lim-
itations from increasing. Thus MSYL is less than [; it has
often been assumed to be .6 by the SC.

For a protected species like the bowhead, replacement yield
(RY) is a key management concept. RY is the catch from
the recruited stock that, if taken, would leave the recruited
population at the same level at the beginning of the next
season (IWC 1988). For bowheads, we assume that the re-
cruited stock consists of all whales age at least 1 year. The
maximum sustainable yield rate (MSYR) is defined as RY
at MSYL, expressed as a proportion of the population at
MSYL. We define MSYL and MSYR in terms of the total
population age 1 or older, as proposed by Butterworth and
Punt (1992).

Relationships between the model parameters and MSYL
and MSYR are induced by the characteristic equation of the
Leslie matrix and by the density-dependence equation in
(14). The characteristic equation of the Leslie matrix, A,, is

>\m+l

— SA" = s8s™f[1 — (s/N)""11 =0, (16)
where A is the eigenvalue or “population multiplier” so that
N1 = AN, by (11) (Breiwick et al. 1984).

If time ¢ is such that P,/P, = MSYL and if s¢, s, a, m,
w, and MSYR are known, then we can find the fertility rate
at MSYL, fusyL, by setting A = 1 + MSYR and solving for
J:in Equation (16). Similarly, f;, the fertility rate of a stable
unexploited stock, can be found by setting A = 1 in Equation
(16). The only remaining unknown quantities in Equation
(14) are f., and z, and, given fu.., We can solve Equation
(14) to find the corresponding value of z. Note that by def-

inition,fmax = max {jbwaSYL } .

1000 1500 2000 2500

total annual kills

500

0

T T T T
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Figure 2. Hunting Mortality, 1848-1990.
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4. THE PREMODEL DISTRIBUTION
4.1 Sources of Information About Model Inputs

The model inputs are all biological parameters about
which there is considerable uncertainty. This is because births
and natural deaths are rarely observed and ages are very
hard to determine, so birth and death rates must be inferred
from indirect evidence. There has been considerable research,
most of which is summarized in a book titled The Bowhead
Whale (Burns, Montague, and Cowles 1993).

In May 1991 a special subcommittee of the IWC SC, in-
cluding a high proportion of all those who have done research
on the bowhead whale, met for a week to carry out a com-
prehensive assessment of the species. This Bowhead Assess-
ment Meeting (BAM) reached agreement on reasonable
ranges for many biological parameters. Some extracts from
its report (Annex E of IWC 1992) are included here to give
an idea of the reasoning leading to our premodel distribu-
tions.

Some information about the input parameters comes from
known links between them, MSYL, and MSYR (see Sec.
3.2). A set of input parameters is self-consistent if its elements
do not contradict these known relationships. Without en-
forcing self-consistency, it would be possible, for example,
to specify priors for survival and fertility rates that would
force MSYL values that contradict the desired MSYL prior.

We write the premodel distribution of the inputs as

P(8) o p(00)P(fmax|00)D(MSYL| 0o, frnax),  (17)

where 0, = (s, S, a, m, w, Py, MSYR), p(fuaxl0o)
oC pl(fmaxl 00) 1 { fmax=max(fo, fmMsyL) } * and p(MSYLI 603 fmax)
oc p'(MSYL|6p, fimax) 1 { 4<msyL=.9} - The premodel evidence
about the different components of 6, comes from different
sources, so we assume these to be premodel independent,
except for s and s.

In (17), p(fmax|00) and p(MSYL |6, fimax) €Xpress the ev-
idence about f;., and MSYL while also enforcing self-
consistency through the dependencies introduced. Equation
(17) thus ensures that each joint sample of the input param-
eters is self-consistent and reasonable in the light of all sources
of evidence. The input parameter z does not appear in (17),
because z is treated as a fixed function of MSYL given (6,
Jfmax), and the conditional evidence about z or MSYL may
be expressed in either form (see Sec. 3.2). Because we have
evidence about MSYL, we prefer this form.

Figure 3 shows the marginal premodel distributions of the
inputs before and after enforcing self-consistency.

4.2 Adult and Juvenile Survival Rates, s and s,

The BAM report says:

Adult mortality: Eberhardt and Breiwick (1992) used values
of .01 and .02. No direct data on mortality rates are available for
bowheads, but . . . similar low values had been estimated for the
killer whale (Olesiuk et al. 1990). The subcommittee noted that
although estimates for other baleen whales are higher than this,
those for right whales are similar to those used in Eberhardt and
Breiwick (1992). Consequently, values of .01 and .02 were chosen
for the HITTER /FITTER runs. Ohsumi noted that an alternative
approach to specifying a mortality rate for the runs would be to
subtract the estimate of increase accounting for hunting mortality
(3.4% from Zeh et al. 1991) from the estimate of gross annual
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reproductive rate (5.2% from Withrow and Angliss 1992). This
also supports rates near .02.

Juvenile mortality: No direct evidence is available. Eberhardt
and Breiwick (1992) used a range of .04 to .08 under the as-
sumption that juvenile mortality would be higher than adult
mortality; the subcommittee adopted that range for use in this
assessment.

The survival rate is equal to 1 minus the mortality rate.
We thus adopted distributions with most, but not all, of their
probability in the ranges .92-.96 for s, and .98-.99 for s,
such that s, < s. For the juvenile survival rate we adopted
a N(.94, .03?) distribution truncated at zero and 1. For the
adult survival rate conditional on the juvenile rate, we
adopted a N(.98, .032) distribution truncated at the juvenile
rate and at 1.

4.3 Age at Sexual Maturity, m

This has been one of the most difficult and controversial

parameters. The BAM report says:
Eberhardt and Breiwick (1992) used values of 13, 15, and 17
years. Aerial photogrammetric measurements indicate that the
average length at maturity is approximately 13 meters, and evi-
dence from the landed catch suggests a length at sexual maturity
of about 14 meters (Withrow and Angliss 1992). Earlier papers
(e.g., Breiwick and Braham 1990) assumed that whales reach this
length at ages of 9 years or less. However, Eberhardt and Breiwick
(1992) increased this age to 13-17 years, citing recent evidence
from carbon isotope aging of baleen plates (Schell et al. 1989)
that bowheads grow very slowly, and reach 13 meters at ages
between 18 and 20 years. The subcommittee had before it more
recent results for baleen aging and photogrammetry (Withrow et
al. 1991; Koski et al. 1992), suggesting that bowheads grow very
slowly, and that an upper limit exceeding 17 years could also be
considered.

Koski et al. (1992) examined 69 pairs of length measure-
ments of identified whales photographed in different years.
Their results suggest that bowheads are at least 20 years old
at sexual maturity. They had few measurements of whales
less than 9.5 meters long, but their analyses suggest that
bowheads require roughly 19 to 24 years to grow from 9.5
to 13 m, the approximate length at sexual maturity.

If young bowheads grow rapidly, like most mammals, they
may be only 2 or 3 years old at 9.5 m. But both the photo-
grammetric and the carbon isotope data suggest that bow-
heads may grow slowly for several years after weaning. The
data of Schell et al. (1989) suggest that some 9.5-meter bow-
heads may be around 8 years old. Taken together with the
photogrammetric results, this suggests that age at first par-
turition for those whales could exceed 30.

But discussions at the BAM suggested that such old ages
at first parturition would be unusual and that ages as low as
10 years were more consistent with data on other baleen
whales. To accommodate all this evidence, we used a discrete
uniform premodel distribution on the integers 10, 11, ...,
30 for m.

4.4 MSYR

The beliefs of the IWC SC concerning MSYR are sum-
marized in the values used in simulation trials of the Revised
Management Procedure (IWC 1992). Most of the trials used
.01, .025, .04, and .07 relative to the mature component of
the population. The irregular spacing of these values suggest
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that values in the range .01-.04 were considered more likely
than higher values. A “random parameters” trial used MSYR
values down to .001, and some members of the SC have
argued that MSYR may exceed .07.

To give most weight to the 1%-4% range but allow values
very near zero or above 7%, we chose a gamma premodel
distribution for MSYR relative to the mature population. It
was converted to MSYR relative to the 1" population, as
described by Givens et al. (1993).

4.5 Maximum Fertility, frax

We express the evidence about frax via p(fmax|6o)
o€ D' (frnax100) 1 (fopmmaxfo fusyn} - WE consider p'(fmax|0o)

first. We derive this prior for fn. from data on the minimum
possible average calving interval, ip;,, and the annual calf
survival rate, sg , using the relationship

fmax = Sg /(2lmm)

The BAM discussion synthesized the results of three studies
(George et al. 1992; Miller et al. 1992; Rugh, Miller, Withrow
and Koski 1992) that used photographic reidentification
methods and observed the number of pregnant females taken
in the Eskimo hunt (Raftery and Davis 1992). The conclu-
sion was that bowheads may calve at intervals of four to
seven years, and that under optimal conditions the calving
interval may be as short as three years. The data pointed to

(18)
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four years as the most plausible integer value of the average
calving interval. Crude birth rate estimates from photogram-
metry data (Withrow and Angliss 1992) also suggest a four-
year calving interval. We adopted a gamma (3.25, 1.5) dis-
tribution for i, — 2, so that the premodel mean of i, is
2+ 3.25/1.5 =4.17.

The calf mortality rate of killer whales is estimated to be
in the range 37-50% (Olesiuk, Biggs, and Ellis, 1990). We
know of no direct evidence for bowheads. Under the as-
sumption that even under optimal conditions, calves must
have mortality at least as high as 1 year olds, we specified
the distribution of (s& |So) to be uniform between .75 and
So. The resulting density for f,.x yields the marginal distri-
bution shown in Figure 3 by the dashed line.

Because fmax = f*( 00) = max {ﬁ)a fMSYL } » WE drew fmax
from p’(fmax | 0o) truncated below at /' * and then rejected the
multivariate draw with probability ¢+, where

f*
G0 = [ P/ 100) e (19)
This rejection step corrects the sampling probability so that
Jfrmax is drawn with probability p(frax | o), which enforces the
link between f,., and 6, required for self-consistency while
summarizing the available evidence. Figure 3 shows
P (fmax | 00) with the solid line.

4.6 MSYL and the Density Dependence
Parameter, z

Given MSYL, f..«, and 6,, we can solve for z as noted in
Section 3.2. Thus we focus here on sampling MSYL. The
BAM adopted .6 and .7 for MSYL. We prefer to use broader
constraints on MSYL, because very little is known about
this parameter.

Fowler (1987) has estimated a linear relationship between
MSYL and the log maximum rate of population increase
per generation, using data on many animals including whales,
elephants, mice, and bacteria. The generational rate of in-
crease can be calculated from the stable age distribution
(Breiwick et al. 1984 ), the generation length, and the max-
imum net per capita rate of increase. These quantities in
turn can be calculated from sy, s, @, m, w, and f,.,. Because
Fowler’s relationship is a regression equation with a random
error term, we derived a conditional density for MSYL from
the regression model, convolved it with the estimated Gauss-
ian error distribution to obtain p’'(MSYL |8y, fmax), and re-
stricted the resulting distribution to .4 < MSYL < .9. The
conditional density p(MSYL|0y, fmax) o p'(MSYL|¥6,,
Jmax) | {4<msyL<9} Summarizes the link between MSYL and
the other variables as well as expert opinion regarding the
reasonable limits of MSYL. This marginal distribution for
MSYL (and, therefore, for z) is shown in Figure 3 by the
solid line.

4.7 Other Inputs and Outputs

The rationales for the premodel distributions of the other
inputs, a, w, and Py, were given by Raftery et al. (1992)
and Givens et al. (1993). For the age at the end of juvenile
mortality, a, we used a discrete uniform distribution on the
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integers {1, ..., 9}. For the age at senescence, w, we adopted
a discretized N(60, 10?) distribution. For the unexploited
population size, P,, we used the premodel distribution de-
rived by Givens et al. (1993) from catch and effort data in
the early years of the commercial hunt.

The model outputs are numbers of whales of each age in
each year. There is considerable premodel information from
the 1978-1988 censuses about recent values of quantities
that can be calculated from the model outputs. The premodel
distribution for the 1988 population size, P,q33, is the Bayes
empirical Bayes posterior distribution from Raftery and Zeh
(1993). The premodel distribution for the 1978-1988 annual
rate of population increase, ROI, is that of ¢03053+0124067 _ 1
where #; is a random variable that has a ¢ distribution with
7 degrees of freedom. This is based on the results of Zeh et
al. (1991).

Because percent calves, percent immature, and percent
mature sum to 1, we have specified the premodel distribution
of the 1988 population age distribution in terms of percent
calves and percent mature only. The length data from With-
row and Angliss (1992) provide information about the age
distribution. They presented counts of calves, immatures,
and matures for 1985, 1986, 1989, and 1990. We assume
that the age distribution did not change appreciably between
1985 and 1990. Treating the counts for these four years as
independent, we estimated the means, variances, and co-
variance of percent calves and percent mature. Based on
this, we adopted a bivariate normal distribution for percent
calves and percent mature with means 5.8 and 43.6, standard
deviations 3.6 and 3.9, and correlation .23.

5. RESULTS: THE POSTMODEL DISTRIBUTION

Of the n = 200,000 draws from p!®(0), 69,247 resulted
in model trajectories that had nonzero probability according
to p!?!(¢). The final sample of m = 5,000 draws consisted
of 1,459 unique points, and no single point was chosen more
than 26 times. These results provided smooth estimates of
the postmodel density of quantities of interest. The procedure
did not have much Monte Carlo variability; in a replicate
run, 69,748 simulations had p!?(¢) > 0, and there were
1,478 unique points in the final sample.

Figures 4, 5, and 6 show marginal histograms of the post-
model sample with estimates of the marginal postmodel
densities superimposed. The latter were calculated by non-
parametric kernel density estimation with a Gaussian kernel
using the maximal smoothing span of Terrell (1990). Initial
marginal premodel distributions are shown by dotted lines.
The marginal postmodel distribution of the quantity of pri-
mary interest, RY for 1990, is shown in Figure 4. The 5%
point of the postmodel sample is 57 (and 58 in the replicate
run). The postmodel mode, or most probable value, is 104.

For many inputs and outputs, such as P;¢g3 in Figure 4,
the premodel and postmodel distributions were similar, in-

" dicating that the model provided little information about

these quantities. For others, the premodel and postmodel
distributions were quite different. Perhaps the most impor-
tant of these is the 1978-1988 rate of increase (Figure 4).
Although these results strongly support the conclusion of
Zeh et al. (1991) that the population has been increasing, it
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seems that the rate of increase is at the low end of the interval
based on the visual census data, with a postmodel mode of
about 1%, compared with the premodel mode of about 3%.
But the two distributions are not in conflict, and the post-
model 95% interval is completely contained in the premodel
95% interval. The 1988 percentage of calves is also most
likely to be in the lower part of its premodel distribution.

The results shed some light on the controversy about age
at sexual maturity (Fig. 5). They point to higher values: the
‘most likely value is 21, and nearly all the values favored by
the combined evidence (i.e., for which the postmodel prob-
ability is higher than the premodel probability) are between
16 and 25. Figure 5 also indicates that the lowest values in
the premodel ranges of f.x and Py are unlikely, whereas the
highest values of MSYR are unlikely. But the postmodel
distributions of f,., and MSYR, like those of the survival
parameters and MSYL, are not very different from the pre-
model distributions after self-consistency has been enforced.

The initial population size, P,, was probably in the range
15,000-23,000. Thus the stock is still depleted; the postmodel
mode of depletion level, defined as Pgg3/ Py, is 42% (Fig.
6). The stock was probably once depleted to about 15% of
its equilibrium level, or about 3,000 whales.

Figure 7 (p. 413) shows the ratio of the postmodel variance
to the premodel variance for several model inputs and out-
puts. This shows which quantities the model tells us most
about. A value close to 1 says that the model is not providing

much additional information, whereas a value much smaller
than 1 indicates that the model is substantially reducing un-
certainty. Figure 7 shows that the model is most informative
about Py, % calves and ROI.

Figures 4 and 5 provide an informal check on the fit of
the model; that is, on its consistency with the premodel in-
formation. All the postmodel histograms have modes well
within the range of the premodel distributions. This indicates
that the selected trajectories are consistent with all the pre-
model information, and so the model is able to accommodate
all the available evidence.

Figures 4 and 5 also allow us to perform some informal
sensitivity analysis to the premodel specification. Changing
the premodel distribution so as to assign less weight to values
that have virtually no weight under the postmodel distri-
bution would change the results very little. Thus, for example,
changing the premodel distribution of P, so as to exclude
values below 15,000 and above 23,000 would have essentially
no effect on the results.

Figure 8 (p. 413) shows the median trajectory for the total
population size with a pointwise confidence band. This is
qualitatively consistent with existing beliefs and results and
with the premodel evidence.

Figure 9 (p. 413) shows the results of a cluster analysis on
the quantities of interest using the connected hierarchical
clustering method (Everitt 1980), where the distance mea-
sure is chosen to be 1 minus the absolute postmodel corre-
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lation. It shows that the quantity of primary interest, RY, is
far more highly correlated with Py, MSYR, and ROI than
with the other model inputs and outputs. Jittered bivariate
scatterplots for RY, ROI, MSYR, and P, are shown in Figure
10 (p. 414); some of the relationships are nonlinear. These
results suggest that modest changes in the pre-model distri-
butions of other inputs and outputs would have relatively
little effect on inference about RY. Figure 9 also shows that
there are some important dependencies between other model
inputs and outputs.

The dependencies evident in Figures 9 and 10 suggest that
the model could be much simplified to one involving only
four variables (instead of the present 15), perhaps linked by
equations empirically estimated from the present output,
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without losing much accuracy in terms of inference about
RY. This is also useful for designing future research: research
that refines our knowledge about Py, MSYR, or ROl is likely
to be most useful.

6. DISCUSSION
6.1 General Comments and Related Work

We have developed a framework for combining different
sources of information about bowhead whales using a de-
terministic PDM. The method consists of translating all the
available information into a joint premodel distribution on
both inputs and outputs, and then restricting this to the sub-
manifold defined by the model to obtain the joint postmodel
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Figure 6. Marginal Postmodel Distributions of 1988 Depletion Level, P1gg5/Po, and Maximum Historic Depletion.
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distribution. Samples from the latter can be obtained by im-
portance sampling and Rubin’s SIR algorithm.

The method yields inference, conditional on the model,
about model inputs and outputs and functions of these,
which takes full account of uncertainty about these quantities
and takes full advantage of available information. The results
are in the form of a sample from the postmodel distribution,
and so this can be explored using the full range of modern
multivariate exploratory data analysis techniques. This leads
to simple informal model checking methods, some examples
of which are given in Section 5. It also suggests how the
model might be simplified. It is easy to recompute the results
quickly for different premodel distributions, without any ad-
ditional model runs.

The methods yield full inference about the quantity of
primary interest for IWC decision-making about bowheads,
namely RY, and they also shed some light on several other
questions of scientific interest.

Patwardhan and Small (1992), Wolpert, Reckhow, and
Steinberg (1992) and Small and Escobar (1992) have, like
us, considered Monte Carlo methods for taking into account
parameter uncertainty in simulation models. They consid-
ered only the situation where information about model out-
puts consists of measurements of the outputs with random
error. Then, as pointed out in Section 2, the problem can
be reduced to a standard Bayesian one with a prior, a like-
lihood, and a posterior, and standard methods apply. Our
framework includes this situation as a special case.

Ragen (1991), building on work of Smith and Polacheck
(1984), has used an alternative approach to accounting for
uncertainty in PDM’s. This approach consists of running
the model for all combinations of the model inputs on a grid
and eliminating those runs whose outputs do not satisfy cer-
tain criteria. This yields a valid solution to the problem, pro-
vided that premodel distributions of all the inputs and out-
puts are independent uniform distributions. It is very
expensive computationally, and if applied to our problem
would probably require more than one billion runs of the
model, which would be prohibitive. Our approach allows
much more general premodel distributions and also requires
much less computer time.

413

20000
1

Population Size
10000
-

5000
1

0
1

1860 1880 1900 1920 1940 1960 1980

Year

Figure 8. The Pointwise Median Trajectory With Pointwise 95% Intervals.

6.2 Improvements

There are several ways in which this work could be im-
proved. We are using a bad importance sampling function
(i.e., the premodel distribution of model inputs), because it
is easy to sample from. This means that we have to make a
lot of model runs or end up with a bad estimate of the post- .
model distribution that is heaped on a few points. Because
our PDM runs fast that is not a problem for us here, but for
more complex models it would lead to difficulties. We have
been experimenting with adaptive importance sampling
(Smith, Skene, Shaw, and Naylor 1987; West 1991) to refine
the initial importance sampling function. We have been ex-
ploring modifications of this that use local kernel density
estimates (Givens 1993; Givens and Raftery 1993).

The PDM itself could be made more realistic. For example,
mortality and age at sexual maturity could be made density
dependent, and uncertainty about the historic kill could be
included explicitly. The model comparison methods in Sec-
tion 2.4 could be used to assess whether such elaborations
are useful.

Clearly, a stochastic PDM would be more realistic than
the deterministic one that we are currently using. A deter-
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ministic model is much simpler, and its use is based on the
assumption that only a small part of the overall uncertainty
is due to random variation in the numbers of births and
deaths. The IWC has always taken this view. If all whales
have the same age-specific fertility and death rates, then the
numbers of births and deaths for each age in each year are
independent binomial random variables. If this is so, then
random variation probably does account for little of the
overall uncertainty, in which case deterministic and sto-
chastic models would give similar results. In this sense, ig-
noring random variation can be viewed as just another ap-
proximation or modeling assumption.

Our approach could take into account such random vari-
ation quite easily by integrating over trajectories as well as
inputs in Equation (3). This can be done by simulating one
or several trajectories for each value of § drawn. If birth and
death rates vary between whales, then the modeling is harder
and the random variation more important. It would be useful
at least to assess the sensitivity of our results to such heter-
ogeneity.

6.3 Other Approaches

As an alternative to the SIR algorithm described in Section
2.2, a rejection sampling method might be considered for
generating the postmodel sample; this was suggested by Smith

and Gelfand (1992) in the context of standard Bayesian in-
ference (but not of simulation models). But for the present
problem, the maximum likelihood problem is intractable,
so that their suggestion of using the prior scaled up by the
likelihood evaluated at the maximum likelihood estimator
(MLE) as the initial sampling envelope would not be feasible.

Simulation models often require a lot of computer time,
and this limits the number of runs that can be made. To get
the most out of a limited number of runs, a nonstochastic
way of doing the required numerical integration, such as
quadrature, may be best (Naylor and Smith 1982). A diffi-
culty with this is that the number of model runs required by
most quadrature methods increases geometrically with the
number of input parameters; for our problem, a practical
minimum would be 3'° = 59,049 runs. Raftery and Zeh
(1993, app. 4) described a more economical quadrature
method (partial iterated three-point Gauss—-Hermite quad-
rature) that uses the output from a standard sensitivity anal-
ysis and needs a number of runs that is only a polynomial
function of the number of input parameters; here it could
be implemented with only 201 runs. A generalization of the
method of O’Hagan (1991) might also be useful.

We have described a way of simulating from a high-
dimensional target distribution. Another way of doing this
is by a Markov chain Monte Carlo method, such as the Gibbs
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sampler (Gelfand and Smith 1990) or, more generally, the
Metropolis-Hastings algorithm (e.g., Smith and Roberts
1993). But the Gibbs sampler may well work poorly here
because of the strong dependencies induced by the model
(Fig. 10). Parameter transformations might help, but they
would require prior knowledge about the dependencies,
which is not generally available. More sophisticated Markov
chain Monte Carlo methods, such as those described by Besag
and Green (1993), might also be useful but could well be
unnecessarily complicated. For the present problem, the ap-
proach described here works well and is simpler to apply.

6.4 Software

Software to implement the methods described here is
available free of charge by sending the e-mail message “send
baysyn from general” to statlib@stat.cmu.edu. This is a large
Fortran program specially designed for the bowhead appli-
cation, but it could be adapted to other applications.

Software to carry out the reweighting procedure for
changing the prior without rerunning the whole procedure
is also available by sending the message “send bergs from
general” to statlib@stat.cmu.edu. A detailed description of
this methodology and the program was given by Givens et
al. (1994); see also Section 2.3. This is also a Fortran pro-
gram.

These programs are made available purely as templates
for the convenience of other researchers. Validated versions
of these programs for official use in the assessment of whale
stocks are maintained by the Secretariat, International
Whaling Commission, The Red House, Station Road, His-
ton, Cambridge CB4 4NP, U.K., to whom enquiries may be
directed.

[Received June 1993. Revised June 1994.]
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