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Inference About the Ratio of Two Parameters, With

Adrian E. RAFTERY and Tore SCHWEDER*

Inference for the quotient of two parameters estimated
separately may be obtained by the delta method. When
the distribution of linear transformations involving the
numerator and the denominator is available, more exact
and elementary methods may be used. Non-Bayesian
and Bayesian approaches are developed. The applica-
tion of the methods to estimating the stock abundance
of Northeastern Atlantic minke whales, where the ratio
is a raw estimate divided by a measure of observation
efficiency, is explained and discussed. The Bayesian
approach allows exact inference in quite general situ-
ations using only a single, rapidly implemented, one-
dimensional numerical integration. A simple analytic
approximation is given for the common situation where
the joint posterior distribution of the numerator and
denominator can be approximated by a normal distri-
bution that gives very little probability to negative val-
ues of the denominator. The Bayesian approach also
permits the incorporation of model uncertainty (or dis-
agreement) in a natural way, and this was the basis for
the conclusions of the International Whaling Commis-
sion Scientific Committee at its 1990 meeting.

KEY WORDS: Abundance estimation; Bayesian sta-
tistics; Line transect survey; Numerical integration;
Population size estimation.

1. INTRODUCTION

Suppose inference is to be made about a parameter
0, which we can write as 6 = ,/i,, where inference
about ¢, and ¢, can be made separately. This will be
the case, for example, if ¢, and ¢, are estimated from
different experiments. This arises in population size es-
timation, where 6 is the population size and ¢, is a
detection probability. We encountered it in the context
of estimating the abundance of minke whales in the
Northeast Atlantic (Schweder, @ien, and Hgst 1991).

Inference about a ratio of parameters appears to have
been considered first by Bliss (1935a, b) in the context
of bioassay. Fieller (1940) presented a solution based
on a pivotal quantity and he argued that this was a
fiducial solution (Fieller 1944, 1954). Creasy (1954) pre-
sented a different solution which she claimed was a
fiducial one, but Barnard (1954) and Fisher (1954) dis-
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Application to Whale Censusing

agreed and argued that Fieller’s was the true fiducial
distribution. The Fieller solution also provides standard
confidence intervals, and in Section 3 we give a simple
derivation of his method from this point of view.

In Section 4 we give the general Bayesian solution to
the problem of inference about # based on the joint
posterior distribution of ¢, and ¢,. We also give a simple
analytic approximation for situations such as that of the
minke whale census, where the joint posterior distribution
of ¢ and ¢, can be approximated by a bivariate normal
distribution that assigns negligible probability to negative
values of ,. Kappenman, Geisser, and Antle (1970) gave
an exact Bayesian solution in the special case of inference
about the ratio of the two means given a sample from a
bivariate normal distribution, while Zellner (1965, 1978)
and Press (1969) gave a Bayesian solution to the problem
of inference about a ratio of two regression parameters
when the errors are normally distributed. We also de-
scribe how this framework can be used to take account
of model uncertainty, or, as in the minke whale case,
disagreement about model assumptions.

Quotients of parameters are of interest in other sit-
uations. Seber (1982) considered a quotient of regres-
sion parameters using a method based on that of Fieller
(1940). This method was used by Tillman and Breiwick
(1983) when estimating the abundance of sperm whales
from historical data. Other cases of interest include
odds ratios in binomial experiments.

In Section 2 we present the essentials of the minke
whale abundance problem and in Section 5 the appli-
cation of the methods to the minke whale problem is
described.

2. THE PROBLEM OF ESTIMATING
MINKE WHALE ABUNDANCE FROM
SHIPBOARD SURVEYS

Shipboard surveys have been used for more than a
decade to estimate the abundance of Southern Hemi-
sphere minke whales (Hiby and Hammond 1989) and
in recent years this method has also been used for North
Atlantic minke whales. We will refer to the Norwegian
survey in 1989 for the Eastern part of the North Atlantic
(@ien 1991). Shipboard surveys are special cases of line
transect experiments (Burnham, Anderson, and Laake
1980). The survey vessel moves at a constant speed of
10 nautical miles per hour, along randomly chosen track
lines. There are two observers in the crow’s nest who
constantly scan the surface of the ocean in search of a
surfacing whale. When a whale is spotted, the radial
distance from the observer to the surfacing is measured
by eye and the angle between the track line and the
sighting line is read off from an angular board.
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From the observed radial distances and angles of the
initial observations of a whale, the effective search width
is estimated by fitting a curve to the observed distri-
bution of perpendicular distances from the track line to
the surfacings. A favorite method for this curve fitting
is that of Hayes and Buckland (1983). @ien (1991) found
by this method that the unadjusted estimate (see below)
of the number of minke whales feeding in the Northeast
Atlantic was ¢, = 34,800, with a standard error of s, =
5,500. The survey covered a total of 13,858 nautical
miles steamed by nine vessels during the month of July.

In recent years it has been realized that this method
has to be adjusted. If unadjusted it yields stock abun-
dance estimates that are biased downwards because it
is based on the assumption that all whales on the track-
line are sighted. The northern minke whale is, however,
hard to spot. It breaks the surface smoothly for breath-
ing, without releasing a visible blow. The surfacing takes
two to three seconds and the number of surfacings at
sighting distance is seldom more than seven, and may
be zero. The ship moves fast (309 m/minute) and the
whale takes dives sometimes lasting more than 10 min-
utes; the average surfacing rate is around 46.4 surfacings
per hour. The probability ¢, of sighting a whale that
stays on the track line is therefore substantially less than
one. With 6 being the number of whales, we have ¢, =
0y, and the problem is then to make inference about
the ratio 6 = Y/,

To estimate ¢,, an experiment involving two survey
vessels on a parallel course was conducted off Spits-
bergen in 1989. The method was to estimate the hazard
probability of sighting from the set of sightings made
by each vessel separately and jointly. A spatial com-
plementary log-log model for the hazard probability was
estimated from a sample of 496 binary observations.
The hazard probability was then product integrated with
respect to the observed surfacing processes of northern
minke whales. The result was i, = .427 with a standard
error of s, = .0542 (Schweder et al. 1991).

The estimation of stock abundance for whales is of
primary interest to the International Whaling Commis-
sion (IWC). The research referred to above was exten-
sively discussed at the IWC Scientific Committee meet-
ing in 1990. In Section 5 of this article, we give the
results of the methods described in Sections 3 and 4,
and we describe some of the ensuing deliberations of
the IWC Scientific Committee.

3. NON-BAYESIAN HYPOTHESIS TESTING FOR
QUOTIENT PARAMETERS AND RELATED
CONFIDENCE INTERVALS

Suppose that the problem is to test Hy: ¢/t = 6,
against Hy: o/, # 6,, or equivalently, Hy: ¢ —
B0y, = 0 against Hy: ¢ — 6, # 0.

In the application we have naturally that ¢, = 0 and
Y, > 0, and we assume this throughout. Let (fl/l, ) be
unbiased and jointly normally distributed. Assume fur-
thermore that estimates of standard deviations and cor-
relations are available, which allow for an estimate s3
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of the variance of ¢, — 6y, to have a distribution equal
to that of a constant times a y2 random variable and to

be independent of U, — 6o, The two-sided ¢ test based
on
T — '-zll - GOJIZ
So

with v degrees of freedom is then the optimal test to
use, being uniformly most powerful among unbiased
tests under appropriate conditions.

When s, and s, are the standard errors of s, and i,
and r is the estimated correlation such that

53 = 52 — 200rs;5, + 0353,
the rejection region for the ¢ test is
[y — gty > 1(s3 — 201535, + 035V, (1)

where ¢ is the appropriate quantile of the ¢ distribution.

The set of values of 6, for which (1) does not hold is
a confidence interval for 8 = ,/¢s,. If the confidence
interval is constructed by inverting the test in this way,
the interval inherits the good properties of the test. By
solving the quadratic equation related to (1), the con-
fidence interval is found to be

(W3 — 253) Ui — Prs,s,

= VS — 2rudosis, + Bt — Asisi(l — 1)

In terms of the coefficients of variation ¢; = s,/ and
¢, = s,/Ur,, the confidence interval reads

é1 — Preic, = V3 — 2reic, + ¢ — P31 — r?)
1 — ¢
= (L, 0), (2

where 6 = /s,

This confidence interval is, of course, valid only when
there are two distinct and positive roots of the quadratic
equation. An analysis of the inequality (1) leaves us
with four distinct cases which may be characterized in
terms of the ¢ statistics for the two parameters sepa-
rately, T, = d/fs;, i = 1, 2:

T, > tand T, > t, Two-sided: (L, U)

T, > tand T, = t, Left-sided: (U, »)

T, = t and T, > t, Right-sided: (0, U)

T, = tand T, = t, Indeterminate: (0, %).

If the confidence interval has confidence level (1 —
o), then ¢ is the upper o/2 quantile of the ¢ distribution.
The four cases are then the four possibilities when test-
ing the two hypotheses H;: ; = 0 against H;: ¢, > 0
(i = 1, 2), each at level o/2, such that the joint Bon-
ferroni level is a. Neyman (1954) pointed out the un-
satisfactory nature of the interval in all but the first of
the four cases, and recommended that no inference
about 6 be made in the other cases. In the minke whale
application we are well within the first case.

When ¢, and , are uncorrelated, the confidence
interval simplifies by setting r = 0.



4. BAYESIAN INFERENCE ABOUT A QUOTIENT

We denote by p(i, D) the joint posterior density
of y, and , given the data D. The posterior density of
0 is then simply

pOD) = | wp(Ous, DY, )

If p(6|D) does not have an analytic form, the right side
of (3) is a one-dimensional integral that can be readily
and quickly evaluated numerically. The cumulative pos-
terior distribution also lends itself readily to numerical
evaluation by summing up values of p(6|D) from (3),
and quantiles of the posterior distribution can be read
off easily.

A simple analytic approximation to Equation (3) is
available when p(i,, »|D) is approximately bivariate
normal, and the approximating normal distribution of
¥, has almost no mass below zero. This case is of con-
siderable practical interest because posterior distribu-
tions are asymptotically normal under fairly general
conditions (Heyde and Johnstone 1979; Walker 1969).
- Here s, is known to be positive and so its true posterior
distribution is entirely concentrated on the positive
numbers; if the normal approximation is adequate it is
likely to place very little mass on the negative numbers.

Suppose that E[y|D] = @, var(y|D) = o7 (i = 1,
2) and corr(;, ¥,|D) = p. We assume that ,/o, is large
enough that the normal distribution assigns negligible
probability to negative values of i,; otherwise the nor-
mal approximation is unlikely to be useful. Then

P[O = 6] = P[% = 0} = Pl — 04, =0], (4
2
since ¢, is positive. Now, E['Jfl — 0|D] = & — 6y
and var(y; — 6y,|D) = — 20poi0, + 6°03 = V(6)
say. Thus (4) yields
- _ U — 60,
P[6 = 6|D] = < V70) ) (5)

where ®(-) is the standard normal cumulative distri-
bution function. Differentiation of (5) with respect to
0 yields

a + b6 9?11 - 0'2/2
P(GlD) V(O)s/z ‘:b( \/W ) (6)
where a = (szcr% - t?/lpaltfz), b= (@10% - lzfzpo'ﬂ'z)

and ¢ is the standard normal density. Equations (5) and
(6) readily yield Bayesian estimation intervals and mea-
sures of location of the posterior distribution such as
the posterior median and mode.

Note that 68?p(6|D) tends to a constant as § — %, so
that 6 has no finite posterior moments of order greater
than or equal to one. Thus the posterior mean just fails
to exist, and the posterior variance does not exist. Also,
as § — o, the right side of Equation (5) tends to
®(i,/0,) rather than to one; the difference is negligible
if the normal approximation is good. The approximate
posterior density given by Equation (6) is negative for

some values of 8, namely those greater than 6, when
p < d and those less than 6., when p = d, where

o dp — 1
0'2d—p

ecrlt - (7)
and d = (Jn/0)/(J,/0>). In practical situations such as
the minke whale one, this is typically not a problem
because 6., is usually negative, or at least well below
the lower bound of any reasonable posterior interval
for 6. When p is close to one, however, there can be
problems because then 6, is close to oy/o,; if p < d
and oy/0, is large, or if p = d and o,/0, is small, the
approximation may not be satisfactory. When p = d or
when p is close to one, it seems wise to calculate 6,
using Equation (7) to check that the density is positive
for the entire range of plausible values of 6. In the minke
whale example, p = 0,d = .8, and (J,/o) = 8, so that
0. = —126,350 and there is no problem.

The Bayesian approach also allows the incorporation
of uncertainty about model assumptions as represented
by the values of A = ({,, oy, ,, 03, p). This can arise
because inferences about ¢, and ¢, are typically based
on modeling assumptions, and different models will lead
to different inferences, as represented by A. This is done
by integration in the usual way. Suppose that uncer-
tainty about A given all available information is rep-
resented by a density p(A|D). Then we have

p(D) = [ pok, DYDY dr. (®)

This approach was taken by the IWC to resolve disa-
greement in the case of Northeast Atlantic minke whale
abundance, as we describe in the next section.

5. APPLICATION: ESTIMATING MINKE WHALE
ABUNDANCE

In 1990, the IWC undertook a comprehensive as-
sessment of the various North Atlantic minke whale
stocks as part of its review of the worldwide moratorium
on commercial whaling. Before this assessment, the IWC
abundance estimate of North Atlantic minke whales
was 19,112 (TWC 1989). This estimate was termed “‘pro-
visional” because it was suspected of downward bias.
Based on the results presented to the IWC (Schweder
et al. 1991) and referred to in Section 2, with a point
estimate of

6 = 34,800/.427 = 81,500

and with a standard error of 18,000, the hypothesis that
6 = 19,112 must be rejected.

A two-sided confidence interval was found by the
Fieller technique of Section 3. There is no problem with
negative values in the normal approximation because
U, and {s, are both at least six standard errors greater
than zero. The 95% confidence interval is (55,000,
125,000). Here we have assumed ¥, and ¢, to be inde-
pendent since they are based on separate experiments.
We have also assumed the estimates to be approxi-
mately normally distributed, which they are to a good
approximation, and to have “precisely” estimated stan-

The American Statistician, November 1993, Vol. 47, No. 4 261



dard errors. In constructing the confidence interval the
standard normal cutoff point of 1.96 was used, and the
interval is approximate.

One puzzling aspect of the Fieller interval is the fol-
lowing. If one takes no account of the uncertainty about
the denominator and conditions on , = ¢, = .427,
the resulting interval is (56,000, 107,000). Thus taking
account of the uncertainty about the denominator re-
duces the lower bound only slightly, but stretches the
upper bound considerably. It is the hyperbolic relation
between the quotient and the denominator that causes
this asymmetric effect.

The Bayesian analysis goes as follows. The posterior
density of 6 given by (6) and based on the data of
Schweder et al. (1991) is shown as the dotted-dashed
line in Figure 1. In the Bayesian context, a point esti-
mator arises only as the solution to a decision problem
corresponding to a specific loss function. For this ex-
ample, it seems reasonable that relative (or percentage)
error is what we should be trying to minimize, sug-
gesting the loss function L(#) = ((§ — 6)/6)>. The value
minimizing this expected loss is the point estimator

. E[6~'D]

Ornre = E[6D] )

see Raftery (1988). This and various other summaries
of the posterior distribution are shown in Table 1. Note
that the posterior moments in Equation (9) do exist.
Another possible loss function was suggested by Zellner
(1978) for a ratio of regression parameters, but the
relative squared error loss function seems satisfactory
in the present context of population size estimation.
When the results of @ien (1991) and Schweder et al.
(1991) were discussed by the Scientific Committee of
IWC in its 1990 meeting, some members felt that bias
in the abundance estimate may have been introduced
by systematic errors in the eye-measured distances from
observer to primary whale observation. They referred
to Figure 2, which gives a scatterplot of eye-measured
distances versus triangulated distances. The latter are
calculated by assuming that the angles and the two dis-
tances identified in Figure 3 for surfacings observed
from both ships are measured without error. Against

1.0 15 2.0 25 3.0

Posterior probability
e6_e5 _e5 eb5 e5 ebs

5.0

0
e0

40000 60000 80000 100000 120000
Number of whales

Figure 1. Posterior Distribution of the Number of Whales. The
dotted-dashed line shows the “‘uncorrected’” posterior density, the
dotted line shows the “‘corrected”’ posterior density, while the solid
line shows the posterior density that was agreed by the IWC Sci-
entific Committee in 1990.
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Table 1. Summaries of the Three Posterior Distributions

Summary “Uncorrected” “'Corrected” Agreed
Omre 76,000 59,000 65,000
Posterior mode 79,000 61,000 67,000
Posterior median 81,500 63,000 71,500
95% Symmetric interval
Lower bound 53,000 41,000 43,500
Upper bound 121,000 93,500 114,000
95% HPD region
Lower bound 50,500 39,000 42,000
Upper bound 117,500 91,000 110,500

this interpretation of Figure 2, it was argued in the
Scientific Committee that the angles are subject to mea-
surement error, error caused by the rolling of the ships,
and bias due to the reaction delay of the observer, and
that the variability in Figure 2, which hints at under-
estimation of distances, was to be expected in the scatter
of observed versus triangulated distances even when
there was no bias in the distance measurements.

In an exercise, which some members understood as
an attempt at correcting the abundance estimates of
Schweder et al. (1991), while other members under-
stood it as a sensitivity analysis, hypothetical ‘“correc-
tions” were put forward for both ¢, and . For {,

Vestflud

1
0.91
0.87
0.71
0.61
0.51
0.44
0.31
0.21

Trianoulated distance (Nautical Miles)

0.11

0 T T T T T — T T
0 01 02 03 04 05 06 07 08 09 1
Observed distance (Nautical Miles)

Landkjenning

-

0.81
0.8
0.71
0.61
0.5
0.4
0.31
0.21
0.14

Triangulated distance (Nautical Miles)

0 T T T T T — T T
0O 01 02 03 04 05 06 07 08 09 1
Observed distance (Nautical Miles)

Figure 2. Triangulated Versus Observed Distances to Duplicate
Sightings From the Vessels Landkjenning and Vestflud.



Mile

Nautical

1

— 1 1 Il

VESTFLUD COURSELINE
——J1 | LANDKJENNING COURSELINE

T T T
[ 1 Nautical Mile

Figure 3. Distances and Angles for a Duplicate Sighting. The
triangulated position is far distant and is not shown. Open circle,
sighted by Vestflud; closed circle, sighted by Landkjenning.

distances were calibrated by the regression of triangu-
lated distances on observed ones. For i, the calibration
was done by the regression the other way around, of
observed distances on triangulated ones. Because re-
gressing y on x is different from regressing x on y, these
two calibrations acted very differently. In the one case,
the observers were assumed to overestimate long dis-
tances while in the other they were assumed to under-
estimate them. This is self-contradictory, since the or-
dinary shipboard survey and the parallel ship experiment
were conducted under similar circumstances and with
the same observers. This paradox did not bother those
members of the Scientific Committee who wanted to
use the ‘“‘calibration” exercise to correct the original
abundance estimate. The effect of the “‘correction’ was
to reduce ¢/, and to increase s, and the effect on the
abundance estimate was substantial. In Schweder et al.
(1991), which was revised after the meeting, this method
of “correcting” was shown to be invalid.

In any event, the Scientific Committee had to come
up with some estimate of North East Atlantic minke
whale abundance. A compromise was sought between
those who wanted to “correct’ the estimates of Schweder
et al. (1991) and those who found the uncorrected num-
bers to be the best possible. The compromise that was
accepted was to follow a Bayesian approach incorpo-
rating model uncertainty using Equation (8). With A as
defined in the context of the integration of Equation
(8), a two-point distribution with probability 1/2 at each
point was chosen for p(A|D). One point represented
those who favored the “‘uncorrected”” abundance esti-
mates, namely

Ay = (34,800, 5,500, .427, .0542, 0),

and the other point represented those who wanted the
abundance estimate to be ‘“corrected” downwards,

namely
Ay = (26,900, 4,250, .427, .0542, 0).

The “correcters” proposed only to change ¢, and its
standard error—to avoid ‘“‘overcorrection.” The re-
sulting combined posterior density is shown as the solid
line in Figure 1, together with the ‘“‘corrected”” and “un-
corrected” posterior densities. Summaries of all three
posterior distributions are shown in Table 1.

The Scientific Committee adopted the symmetric 95%
Bayesian estimation interval, (43,500, 114,000), as its
interval estimate of the number of North East Atlantic
minke whales (IWC 1991; Raftery, Buckland, Cooke,
and Schweder 1991). This is the interval with the .025
and .975 quantiles as limits, and not the highest pos-
terior density interval which the Scientific Committee
did not find useful. The Scientific Committee did not,
however, agree to put forward a point estimate of abun-
dance. Some members argued that a point estimate is
uninterpretable in the presence of such a highly dis-
persed posterior, and they opposed choosing the me-
dian or any other measure of location of the posterior
distribution as an agreed abundance estimate. In the
IWC meeting proper, following that of the Scientific
Committee, it was decided, however, that the compre-
hensive assessment of North Atlantic minke whales was
not complete without an agreed point estimate of abun-
dance, and that the Scientific Committee would have
to produce an agreed point estimate at its 1991 meeting.

EPILOGUE

In 1990, additional data were gathered to obtain a
better estimate of s, and to study the bias and errors
in eye-measured distances from the observer to the sur-
facing whale. A revised estimate of i, was presented
to the 1991 meeting of the Scientific Committee. This
time the Committee accepted a point estimate of abun-
dance but it did not accept a confidence interval. A
thorough discussion of method took place, however.
Based on recommendations given in 1991, the estimate
of ¢, was recomputed by a new method which allowed
the data on measurement errors to be incorporated in
the estimation (Schweder et al. 1992). This estimate
was presented to the Scientific Committee in 1992 and
this time around a point estimate of 86,736 with a con-
fidence interval of (60,736, 117,449) was accepted (IWC
1993).

[Received November 1991. Revised January 1993.]
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